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THREE DIMENSIONS AND
MISCELLANY

10.1. INTRODUCTION

In this final chapter, four miscellaneous topics are discussed: three
dimensions, line segment obstacles, point obstacles, and mirrors.

10.2. THREE DIMENSIONS

Very little is known about art gallery theorems in three dimensions. In this
section we present three negative results that collectively show that there is
a vast difference between the problem in two and three dimensions, and one
positive result concerning convex polyhedra.

10.2.1. Untetrahedralizable Polyhedra

The reason that progress in three dimensions has been difficult is that the
main tool used throughout this book for two-dimensional problems—
triangulation—does not generalize. Lennes proved in 1911 the surprising
theorem that there exist polyhedra (even of genus zero, i.e., without holes)
whose interior cannot be partitioned into tetrahedra whose vertices are
selected from the polyhedra vertices (Lennes 1911). Schonhardt later gave a
simpler example (Schonhardt 1928), which we present here, based on
Bagemihl's exposition (Bagemihl 1948).

Let a, b, and c be the vertices (labeled counterclockwise) of an
equilateral triangle of unit edge length in the xy-plane. Let a', b', and c' be
the vertices of abc when translated up to the plane 2 = 1, as shown in Fig.
10.1a. Define an intermediate polyhedron P' as the hull of the two
triangles, including the diagonal edges ab', be', and ca', as well as the
vertical edges aa', bb', and cc', and the edges in the two triangles abc and
a'b'c'. Now twist the top triangle a'b'c' 30° counterclockwise in the plane
z = l, rotating and stretching the attached edges accordingly. The result is
shown in Fig. 10.1b; a view from z - °° is shown in Fig. 10.1c. Call the
resulting polyhedron P.
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(a)

(c)

(b)

(d)
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Fig. 10.1. Schonhardt's untetrahedralizable polyhedron, constructed by twisting the top of a
triangular prism (a) by 30°, producing (b), shown in top view (c); a twist of 60° would cause
face intersections (d).

First note that P is indeed a valid polyhedron: it would take a twist of 60°
(shown in an overhead view in Fig. 10.Id) to "pinch off" the interior. Now
we show that any tetrahedron whose vertices are selected from those of P
includes points exterior to P. This is established with the help of two claims:

(1) Every open segment whose endpoints are vertices of P but which is
not an edge of P, is exterior to P.

(2) Every triangle whose sides are edges of P is a face of P.

P has 6 vertices and 12 edges. Since I ) = 15, only three segments need

be checked to verify claim (1): ac', ba', and cb'. All three are clearly seen
to be exterior from Fig. 10.1c. Claim (2) can be checked at a single vertex,
say a, as all have the same local connections. And indeed, it is the case that
for every pair of edges of P incident to a, either a third edge of P forms a
face of P, or there is no third edge of P forming a triangle.

Now, by claim (1), every edge of an interior tetrahedron T must be an
edge of P. By claim (2), this means that every face of T is a face of P. But
since P is a valid polyhedron, this implies that T = P, a contradiction to the
fact that P has 6 vertices.

Schohardt proved that this is the smallest example of an un-
tetrahedralizable polyhedron. Bagemihl extended this example to construct
a polyhedron of n vertices with the same properties for every n > 6. As far
as I am aware there is no characterization of which polyhedra are
tetrahedralizable. It seems likely that there is a nice art gallery theorem for
tetrahedralizable polyhedra; this remains an area for future exploration.
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10.2.2. Q(n32) Guards Necessary

It seems almost obvious that guards posted at every vertex of a polyhedron
cover the entire interior. But this would only be obvious if every polyhedron
were tetrahedralizable. For then every tetrahedron would have a guard in a
corner (in fact in all four corners), and the tetrahedra would cover the
interior. In the absence of tetrahedralization, however, the "obviousness"
of complete coverage is less clear. In fact, we describe in this section a
polyhedron constructed by Seidel that has these two properties:

(1) Guards placed at every vertex do not cover the interior.
(2) Q(n3/2) guards are necessary, where n is the number of vertices.

The polyhedron that realizes these properties is orthogonal and of genus
zero. It may be constructed as follows.

Start with a cube of side length L. On the front face mark squares of side
length 1 in a regular k x k array, with 1 + s separation between each row
and column, where e «1, as illustrated in Fig. 10.2. Thus L should be
chosen to be larger than (2 + e)k. Attach a 1 x 1 x (L - e) rectangular box
behind each square inside the cube, and remove the square on the front
face. The result is a deep dent at each square that does not quite reach the
back face of the cube. Apply the same procedure for the right face, and for
the top face, staggering the k x k arrays so that none of the box dents
intersect. The resulting polyhedron has n = 8(3A:2 + 1) vertices.

