
HOLES

5.1. INTRODUCTION

One of the major open problems in the field of art gallery theorems is to
establish a theorem for polygons with holes. A polygon with holes is a
polygon P enclosing several other polygons Hx, . . . , Hh, the holes. None of
the boundaries of P, Hlf . . . , Hh may intersect, and each of the holes is
empty. P is said to bound a multiply-connected region with h holes: the
region of the plane interior to or on the boundary of P, but exterior to or on
the boundary of Hx, . . . , Hh. (A polygon without holes is said, in contrast,
to be simply-connected.) Similarly we define an orthogonal polygon with
holes to be an orthogonal polygon with orthogonal holes, with all edges
aligned with the same pair of orthogonal axes. For both general polygons
with holes and orthogonal polygons with holes, a gap remains between the
available necessity and sufficiency proofs. In this chapter we discuss these
problems, and present partial results obtained by Aggarwal and Shermer.

Recall that the proof of Theorem 2.1 established that orthogonal
polygons with holes may be convexly quadrilateralized. But we have yet to
prove that arbitrary polygons with holes may be triangulated.

LEMMA 5.1. A polygon P with holes may be triangulated.

Proof. Let P have h holes and n vertices in total. The proof is by induction
on h primarily, and n secondarily. Theorem 1.2 establishes the basis of the
induction for h = 0. For the general case, let d be a completely internal
diagonal, whose existence can be guaranteed by the same argument as used
in Theorem 1.2: choose an arbitrary convex vertex v2, with neighbors vx

and v3, on the outer boundary of P, and let d = vtv3 if this is internal, and
otherwise let d = v2x, where x is the closest vertex to v2 measured
perpendicular to f i^3. If d has one endpoint on a hole, then it increases n
by 2, but decreases h by 1. If d has both endpoints on the outer boundary of
P, then it partitions P into two polygons Pt with nt < n vertices and ht < h
holes, i = 1, 2. In either case, the induction hypothesis applies and estab-
lishes the theorem. •
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The number of triangles and quadrilaterals that result from triangulation
and quadrilateralization are dependent on the number of holes:

LEMMA 5.2. Let a polygon P with h holes have n vertices total, counting
vertices on the holes as well as on the outer boundary. Then a triangulation
of P has t = n + 2h - 2 triangles, and a quadrilateralization has q =
n/2 + h — 1 quadrilaterals.

Proof. Let the outer boundary of P have n0 vertices, and let the ith hole
have n, vertices; thus n = n0 + n1 + • • • + nh. The sum of the interior angles
of the outer boundary is (n0 - 2)180 degrees; the sum of the exterior angles
of the ith hole is (n{ + 2)180. Thus

180[(n0 ~ 2) + («i + 2) + • • • + (nh + 2)] = 180r

ort = n+2h-2. Since q = t/2, q=n/2 + h-l.
The same result may be obtained with Euler's Theorem. There are V = n

vertices, F = t + h + 1 faces, one for each triangle and hole, plus the
exterior face, and E = (3t + n)/2 edges, where three per triangle plus the
boundary counts each edge twice. Then V — E + F — 2 yields t = n + 2h—2
as above. •

Throughout the remainder of the chapter, we will use n, h, t, and q to
designate the quantities defined in this lemma and P to represent a polygon
with holes (including the holes).

The best sufficiency result for both the general and the orthogonal
problems is the following theorem.

THEOREM 5.1 [O'Rourke 1982]. For a polygon of n vertices with h
holes, [(« + 2h)/3\ = \t/3] combinatorial guards suffice to dominate any
triangulation, and for an orthogonal polygon, [(n + 2h)/4\ = \q/2]
combinatorial guards suffice to dominate any quadrilateralization.

Proof.1 First we note that the equivalences of \t/3] and [(n + 2h)/3\, and
\q/2\ and [(n +2h)/4\, follow directly from Lemma 5.2 by substitution.
Thus this theorem is a direct extension of the sufficiency halves of Theorems
1.1 and 2.2, which established respectively that [n/3\ = \t/3] and [/i/4j =
\q/2] guards suffice.

Given a polygon P with holes, triangulate it into t triangles; call the
triangulation T. The plan of the proof is to "cut" the polygon along
diagonals of the triangulation in order to remove each hole by connecting it
to the exterior of P. It is clear that every hole must have diagonals in T from
some of its vertices to either other holes or the outer boundary of P. Cutting
along any such diagonal either merges the hole with another, or connects it
to the outside. In either case, each cut reduces the number of holes by one.
We are not quite finished, however, because we need to choose the cuts so
that the result is a single polygon: it may be that a choice of cuts results in
several disconnected pieces.

1. I have incorporated several ideas from Aggarwal (1984).
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Fig. 5.1. A triangulation graph of a polygon with holes (a) and its dual (b): each hole in (a) is
surrounded by a cycle in (b).

