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Abstract

The algorithm of Edelsbrunner for surface reconstruction by “wrap-
ping” a set of points in R? is described.

Curve reconstruction [O'R00] seeks to find a “best” curve passing through
a given finite set of points, usually in R2. Surface reconstruction seeks to find
a best surface passing through a set of points in R3. Both problems have nu-
merous applications, usually deriving from the need to reconstruct the curve
or surface from a sample. Both problems are highly underconstrained, for
there are usually many curves/surfaces through the points. Surface recon-
struction in particular is notoriously difficult to control. Although significant
advances have been made in recent years [Dey04]—especially in the direc-
tion of performance guarantees based on sample density—we turn here to
a beautiful and now relatively old “wrapping” algorithm due to Edelsbrun-
ner, which, although implemented in 1996 at Raindrop Geomagic, has been
published only recently [Ede03] after issuance of a patent in 2002.

Sample results of the algorithm are illustrated in Figs. 1 and 2.* Although
both of these examples reconstruct surfaces of genus one, we concentrate on
the genus-zero case (a topological sphere) and only mention extensions for
higher genus reconstructions.

An attractive aspect of the algorithm is that it reconstructs a unique
surface without assumptions on sample density and without adjustment of
heuristic parameters. Although the algorithm uses discrete methods, under-
neath it relies on continuous Morse functions. The discrete scaffolding on
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1 st1 (stereolithography) files for shapes from http://www.cs.duke.edu/“edels/Tubes/.


http://www.cs.duke.edu/~edels/Tubes/

B
W/ 75
NSNS
o\ s
Ss\wi=7/7=
RO 7o
SESANNIZ A
S, > A
i, o
Vi

J/n.
RS
7 WY
i 4

LTSRN
ZI\NY ﬂ%}'&
orass |

%

/>
4@4

Figure 1: Torus, pentagonal cross- Figure 2: Smooth, twisted torus.
section.

which the algorithm depends is the Delaunay complex, which we now infor-
mally describe. A simpler is a point, segment, triangle, or tetrahedron. A
simplicial complez K is a “proper” gluing together of simplicies, in that (1) if
a simplex o is in C, then so are all its faces, and (2) if two simplices ¢ and o’
are in K, then either cNo’ is empty or a face of each. Let S be the finite set of
points whose surface is to be reconstructed. The Delaunay complex Del S is
the dual of the Voronoi diagram of S. Under a general-position assumption,
Del S contains a simplex that is the convex hull of the sites T" C S iff there is
an empty sphere that passes through the points of 7. The outer boundary of
Del S is the convex hull of S. Augmenting Del S with a dummy “simplex”
¢ for the space exterior to the hull, covers R3.

The algorithm seeks to find a “wrapping” surface VW, a connected sim-
plicial subcomplex in Del S. It accomplishes this by finding a simplicial
subcomplex X of Del S whose boundary is W. The vertices of X will be
precisely the input points .S, and the vertices of VW will be a subset of S.

The algorithm uncovers X in Del S by “sculpting” away simplices from
Del S one-by-one, starting from ¢, until X remains. The simplices are re-
moved according to an acyclic partial ordering. It is the definition of this
ordering that involves continuous mathematics.

A function g(z) assigns to every point € R® a number dependent on the
closest Voronoi vertex. In particular, if z is in a tetrahedron 7" of Del S whose
empty circumsphere has center z and radius r, then g(z) = r* — ||z — z||*.
Thus g(z) is zero at the corners of T" and rises to 72 at z, the closest Voronoi



vertex. Points outside the hull are assigned an effectively infinite value. g(x)
is continuous but not smooth enough to qualify as a Morse function, needed
for the subsequent development. It will suffice here to claim that g can
be smoothed sufficiently to define the vector field Vg, and from this, by
a limiting process, flow curves through every point x € R? aiming toward
higher values.

These flow curves are in turn used to define an acyclic relation on all the
simplices of Del S and ¢. Let 7 and o be two simplices (of any dimension) and
v a face shared between them. For example, if 7 and o are both tetrahedra,
v could be a triangle, or a segment, or a vertex. Define the flow relation
7 so that 7 — v — o if there is a flow curve passing from int 7 to int v
to int 0.2

A sink of the relation is a simplex that has no flow successor. ¢ is always
a sink (recall g(z) is large outside the hull), with the hull faces of Del S its
immediate predecessors. Sinks are like critical points of the flow, with the
simplices that gravitate toward a sink corresponding to a stable manifold in
Morse terminology.

A key theorem is that the flow relation on simplices is acyclic, which
reflects the increase of g(x) along every flow curve. The algorithms starts with
¢ and methodically “collapses” its flow predecessors until no more collapses
are possible, yielding the complex X.

Let v be a face of 7; then 7 is called a coface of v.3 Assume 7 — v; for
example, 7 might be a tetrahedron and v one of its edges, with the flow from
7 through v. We give some indication of when the pair (v, 7) is collapsible,
without defining it precisely. First, 7 must be the highest dimension coface
of v, and v should not have any cofaces not part of 7. Thus, v is in a sense
“exposed.” Second, the flow curves should pass right through every point of
v (as opposed to running along or in v). Collapse of the pair removes all the
cofaces of v, thus eating away the parts of 7 sharing v.

A second key theorem is that any sequence of collapses from ¢ leads
to the same simplicial complex X. Collapses also maintain the homotopy
type, which, because Del S is a topological ball, result in X a ball and W a
topological sphere.

To produce surfaces of higher genus, the contraction is pushed through

(13

2int v is the interior of v; for a v a vertex, int v = v.
30ne can think of this is a containing face, although its origins are more in comple-
mentary topological terminology.



holes: the most “significant” sink (in terms of g(x)) is deleted (changing the
homotopy type), and then the collapses resume as before. This is how the
shapes shown in Figs. 1 and 2 were produced. Repeating this process on the
sorted sinks results in a series of nested complexes X = X, Xy, ..., 0.

Finally, the algorithm works in any dimension, although most applications
are in R3.
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