Figure 10.3 shows a top-view cross section of the interior. Point x in the
figure is confined inside a (1 + e) x (1 + e) x (1 + e) cube bound by six box
dents, two from each of three directions; x is at the center of this cube. This
cube space is not closed, but has \ e-cracks along all 12 edges. Nevertheless,
it should be clear that x is not visible from any vertex if e is chosen to be
much smaller than 1.

This establishes the first claimed property. The second claim follows by
noting that there are (k -1)3 equivalent points x, no two of which are
visible from the same point. Thus at least g = (k — I)3 guards are necessary,
and

g = «(n/24)3/2 - «3/2/118 = Q(n3/2).

•
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Fig. 10.2. Exterior view of Seidel's polyhedron showing array of dents.
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Fig. 10.3. Cross section of Seidel's polyhedron: point x is not visible to any vertex.

Note that the fact that a guard at each vertex does not suffice for coverage
implies that Seidel's example is not tetrahedralizable. Finally, the example
may be "turned inside-out" to establish the same bound for exterior
visibility.

10.2.3. Convex Partitions

In the absence of tetrahedralization, it is natural to attempt to approach
three-dimensional art gallery problems through convex partitions, which
proved useful in two dimensions (Section 1.4). Our final negative result is
that there are polyhedra that require Q(n2) convex pieces in any convex
partition of a polyhedron of n vertices. This result was established by
Chazelle (1984), who also provided an algorithm that finds a partition into
at most \r2 + \r + 1 convex pieces, where r is the number of reflex edges of
the polyhedron, in O(nr3) time. Chazelle's example may be constructed as
follows.

Start with a cube aligned with orthogonal xyz coordinate axes. Cut k thin
notches into the bottom face, parallel to the xz-plane. Similarly cut k
notches into the top face, parallel to the vz-plane. The result is shown in
Fig. 10.4 for k = 2. The two sets of notches do not quite meet. The top
edges of the notches in the bottom face lie on the hyperbolic paraboloid
z = xy, and the bottom edges of the notches in the top face he on
z=xy + e, the same surface shifted up by e, where e « 1 . A hyperbolic
paraboloid can be generated by two sets of orthogonal lines (Thomas 1962),

Fig. 10.4. Any convex partition of Chazelle's polyhedron requires a quadratic number of
pieces.
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so the edges can be chosen to lie on these surfaces. Chazelle proved that the
intersection of the warped shape between the two hyperbolic paraboloids
with any convex subset of the polyhedron can only have such a small
volume that Q(n2) pieces are necessary to make up the volume of the shape.
His proof is long and difficult and will not be presented here. His conclusion
is that at least «2/66 = Q(n2) convex pieces are necessary in any convex
partition of the polyhedron just described.

10.2.4. Satellite Sentries

The only non-trivial art gallery theorem known for three dimensions is for
the very special case of exterior visibility for guards confined to the surface
of a convex polyhedron. The equivalent problem in two dimensions is
trivial: \n/2] boundary guards are always necessary and sufficient to guard
the exterior of a convex polygon. But in three dimensions the situation is
not as straightforward. First, there are several quantities that might serve as
the basis for a theorem: V, E, and F, the number of vertices, edges, and
faces of the polyhedron. It seems that F is the most natural measure, and we
will use it in this section.

The theorem is obtained by using matchings in the graph of the dual of
the polyhedron. We will need the following theorem of Nishizeki on the size
of maximum matchings in planar graphs.

LEMMA 10.1 [Nishizeki 1977]. If G is a connected planar graph of n
nodes, with minimum vertex degree <5 ^ 3, and with connectivity K>2,
then for all n ^ 14, the number of edges in a maximum matching of G is
greater than or equal to \{n + 4)/3], and for n < 14, the number of edges is

Nishizeki obtained many similar results for different values of 5 and K, all
of which are best possible (Nishizeki and Baybars 1977; Nishizeki 1977). We
will have occasion to use this powerful theorem in the next section as well.

We may now prove the art gallery theorem.

THEOREM 10.1 [Grunbaum and O'Rourke 1983]. L(2F - 4)/3j vertex
guards are sometimes necessary and always sufficient to see the exterior of a
convex polyhedron of F faces, for F ^ 10.