Let t be the (non-weak) dual of the triangulation. T is a planar graph of
maximum degree three, which, in its natural embedding, has h bounded
faces Flt . . . , Fh, one per hole of P. Let Fo be the exterior unbounded face.
Choose any face Ft that shares at least one edge e with Fo. There must be
such a face because there must be a diagonal of T from the outer boundary
to some hole, and the dual of this diagonal in t, is e. Removal of e from t
merges Ft with Fo without disconnecting the graph. See Fig. 5.1 for an
example. Note that removal of an edge in f is equivalent to cutting P along
the corresponding diagonal of T. Continuing to remove edges of t shared
with the exterior face in this manner guarantees that a single connected
graph results.

Let P' be the polygon that results after all holes are cut in the above
manner. Then P' has n + 2h vertices, since two vertices are introduced per
cut, but because cuts do not create new triangles, it still has t triangles.
Applying Theorem 1.1 to P' yields coverage by [(n + 2h)/3\ = \t/3]
guards.

The proof for orthogonal polygons is exactly the same, except that
Theorem 2.2 is invoked to obtain the result. •

Although this easily obtained theorem has a pleasing form when
expressed in terms of t and q, it appears to be weak: no one has found
examples of polygons that require this many guards. In fact, it is difficult to
find an example that requires more than [n/3\ guards independent of the
number of holes. But we show in the next section that there are such
polygons.

5.2. GENERAL POLYGONS WITH HOLES

Sidarto discovered the one-hole polygon shown in Fig. 5.2a. It has n = 8
vertices, h = 1 hole, and requires three guards. Note that 3 > [8/3J.
Shermer discovered the polygons in Figs. 5.2b and 5.2c, which also have



128 HOLES

a b c

Fig. 5.2. One-hole polygons of 8 vertices that require 3 guards.

eight vertices and require three guards. These one-hole examples can be
extended to establish [(n + l)/3j necessity for one hole: Figs. 5.3a and 5.3b
show two examples for n = 11, due, respectively, to Shermer and Delcher.2

Finally, the examples can be extended to more than one hole: Fig. 5.4
shows Shermer's method of stitching together copies of the basic one-hole
example. The polygon shown has n = 24 vertices, h = 3 holes, and requires
nine guards. This example establishes [(n + h)/3\ necessity for h holes. We
will not attempt to prove that the claimed number of guards is necessary in
the examples just mentioned, as it should be obvious from the figures. The
following theorem summarizes the implications of these examples.

THEOREM 5.2 [Shermer 1982]. [(n + h)/3\ guards are sometimes neces-
sary for a polygon of n vertices and h holes.

Note that Fig. 5.4 also establishes that [3«/8j guards are sometimes
necessary if we express the result solely as a function of n.

The gap between the necessity of [(n + h)/3\ and the sufficiency of
[(n + 2h)/3\ has proved very difficult to close. Since the gap widens as h
increases, it is not as insignificant as it might first appear. The strongest
result available is that [(n + h)/3\ guards suffice for h = 1, a theorem
proved independently by Aggarwal and Shermer (Shermer 1984). We will
follow Shermer's proof technique here.

a b

Fig. 5.3. One-hole polygons of 11 vertices that require 4 guards.

2. I assigned this as a homework problem in my computational geometry class. Julian Sidarto
and Thomas Shermer, and Arthur Delcher, were students in that class in 1982 and 1985,
respectively.
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Fig. 5.4. A polygon of 24 vertices with 3 holes that requires 9 guards.

5.2.1. Reduced Triangulations

Before outlining the proof, we first perform a reduction that eliminates
irrelevancies. The dual of a triangulation of a polygon with one hole has one
cycle surrounding the hole, with (perhaps) several trees attached to the
cycle. The next lemma shows that we can clip all the trees down to at most
one node. Define a reduced triangulation as one such that every subgraph of
the triangulation dual G that may be disconnected from G by the removal of
a single arc, has exactly one node. Note that this definition is independent
of the number of holes in the polygon from which the triangulation derives.
We restrict the next lemma to one-hole polygons although it does extend to
the general case.

LEMMA 5.3. If [(n + l)/3j combinatorial guards suffice to dominate
every reduced triangulation of a polygon of n vertices and one hole, then
[(n + l)/3j guards suffice to dominate every triangulation of n vertices and
one hole.

Proof. The proof is by induction on the number of trees of more than one
node attached to cycles of the triangulation dual G. The basis is established
by the antecedent of the lemma: [(n + l)/3j guards suffice for a reduced
triangulation, which by definition has no attached trees of more than one
node. For the general step, assume [(n + l)/3j guards suffice for any
triangulation with s'<s trees of at least two nodes, and let G be a
non-reduced triangulation with s such trees. Let T be one of these trees,
detachable from G by the removal of one arc r. The situation is as
illustrated in Fig. 5.5. Let a and b be the endpoints of the diagonal whose
dual is r. Let m be the number of vertices in the polygon Q composed of the
triangles of T, not including a and b. We show that all but at most the root
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Fig. 5.5. A tree T attached at diagonal ab to a cycle, which extends to the left and right.

triangle of T can be covered "efficiently," that is, with one guard per three
vertices. The proof proceeds in three cases, depending on the value of
m mod 3. The easiest cases are considered first.