Proof.

Necessity. Let Q be any simple polyhedron of /faces, that is, having all
vertices of degree 3. From Euler's formula v — e +f = 2, and 2e = 3v, it
follows that v = 2/ - 4. From Q construct a polyhedron P by "truncating"
all vertices of Q, that is, replace each vertex of Q by a small triangle so that
none of the new triangles share common points. This procedure is
illustrated in Fig. 10.5 when Q is a cube. P has F=f + v = 3f — 4 faces.
Each of the new triangular faces requires its own guard, so the total number
required is at least v = 2/ - 4. But [(2F - 4)/3j = [(6f - 12)/3j = 2/ - 4.
This establishes necessity when F = 2mod3, since 3 / - 4 = 2mod3. The
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Fig. 10.5. The result of truncating a cube at every vertex.

other two cases (mod 3) can be shown as follows. If one of <2's vertices is not
cut off, then P has F = 3/ - 5 faces, and needs 2/ - 5 = [[2(3/ - 5) - 4]/3j
= [(2F — 4)/3j guards. If two of £>'s vertices are not cut off, then P has
F = 3/ - 6 faces, and needs 2/ - 6 = [[2(3/ - 6) - 4]/3j = [(2F - 4)/3j
guards. Thus for all values of F, polyhedra exist that require [(2F — 4)/3j
guards.

Sufficiency. Let G be the dual graph of the surface of the polyhedron P;
G has F nodes. G is planar and its minimum vertex degree is three because
each face of P must have at least three edges. A polyhedral graph is the
graph determined by the vertices and edges of a convex polyhedron. G has
connectivity of at least three since polyhedral graphs are 3-connected by
Balinski's theorem (Griinbaum 1975), and G is polyhedral because it is the
dual of a polyhedral graph. Therefore, Lemma 10.1 applies and shows that,
for F ^ 14, there is a matching M in G of at least m = \(F + 4)/3] edges.
Now place a guard on one of the endpoints of the edge of P correspond-
ing to each edge in the matching. This covers 2m faces. Assign a separate
guard to each of the F — 2m faces of P. The result is complete coverage
with m + F — 2m = F — \(F + 4)/3] guards. This quantity is identical to
[(2F-4)/3j . For F<14, there is a matching of m = [F/2\ edges, which
by the same argument leads to coverage with \F/2] guards. For F > 10,
\FI2\ < L(2F - 4)/3j. This establishes the theorem, then, for all F > 10. •

The necessity holds for all F > 5, and although I suspect sufficiency also
holds in the range 5 < F < 9, I have not verified this yet.

10.3. LINE SEGMENT OBSTACLES

Throughout this book we have concentrated on polygons, but "art
gallery-like" questions may be posed for other types of obstacles. In this
section we prove an art gallery theorem for n non-intersecting line
segments. Visibility is defined as follows: a guard at point x sees point v if
the line segment xy does not cross the interior of any line segment obstacle;
xy may be collinear with a segment, or touch one of its endpoints.
Sufficiency follows easily using the same technique just employed for convex
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polyhedra. Necessity is less obvious, but fortunately a counterexample to a
hypothesis on the prison yard problem considered in Chapter 6 may be
modified to yield the critical example.

THEOREM 10.2 [O'Rourke 1985]. [2n/3j point guards are sometimes
necessary and always sufficient to cover the plane in the presence of n line
segment obstacles, where the guards may be positioned anywhere in the
plane, under the following assumptions:

(1) No two segments are parallel (and therefore none are collinear).
(2) No three lines determined by segments intersect in a common point.
(3) n > 5 .

Proof.
Sufficiency. Partition the plane into n + 1 regions in a manner similar to

that used in Sections 1.4 and 6.5.2 (see Lemma 6.5): extend each segment in
both directions until it hits either another segment or a previous segment
extension. The induced convex partition is dependent on the order in which
the extensions are made, but it always has n +1 regions by the non-
collinearity assumption (1). Form a graph G from this partition as was done
in Section 6.5.2, as follows. Associate a node of G with each convex region
of the partition, and connect two nodes by an arc of G if their regions share
a common boundary point. An example is shown in Fig. 10.6.

It is easy to see that assumption (2) ensures that G is a planar graph, and
indeed a triangulation, since every face of G (except the exterior face) can
be associated with the intersection of two segment lines, and a neighbor-
hood of this intersection point touches three mutually adjacent regions,
corresponding to a triangle in G. Without the non-degeneracy assumption,
either G would not necessarily be a triangulation, or it would not necessarily

Fig. 10.6. A convex partition of the plane induced by a set of line segments (shown bold) and
its dual graph.
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Fig. 10.7. If three segments (dashed) meet at a point, either dual graph is not a triangulation
(a) or it is not necessarily planar (b).

be planar, depending on whether adjacency in G required a finite length of
common boundary or just a common point, respectively (see Figs. 10.7a and
10.7b). Although these degeneracies are actually "in our favor," the proof
is more straightforward if they are assumed not to occur.

We would like to apply Lemma 10.1 to G, which requires a minimum
vertex degree 6 of 3. However, G may have 6 = 2 as illustrated in Fig. 10.6.
Since G is a triangulation graph, any nodes of degree 2 must be on the
exterior face. Augment G to G' by adding a pseudo-node p adjacent to
every node of G on the exterior face. Since G must have at least three
nodes on its exterior face, p has degree three or more, and since p is
connected to every degree 2 node of G, G' has 5 >3 .

To show that G' is 2-connected, assume to the contrary that removal of
one node disconnects G'. Let x be such an articulation point of G'. Then
the convex region R associated with x must divide the plane into two parts
that share no boundary points. But this is only achievable if R has parallel
edges running to infinity in both directions, which is not possible by the
non-parallel assumption (1).

Now apply Lemma 10.1 to the (n + 2)-node graph G', for n > 12, to
obtain a matching M of m = \(n + 6)/3] = [n/3] + 2 edges. Each edge of M
not incident on p may be associated with a boundary point shared between
two convex regions. Placing a guard at such a point clearly covers the two
incident regions since they are convex. At most one edge of M may be
incident to p. If there is such an edge, a guard may be used to cover the
region associated with the other endpoint. Thus m guards associated with
the matching edges cover at least 2m — 1 regions. Covering the remaining
(n + 1) - (2m - 1 ) regions each with their own guard results in total
coverage with

m + (n + l)-(2m-l) = n-m + 2 = n- \n/3\ = [2n/3\

guards. For n < 12, Lemma 10.1 guarantees a matching of size \{n + 2)/2]
= \n/2] +1 edges, which by the same argument yields coverage with
[n /2 j+ l guards. Since [n/2\ +1 < |_2n/3j for n>5, sufficiency is
established.

Necessity. Although experimentation with small values of n would lead
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Fig. 10.8. A pattern of 12 line segments that require 7 point guards.

one to expect that at most \n/2] guards are necessary, the dependence of
the sufficiency proof on matching suggests examining graphs with no perfect
matching. And indeed, Fig. 6.19, which we used as a counterexample to an
approach to the prison yard problem, can be used to establish necessity.
Consider the 12 segments and induced convex partition shown in Fig. 10.8.
The 13 node dual graph has the property that removal of 6 nodes (solid in
the figure) disconnects the graph into seven odd components. Moreover,
coverage of three nodes with one guard leaves a graph of 10 nodes that has
no perfect matching, because removal of 4 nodes disconnects the remainder
into 6 odd components (Section 6.5.2). It is clear that each of the seven
triangular regions corresponding to the disconnected nodes (open in the
figure) requires their own guard. Since 7 > [12/2], this example shows that
\n/2\ are not sufficient.

In order to show [2«/3j necessity, we nest the pattern inside of itself as
follows. Note that the pattern of segments in Fig. 10.8 has just three edges,
A, B, and C, that extend to infinity. Thus the central triangular region
formed by edges a, b, and c can be replaced by a copy of the pattern, with
A, B, and C replacing the roles of a, b, and c, respectively. If this nesting is
repeated k times, n' = 9 k + 3 segments will be used. Each nesting adds six
triangular region that each requires a guard. Since the innermost central
triangular region also needs its own guard, g' = 6k + 1 guards are necessary.

A final modification yields the critical example. Add three more segments



262 THREE DIMENSIONS AND MISCELLANY

Fig. 10.9. Additional segments added to the pattern of Fig. 10.8, which is nested within the
dotted triangle.