Case 0 (m = 3k). The polygon Q has m + 2 vertices, and it may therefore
be covered by [{m + 2)/3j = k guards by Theorem 1.1. Let P-Q be the
polygon remaining after removal of Q—that is, the deletion of all vertices in
T except a and b, and all incident edges. Since P — Q has 5 - 1 attached
trees of one node or more, the induction hypothesis guarantees coverage
with [(n — m + l)/3j guards. Thus P may be covered with

[(n - m + 1)/3J + k = [[(n - m + 1) + m]/3j = [(n + l)/3j.

guards.

Case 2 (m = 3k + 2). The strategy used in Case 0 will lead to k + 1 guards
here, which is insufficient for our purposes, so another approach must be
taken. Augment Q to Q' by adding the triangle on the other side of ab,
whose apex is JC. Q' is a polygon of m + 3 = 3k + 5 vertices and may
therefore be covered with [(3& + 5)/3j =k + l guards by Theorem 1.1.
Fisk's proof of that theorem (Section 1.2.1) assigns one vertex of triangle
abx a guard. If JC is assigned a guard, it may be moved to a or b while
maintaining complete coverage of Q'. Thus we may assume that a or b is
assigned a guard. Suppose without loss of generality that a is assigned a
guard. Let P' be the result of removing all of Q', all triangles incident on a,
and splitting vertex x into two vertices. See Figs. 5.6a and 5.6b. P' has
n — m —1 + 1 vertices, since it is missing the m vertices of Q and vertex a,

d _ 0'

a b
Fig. 5.6. When 3k + 2 vertices comprise T (a), the hole is removed by splitting x (b).
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a b

Fig. 5.7. When 3k + 1 vertices comprise T (a), one case is handled by covering R and abc
together, and L separately (b).

but gains a vertex from the split of JC. Splitting x removes the hole, but P' is
not necessarily a polygon, as pieces may be attached at vertices only. But
now connect each vertex of P' that was adjacent to a in P, to x. In Fig.
5.6b, vertex d is so connected. These connections are not always geometri-
cally possible, but for this case we are only concerned with the com-
binatorial structure of the graph. The reconnections do not increase the
number of vertices, but they restore P' to be a triangulation graph of a
polygon without holes. There is now no need to use the induction
hypothesis; rather apply Theorem 1.1 to P', resulting in coverage by

L(n - m)/3j = [[(n - 3(k + 1)) + l]/3j = [(n + l)/3j - (* + 1)

guards. Together with the k + 1 guards used to cover Q', the lemma is
established in this case.

Case 1 (m = 3k + 1). Let the triangle forming the root of T be abc. Let /
be the number of vertices in the left subtree L, not including a and c, and
let r be the number of vertices in the right subtree R, not including b and c.
Thus m = l + r + 1; see Fig. 5.7a. We consider two subcases dependent on
the values of / and r mod 3.

Subcase la (I = 3k1 and r = 3k2; m = 3{kx + k2) + 1). As in Case 0, cover L
and R with kx and k2 guards. By the induction hypothesis, P — L-R can be
covered with

[ j {kx + k2)[[n - (/ + r) + 1]/3J = [[n - 3{kx + k2) + l]/3j = [(n

guards, establishing the theorem. This is the only case in which T cannot be
entirely removed, but is instead reduced to a single triangle abc.

Subcase lb (I = 3 ^ + 1 and r = 3k2 + 2; m = 3{kx + k2 + 1) + 1). Let R' be
the polygon obtained by adding abc to R. R' has 3k2 + 5 vertices. Cover R'
with k2 + l guards by Theorem 1.1. Fisk's coloring procedure guarantees
that one vertex of abc is assigned a guard. If either a or b (say a) is guarded,
then proceed exactly as in Case 2: delete R' and a, and split x. The
calculations are just as in Case 2, establishing the lemma. If on the other
hand c is guarded, then delete R' and all triangles of L incident on c, as in
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Fig. 5.7b. This leaves at most / + l = 3£:1 + 2 vertices either disconnected
from P or attached at a. Addition of graph edges if necessary restores this
piece to a triangulation graph of a polygon L' without increasing the
number of vertices. Cover U with k1 guards by Theorem 1.1. Now the
remainder of P has n — m vertices and 5 — 1 attached trees. By the induction
hypothesis it may be covered with

L(n - m + 1)/3J = [[n - 3(*t + k2 + 1)]/3J = [n/3\ - (k, + k2 + l)

guards. Together with the k2 + 1 guards used to cover R', and the k1 guards
used for L', complete coverage has been achieved with fewer than
L(« + l)/3j guards.

All cases have now been covered, and the lemma established. •

The idea of reconnecting "broken" pieces into a polygon triangulation
graph is from Shermer (1985). Note that this technique was used only when
induction was unnecessary, or was applied only to an attached tree. This is
crucial, as the geometry of the reduced triangulation is important in the
proof of Theorem 5.3 below, and cannot be warped by curved reconnec-
tions that need to be straightened in the manner used in Lemma 3.1.

5.2.2. Tough Triangulations

We may now proceed with Shermer's proof of [(n + l)/3j sufficiency for a
polygon with one hole. The first step of the proof reveals why the problem
is hard: there exist triangulations of polygons with h holes that require
[(n + 2h)/3\ combinatorial guards for domination. Thus the problem
cannot be reduced to pure combinatorics by an arbitrary triangulation.
Before proving this we introduce some notation.3 Lemma 5.3 permits us to
restrict attention to reduced triangulations. Let T be a reduced triangulation
of a polygon with one hole. Then T consists of a single cycle of triangles,
each with perhaps one attached triangle that is not part of the cycle. A cycle
triangle is based on the inner boundary if it has exactly one vertex, its apex,
on the outer boundary of the polygon, and based on the outer boundary if
just its apex is on the inner boundary. Note that the base edge of a cycle
triangle based on the inner boundary may not itself be on the inner
boundary because of a tree attached to the base; this is why the definition is
phrased in terms of the apex. Label a cycle triangle " 1 " if it has no attached
non-cycle triangle, and "2" if it does. Then T is represented as a string of
characters over the alphabet {"1", "2", " / " } , formed by concatenating all
the labels of the cycle triangles, and inserting a "/" between labels Xx and A2

if the kx triangle is based on the inner boundary and the A2 triangle is based
on the outer boundary, or vice versa. Thus each "/" records a switch in
basing. This string of characters will be called the string associated with T.

Figure 5.8 shows an example. Starting at the indicated lowest triangle and

3. The notation is due to Shermer (1984), but slightly modified here.
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t
Fig. 5.8. A triangulation of 10 vertices with string 121/121/1/1/ that requires 4 guards: the 3
shown (dots) do not cover the shaded triangle.

proceeding counterclockwise, we obtain the string 121/121/1/1/. Note that
the sum of the integers in the string is equal to the total number of triangles
in T, and because t = n when h - 1 by Lemma 5.2, this is the same as the
number of vertices of the polygon. We will employ standard regular
expression notation to condense the strings: " + " for "or," sk for k
repetitions of string s, and s* for zero or more repetitions of s. Thus the
above string is equivalent to (121/)2(1/)2 and is an instance of (1(21) */)4.
We consider two strings equivalent if one is a cyclic shift of the other, or a
cyclic shift of the reverse of another. Finally note that the strings make no
distinction between the inner and outer boundaries, and in fact this
distinction is irrelevant for combinatorial guards.

A complete characterization of those triangulations that require
[(« + 2h)/3\ combinatorial guards for h = 1 is provided by the following
theorem (Shermer 1984).

THEOREM 5.3 [Shermer 1984]. A reduced triangulation T of a polygon
with one hole requires [(n + 2)/3j combinatorial guards for complete
domination iff the string for Thas the form (l(21)*/)6*~2.

We will call a string that is an instance of (l(21)*/)6fc~2 tough. Figure 5.8
satisfies the theorem: n = 10 and it requires [12/3J = 4 combinatorial
guards; an attempted cover with three guards is shown in the figure. Figure
5.9 shows a polygon with the string (121/)10; here n = 40 and [42/3J = 14
guards are required. Even triangulations whose strings are tough but do not
correspond to any non-degenerate polygon require [(n + 2)/3j
combinatorial guards. Figure 5.10 shows the smallest possible instance,
(I/)4, where n = 4 and g= [6/2J =2. Figure 5.8 is the smallest instance
realizable as a polygon. All these examples are from Shermer (1984).

Proof of Theorem 5.3. We first prove that a triangulation graph T with a
tough string requires [(n + 2)/3j combinatorial guards. The proof is by
induction, in two parts. First it is shown that the claim holds for strings of
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Fig. 5.9. A triangulation of 40 vertices with string (121/) that requires 14 guards: the 13
shown (dots) do not cover the shaded triangle.

the form (l/)6k~2. Then it is shown that each addition of a (21) section
requires another guard.

Triangulations of the form (l/)6k~2 have a particularly simple structure,
illustrated for k = 2 in Fig. 5.11. Each vertex is adjacent to exactly three
triangles. Thus g = \t/3] guards are necessary. But since t = n — 6k — 2,
g = [(6A; - 2)/3] =2k= [(n + 2)/3j, establishing the first claim.

Now assume that all triangulations T of n vertices with tough strings
require g = [(n + 2)/3j guards, and consider adding three vertices to such a
T by insertion of a (21) section 5 after a " 1 " triangle and before a "/"
switch. Clearly any triangulation of n + 3 vertices that is an instance of the
tough form (1(21)*/)6k~2 can be obtained by such an insertion. Assume, in
contradiction to our goal, that the insertion does not increase the number of
guards required beyond g. We claim then that T could have been covered
by g - 1 guards. S must be covered in one of the three ways illustrated in
Figs. 5.12a, 5.12b, or 5.12c. If S is covered as in Fig. 5.12a, then removal of
the section and the guard results in domination of T by g — 1 guards. If S is
covered as in Fig. 5.12b, then deleting S merges two guards, again resulting
in coverage by g — 1 guards. Finally, if S is covered as in Fig. 5.12c, then
removal of S leaves two guards, one of which (the bottom one in the figure)
is superfluous because every triangle to which it is adjacent is already
covered. So again T can be dominated by g — 1 guards. This contradicts the
assumption that g are necessary, establishing that the form (l(21)*/)6fc~2

always requires [(n + 2)/3j combinatorial guards.