A', B', and C" that angle off of A, B, and C to infinity, as shown in Fig.
10.9. The cone bound by A and A' requires its own guard, and similarly
for the B and C cones. Thus the figure has tt=«' + 3 = 9£ + 6 segments and
requires g = g' + 3 = 6k + 4 guards. Since [2n/3\ = [(18k + 12)/3j = 6k + 4,
the formula has been established when « = 0(mod3). This example also
establishes the n = l(mod 3) case, since incrementing n by 1 does not
increase the value of [2n/3\. The n=2(mod 3) case can be settled by
adding two more segments, shown dashed in Fig. 10.9, forcing the need for
another guard. Here n = 9k + 8 and |_2«/3j = 6k + 5. Thus for every n > 15,
there exists an arrangement that requires [2n/3\ guards. Removing edge A'
establishes the same formula for n = 14. •

It remains to be explored whether the theorem also holds for the
degenerate cases or small values of n ruled out by the theorem's
assumptions. Using Lemma 10.1 for n < 14 easily establishes that \nl2\ + 1
guards are sufficient for n < 14, which, for n > 5, is no greater than L2«/3j,
but the necessity of [_2«/3j guards for each n < 14 has not been established.

If the guards are restricted to vertices the situation changes dramatically.

THEOREM 10.3 [Boenke and Shermer 1986]. n vertex guards are
sometimes necessary and always sufficient to cover the plane in the presence
of n line segment obstacles.

Proof. Necessity is established by an arrangement of segments around a
circle, as illustrated in Fig. 10.10. Each of the indicated triangular regions is
visible only to the two segment endpoints at the base of the triangle. Note
the similarity between this example and that used to establish necessity for
the prison yard problem (Fig. 6.1).

For sufficiency, partition the plane into n + 1 convex regions as in
Theorem 10.2. Each region has at least one segment endpoint on its
boundary, and each endpoint borders on two regions. Place a guard at any
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Fig. 10.10. An arrangement of 8 line segments that require 8 vertex guards.

endpoint. This covers two regions. Cover the remaining n — 1 regions with a
guard at an endpoint on their boundaries. •

10.4. POINT OBSTACLES

It may seem that there can be no interesting art gallery questions if the line
segment obstacles considered in the previous section are reduced to points,
but this is only because we have assumed throughout most of this book that
there are no collinear degeneracies. Permitting collinearities and defining
visibility to be blocked by points yields two interesting combinatorial-
geometric problems, both at least partially unsolved since they were posed
in the 1950s and 1960s.

Let P be a set of n points in the plane, not all on a line. Such a point set
will be called non -collinear. Note that any number k < n of points in P may
be collinear. Define points x and y to be visible to one another if the open
line segment xy contains no points of P. Let p * e P be a point that sees at
least as many points of P as any other, and let M(P) be this maximum
number. Note that M{P) = n — 1 if no three points of P are collinear, with
p* any point of P. Finally define m(n) to be the minimum of M(P) over all
point sets of size n. Without the non-collinearity stipulation, m{n) would be
2 for all n > 2, since M(P) would be 2 for all sets of collinear points, with p*
any non-extreme point. But if not all points are on a line, it seems a very
difficult problem to find m(n). Dirac posed the problem in 1951 (Dirac
1951) and conjectured that m(n) = [n/2).1

1. His original problem was somewhat different: he sought the minimum over all configura-
tions of the maximum number of lines determined by two points that pass through a third. This
is not exactly the same problem, because if the two determining points of a line are on opposite
sides of the third, the third sees both, but if they are on the same side, the third only sees the
closest.
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12

Fig. 10.11. A configuration in which no point can see more than 8 = 12/2 + 2 other points.

Figure 10.11 shows a configuration that achieves M(P) = \n + 2 for even
n, so ra(n) :£ \nl2\ + 2. Dirac offered this simple proof that m{n)> Vn.

Let p* be a point that sees a maximum number k of other points. Let L
be a line determined by p* and one of these k points. We claim that L
cannot contain more than k points. For suppose it did contain k' > k points.
Then because not all points of P are collinear, there is a point p e P not on
L. For each point pt on L, either p sees pt, or p sees a point p\ such that p,
p't, and Pi are collinear in that order. Clearly if pt and pj are two distinct
points on L, then p[ and p- (if they exist) are distinct also. Thus p sees
k' > k points, contradicting the assumption that k is the maximum.

Now count the number of points P in the following way. Each of the k
lines through p * and the k points it sees contains at most k — 1 points
distinct from p*. Thus n < k(k — 1) + 1. Therefore, k > Vn.

Very recently Szemeredi and Trotter proved that m(n)>cn (Moser
1985), but the precise value of c is yet to be determined.