Fig. 5.10. A triangulation of 4 vertices with string (I/)4 that requires 2 guards: the 1 shown
(dot) does not cover the shaded triangle.
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Fig. 5.11. A triangulation of 10 vertices with string (I/)10 that requires 4 guards: the 3 shown
(dots) do not cover the shaded triangle.

Now we prove the theorem in the other direction, in the contrapositive
form: if a triangulation T does not have a tough string, then fewer than
[(n + 2)/3j combinatorial guards suffice for domination. Each 1 in a tough
string must be followed by (2 + 1), and each 2 by 1. Thus, any non-tough
triangulation must contain a fragment of the form 11, 22, or 2/. Each of
these cases is treated separately.

a b c
Fig. 5.12. Three ways to guard a (21) section.

Case 1 (11). Let ab be the diagonal shared between the two " 1 " triangles,
with b an apex of both, as shown in Fig. 5.13a. Place a guard at b, delete all
covered triangles, and add in extra edges as needed to restore to a polygon
with no holes, as shown in Fig. 5.13b. The result is a triangulation of a
polygon of no more than n — 2 vertices, and so T may be dominated with
1 + L(n - 2)/3j = [(n + 1)/3J guards.

Case 2 (22). Again let ab be the shared diagonal, with a incident to all four
triangles, as shown in Fig. 5.14a. Place a guard at a, delete the four adjacent
triangles, and split node b into two nodes, as shown in Fig. 5.14b. The result
is a polygon of n - 2 vertices, so again T can be dominated with
l + [ ( n - 2)/3j = L(» + 1)/3J guards.

a b
Fig. 5.13. Guarding a l l fragment (a) removes the hole (b).
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a b

Fig. 5.14. Guarding a 22 fragment (a) removes the hole after splitting a vertex (b).

Case 3 ill). Here we must consider several subcases, depending on the
triangles adjacent to the 2/ fragment.

Case 3a (2/1). See Fig. 5.15a. Place a guard at a and delete adjacent
triangles. The result is a polygon of n - 2 vertices, and we proceed as in
Case 1.

Case 3b (2/2). Again we consider subcases.

Subcase (2/21). See Fig. 5.15b. Place a guard at a as in Case 3a.

Subcase (2/22). This was already handled in Case 2.

Subcase (2/2/1). This was already handled in Case 3a.

Subcase (2/2/2). See Fig. 5.15c. Place a guard at a, delete all adjacent
triangles, and split vertex b. Now proceed as in Case 2.

a b c
Fig. 5.15. The three cases for the fragment 2/ are all handled by guarding vertex a.

We have thus shown that [(n + l)/3j combinatorial guards suffice whenever
one of the fragments 11, 22, or 2/ are present in T"s string, establishing the
theorem. •

5.2.3. Convex Pairs and Triplets

The second step of Shermer's proof of Theorem 5.3 is to further
characterize those one-hole polygon triangulations that might require
[(« + 2)/3j guards, this time involving the geometry of the triangulation
and using geometric guards. In particular, if a tough triangulation contains
either a "c-pair" or a "c-triplet," then [(n + l)/3j guards suffice. The third
and final step is to show that every tough triangulation must contain one of
these two structures.

A c-pair is a pair of adjacent cycle triangles that together form a convex
quadrilateral.
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a b

Fig. 5.16. Flipping a 1/1 c-pair leads to 11/1 (a) or 2/1/1 (b).

LEMMA 5.4. A polygon with a tough triangulation containing a c-pair
may be covered with [(n + l)/3j vertex guards.

Proof. The strategy is to flip the diagonal of the c-pair, changing the
structure of the triangulation to non-tough. Since the triangulation has the
string (1(21)*l)6k~2, the c-pair has either the form 1/1 or 21 (or equivalently
12). Each case is considered separately.

Case 1 (1/1). Flip the diagonal of the c-pair. Since the quadrilateral is
convex, this is possible. The resulting triangulation is not tough, as can be
seen in Fig. 5.16. If the triangle preceding the c-pair is of type 1, then the
fragment 1/(1/1) is changed to 11/1 (Fig. 5.16a). If the preceding triangle is
of type 2, then the fragment 2(1/1) is changed to 2/1/1. Neither of these
new fragments are substrings of any tough string. By Theorem 5.3, then,
[(« + l)/3j guards suffice.

Case 2 (21). Again flip the diagonal. The resulting triangulation, shown in
Fig. 5.17, is not reduced. But this is just Case 2 of the proof of Lemma 5.3.
Place a guard at a, delete all adjacent triangles, split vertex c in two, and
restore to a polygon triangulation by adding diagonals as necessary. Three
vertices are deleted, and one added. Since the result is a polygon, coverage
by 1 + [(« - 2)/2j = [(« + l)/3j guards has been achieved. •

Fig. 5.17. Flipping a 21 c-pair leads to the case considered in Fig. 5.6.

A c-triplet is a triple {A, B, C) of consecutive cycle triangles such that
first, B is of string type 1, and second, the union of the three triangles may
be partitioned into two convex pieces.

LEMMA 5.5. A polygon with a tough triangulation containing a c-triplet
may be covered with [(« + l)/3j vertex guards.

Proof. Let a be the vertex common to the c-triplet triangles A, B, and C,
as shown in Fig. 5.18a. Delete B and split vertex a. The result is a polygon
of no holes with n + 1 vertices, which may therefore be covered with
[(n + l)/3j vertex guards by Theorem 1.1. In particular, perform the
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a b
Fig. 5.18. A c-triplet is covered if A and C are covered (a), but B is not covered if the
triangles do not form a c-triplet.

coverage with Fisk's coloring procedure; then both A and C must have a
guard in one of their corners. Now put back B. Because the three triangles
form a c-triplet, B is also covered by the guards covering A and C. •

Note that if the triangles did not form a c-triplet, as in Fig. 5.18b, B
would not necessarily be covered. Similarly, if B were of string type 2, the
triangle attached to B would not necessarily be covered.

We finally come to the last step of the proof. For a triangle tt, define the
open cone delimited by the two edges of tt passing through the apex as <x(i),
and define the similar region off the right base vertex as /3(z); see Fig. 5.19.

LEMMA 5.6. Any tough triangulation of a polygon contains either a
c-pair or a c-triplet.

Proof. The proof is by contradiction. Assume a tough triangulation
contains no c-pair or c-triplet. Then we will show that it cannot close into a
cycle, and so is not the triangulation of a polygon with one hole.

Identify two adjacent cycle triangles of the form 1/1; such a fragment
must exist because the general form is (1(21) */)6^"2. We will identify
triangles by subscripts on their type. The selected 1/1 fragment is labeled
lo/li- We expand this string to the right in all possible ways compatible with
the general tough form, and show that a particular geometric structure
always results. Let a string S end at the right with 1,, and let vt be the vertex
at the tip of the ear lt. Then define an embedding of S to be nesting if vt is

Fig. 5.19. The apex cone a and base cone j3 for a triangle.
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Fig. 5.20. lo/li is nesting.

in the base cone /3(i -1) of the triangle adjacent to 1,. We now show that
lo/li is nesting.

The general form of this fragment is as shown in Fig. 5.20a. In order to
avoid a c-pair, either the configuration shown in Fig. 5.20b or 5.20c must
hold. In Fig. 5.20b, vl e /S(0), and so the nesting definition is satisfied.
Figure 5.20c is just Fig. 5.20b reflected in a horizontal line, and we assume
without loss of generality that 5.20b obtains.

The string lo/li may be extended only with /I or 21 while remaining
compatible with the tough form. We consider each case separately.

Case 1 (lo/li/l2)- The general form is shown in Fig. 5.21a. In order to
avoid a c-pair in li / l2 , either v2 e ar(l) or v2 e j3(l). The former choice (Fig.
5.21b) leads to a c-triplet, and the latter choice (Fig. 5.21c) is a nesting
configuration.

Fig. 5.21. lo / l i / l2 is nesting.

Case 2 (lo/li/22l3). As in Case 1, we must have v2e/3(l). To avoid a
c-pair in 2213, we must have v3 e fi(2), as illustrated in Fig. 5.22. Again the
configuration is nesting.

Fig. 5.22. is nesting.
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VVn

iS(i-i)

Fig. 5.23. Repeated nesting prevents vn from coinciding with v0.

Both Case 1 and 2 may be extended only with /I or with 21. Extension of
Case 1 results in the same two cases again, although the possibility that
v3 e ar(2) is blocked by l0, so this choice does not have to be ruled out by
showing that it leads to a c-triple. Similarly extension of Case 2 brings us
back to the same two cases. We conclude that every embedding of the string
compatible with the tough form is nesting.

But now the contradiction is immediate. The repeated nesting forces
vt e fi(i — 1), and since these base cones are clearly nested inside one
another (see Fig. 5.23), the embedding cannot wrap back around to permit
vn = v0. O

THEOREM 5.4 [Aggarwal, Shermer 1984]. [(n + l)/3j vertex guards
suffice to cover any n vertex polygon with one hole.

Proof. Lemma 5.3 established that if the theorem holds for reduced
triangulations, then it holds for all triangulations. So we restrict our
attention to reduced triangulations. Theorem 5.3 shows that if the reduced
triangulation is not tough, then [(n + l)/3j vertex guards suffice. So we
need only consider tough triangulations. Lemmas 5.4 and 5.5 show that if a
tough triangulation contains a c-pair or a c-triplet, then [(n + l)/3j guards
suffice. And Lemma 5.6 shows that every tough triangulation contains one
of these structures, so there are no further possibilities. •

It does not seem easy to extend this proof to more than one hole.
Nevertheless, there is considerable evidence for the following conjecture.

CONJECTURE 5.1 [(n + h)/3\ vertex guards are sufficient to cover any
polygon of n vertices and h holes.

5.3. ORTHOGONAL POLYGONS WITH HOLES

The status of the art gallery problem for orthogonal polygons is similar to
that for general polygons in that it is unsolved in its most general form.
There are, however, four interesting differences: the number of guards does
not seem to be dependent on h, there is a simple proof of the one-hole
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theorem, there is a two-hole theorem, and vertex guards do not suffice for
more than one hole.

Recall that the quadrilateralization theorem (2.1) holds for orthogonal
polygons with holes. However, the coloring argument used to obtain [n/4\
sufficiency does not work if there are cycles in the dual of the quad-
rilateralization. Nevertheless, no examples of orthogonal polygons with
holes are known to require more than [n/4j guards. This leads to the
following conjecture.

CONJECTURE 5.2. [n/4j point guards suffice to cover any orthogonal
polygon of n vertices, independent of the number of holes.

The gap between this conjecture and the best general result, [(n + 2h)/4\
(Theorem 5.1), is substantial.

Aggarwal established the truth of the conjecture for h = 1 and h = 2. His
proof for one hole is long and complicated (Aggarwal 1984). The two-hole
theorem is by no means a simple extension of the one-hole theorem; further
complications arise.4 Recently Shermer found a simple proof of the
one-hole theorem. This is the only proof we will present in this section.

His proof is "simple," however, only if we accept a non-trivial lemma
proved by Aggarwal to the effect that only reduced quadrilateralizations
need be studied. A reduced quadrilateralization is one for whose dual G the
following conditions hold:

(1) Every subgraph that may be disconnected from G by the removal of
a single arc of G has exactly one node, called a leaf;

(2) the quadrilaterals of no two such leaf nodes share a vertex.

For a polygon with one hole, the dual of a reduced quadrilateralization is a
single cycle with attached leaf nodes satisfying condition (2). Note that the
definition of a reduced quadrilateralization parallels that of a reduced
triangulation used in the previous section, with the additional restriction of
discarding neighboring non-cycle quadrilaterals.

Aggarwal established the following analog of Lemma 5.3.

LEMMA 5.7. If [n/4j guards suffice to dominate every reduced quadri-
lateralization of n vertices and one hole, then [n/4j guards suffice to cover
every quadrilateralization of n vertices and one hole.

The proof of this lemma is at least as complex as that of Lemma 5.3, but it
is very similar in spirit, and we will not detail it here (Aggarwal 1984, Prop.
3.10). This lemma permits us to concern ourselves solely with reduced
quadrilateralizations.

We need a simple characterization of the cycle quadrilaterals of one-hole
orthogonal polygons before proceeding. Each cycle quadrilateral has all
four of its vertices on the boundary of the polygon. If a quadrilateral has

4. This proof is only sketched in Aggarwal (1984), but he has rather detailed notes.
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two vertices on the exterior boundary and two on the hole boundary it is
called balanced; otherwise it is called skewed.

LEMMA 5.8 Any quadrilateralization of an orthogonal polygon with one
hole has an even number (at least four) of balanced quadrilaterals.

Proof. We first establish that the number of polygon edges bounding the
cycle quadrilaterals towards the exterior is even. Of course this is trivial if
all the quadrilateral edges are polygon edges, because an orthogonal
polygon has an even number of edges. Let elf . . . , ek be the cycle
quadrilateral edges towards the exterior, and let nt be the number of
polygon edges in the portion of the polygon Pt bound by e, that does not
include the hole. If et is a polygon edge, then n,•. = 1; otherwise nt is odd,
since Pt is quadrilateralizable and therefore has an even number of boundary
edges including et. Since each n, is odd, and £f=i«z, the total number of
polygon edges, is even, the number of terms k must be even. This
establishes the claim.

Since each balanced quadrilateral contributes 1 to k, and each skewed
quadrilateral contributes 0 or 2 to k, the number of balanced quadrilaterals
must be even. To establish that there must be at least four balanced
quadrilaterals, note that the four extreme edges of the hole (top, bottom,
left, right), cannot be part of a skewed quadrilateral. •

We may now proceed with Shermer's proof of the one-hole theorem.

THEOREM 5.5 [Aggarwal 1984]. [n/4j vertex guards suffice to cover any
n vertex orthogonal polygon with one hole.

Proof [Shermer 1985]. Let Q be a reduced quadrilateralization of an
orthogonal polygon with one hole. Associate a graph H with Q as follows.
The nodes of H correspond to the quadrilaterals of Q, and two nodes are
connected by an arc iff their quadrilaterals share a vertex. An example is

Fig. 5.24. Two nodes are adjacent in H if their quadrilaterals share a vertex.
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Fig. 5.25. Hamiltonian paths through balanced (a and b) and skewed (c) cycle quadrilaterals.

shown in Fig. 5.24. We claim that H is Hamiltonian, that is, it contains a
cycle that touches each node exactly once.

First it is easy to see that the quadrilaterals that form a cycle in the dual
of Q form a cycle in H as well, since quadrilaterals that share a diagonal
share vertices. We now "stitch" the leaf nodes into this cycle. Let A, B, and
C be three consecutive cycle quadrilaterals. If B is balanced it may have
either one or two attached leaf quadrilaterals (Figs. 5.25a and 5.25b); if B is
skewed, it may have one attached leaf quadrilateral (Fig. 5.25c). In all three
cases it is possible to form a Hamiltonian path from A to C including B and
any attached leaf nodes, as illustrated in the figures. Concatenation of these
Hamiltonian paths for all cycle quadrilaterals playing the role of B can be
seen to result in a Hamiltonian cycle y for H by the following argument.

A leaf attached to a skew quadrilateral may be brought into the cycle in
only one way, as shown in Fig. 5.25c. To reduce the graph to situations
where choice remains, contract the edge e shown in Fig. 5.25c for every
such skew quadrilateral, and delete the attached leaf node. Perform this
contraction of e even if the skew quadrilateral has no attached leaf node.
After contraction (or "squashing") of e, every edge of H incident to either
endpoint of e is made incident to one node that "represents" both
endpoints. Applying this transformation to the complicated section of H
shown in Fig. 5.26a, for example, reduces it to the simpler fragment shown
in Fig. 5.26b. After contraction of all such skew quadrilaterals, the resulting
graph H' is a mixture of the two cases in Figs. 5.25a and 5.25b. Because no
two leaf quadrilaterals share a common vertex by definition of a reduced
quadrilateralization, and because the contraction process does not destroy
this property, H' is a simple pasting together of the patterns in Figs. 5.25a
and 5.25b. Note that the Hamiltonian path in those figures always use the
edge(s) between a balanced cycle quadrilateral and its attached leaf node(s)
(the vertical edges in Fig. 5.25). Contracting these edges produces a further
reduced graph H" which is always a simple cycle; see Fig. 5.26c. Now start
with the obvious Hamiltonian cycle for H", and "reverse" the transforma-
tions above. From H" to H' there are choices available, but it is clear that a
Hamiltonian cycle can always be achieved: because every leaf node is
adjacent to three consecutive cycle nodes, an exit in the required direction
is always available to a path traveling the vertical edge from cycle node to
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Fig. 5.26. A section of H with a Hamiltonian path (a), after contraction of skewed
quadrilaterals (b), and after contraction of vertical edges (c).

leaf node. Reversal from H' to H is straightforward, as there is no choice.
The result is the claimed Hamiltonian cycle y of H.

Let q be the number of quadrilaterals in Q. Recall that by Lemma 5.2,
q=n/2. liq is even, then every other edge of y forms a perfect matching in
H: a set of edges that is incident on each node exactly once. Each edge of
the matching corresponds to a vertex of the polygon. Placing guards at the
vertices associated with the edges of the matching covers the two quadri-
laterals whose nodes are endpoints of the edge. Thus this guard placement
covers the entire polygon with q/2 = n/4 = [n/4\ guards.

Now suppose that q is odd. If the number of cycle quadrilaterals is even,
then there must be at least one leaf quadrilateral. If the number of cycle
quadrilaterals is odd, then by Lemma 5.8 there must be at least one skewed
cycle quadrilateral. Both of these cases guarantee the existence of three
quadrilaterals consecutive in y that can be covered by one vertex guard.
Place a guard at this vertex and delete the three nodes from y, forming y'.
y' has an even number of nodes and forms a Hamiltonian path. Again every
other edge of y' represents a perfect matching, and placing guards at the
corresponding vertices results in complete coverage. The number of guards
used is 1 + far - 3)/2 = (q - l)/2 = (n - 2)/4 = jn/4]. •

As mentioned earlier, Aggarwal has also proven that [n/4j guards suffice
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Fig. 5.27. A four-hole polygon of 44 vertices that requires 12 vertex guards.

to cover any orthogonal polygon with two holes. The most interesting aspect
of the two-hole theorem is that [n/4\ vertex guards do not suffice for
polygons of two or more holes: Fig. 5.27 shows a four-hole polygon with
n=44 that require 12 vertex guards, 3 surrounding each hole.5 However,
10 < [44/4J guards suffice if they are not restricted to vertices: movement of
guards 2 and 8 horizontally to the right to the polygon boundary permits the
elimination of guards 3 and 9. Extension of this example to multiple holes
has led Aggarwal and Shermer to make the following conjectures
(respectively).

CONJECTURE 5.3. [3n/llJ vertex guards are sufficient to cover any
orthogonal polygon with any number of holes.

CONJECTURE 5.4. [(n +h)/4\ vertex guards are sufficient to cover any
orthogonal polygon with any number of holes.

5. Aggarwal (1984, p. 137), as modified by Shermer.