A second art gallery question for point obstacles was posed by Moser in
1966 (Moser 1985). Let P be a set of n non-collinear points. How many
guards located at points of P are needed to see the unguarded points of P?
Again the problem is trivial if no three points are collinear: one guard
suffices. And again the other extreme, all points on one line, is uninterest-
ing: \{n + l)/2] are necessary. Moser conjectured that O(log n) guards
suffice for points arranged in an n x n rectangular lattice. More precisely, let
G(P) be the minimum number of points of P that collectively see the other
points, and let g(n) be the maximum of G(P) over all sets of n non-collinear
points P. We may extend Moser's conjecture to the statement that
g(n) = O(\ogn).

It seems that progress has only been made in the special case of lattice
points. Let Ln be an n x n square array of integer lattice points. Then, for
example, G(L5) = 2, as shown in Fig. 10.12. Abbott (1974) proved that

" " <G(Ln)<4\nn.
21nlnn '
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Fig. 10.12. A 5 x 5 lattice in which two points can see all the other points.

His proofs are number-theoretic; the natural logs in the lower bound come
from the prime number theorem. His lower bound establishes that
7 (n)> (Inn2)/ (2 In Inn2); that is, this many guards are sometimes neces-
sary, but the sufficiency of O(log n) guards has only been established for Ln,
and even here Abbott's proof is non-constructive, and does not yield an
explicit placement of guards.

10.5. MIRRORS

Having opened this book with a problem posed by Klee, it seems
appropriate to close with another Klee problem.2 Let P be a polygon, and
imagine that all of its edges are perfect mirrors. Is there always at least one
interior point from which P is completely illuminable by a point light bulb?
Is P always illuminable from each of its points? Assume that the light bulb
sends out rays in all directions, and that the standard "angle of reflection =
angle of incidence" law of reflection holds. Further assume that a light ray is
absorbed if it hits a vertex. Surprisingly, these problems are unsolved for
polygons. However, Klee showed the answers to be "no" if curved
(differentiable) arcs are permitted. Figure 10.13 shows a region that is not
illuminable from the point x, which is the center of both the upper and
lower circular arcs. This shows that not every region is illuminable from
each of its points. However, the region is easily seen to be illuminable from,
for example, point y. Figure 10.14 shows a region that is not illuminable
from any of its points. In the figure, a and b, and a' and b', are foci of
ellipses forming the upper and lower arcs, respectively. An ellipse with foci

Fig. 10.13. A region not illuminable from x, but illuminable from y.

2. The original poser of the problem is unknown; Klee popularized the problem in two articles
(Klee 1969, 1979).
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Fig. 10.14. A region not illuminable from any one point.

a and b has the following properties:

(1) A ray through a immediately reflects through b, and vice versa.
(2) A ray that intersects the open segment {a, b) immediately reflects

and intersects {a, b) again.
(3) A ray that crosses the major axis but does not intersect the closed

segment [a, b] immediately reflects to cross the axis without hitting
[a, b] again.

Thus any light source above the a'b' major axis will not illuminate regions
A' or B', and similarly for below the ab axis, by property (2). And a light
source in A will bounce into B and back again by property (3), never
illuminating A' or B'.

Although the problem remains unsolved for polygonal regions, some
progress has been made in understanding the behavior of single light rays in
a rational polygon, one whose angles are all rational multiples of jr.
(Orthogonal polygons are a very special case of rational polygons.) A single
light ray is more usually called a "billiard ball" in the now rather substantial
literature on the subject. One of the more accessible results is the following.

THEOREM 10.4 [Boldrighini et al. 1978; Kerckhoff et al. 1985]. Let x be
a point in a rational polygon P, and 6 a direction. Then, except for a
countable number of "exceptional" directions 6, the path of a billiard ball
issuing from x in the direction 6 is spatially dense in P, that is, passes
arbitrarily close to every point of P.

One implication of this result is that every rational polygon is illuminable
from each of its points in the sense that no finite area region will be left
unilluminated; whether an isolated point could remain in the dark is
unclear.

For irrational polygons, almost nothing is known. It is not even known if
every triangle admits a dense billiard path.

10.6. TABLE OF THEOREMS

We conclude with a table of the major art gallery theorems discussed in this
book.



Table 10.1. Art gallery theorems

Visibility

interior

exterior

interior+

exterior

Polygon
Shape

arbitrary

star

orthogonal

arbitrary

orthogonal

arbitrary

orthogonal

segments

Holes

0

1

h

0

0

1

2

h

0

Guard
Type

vertex

diag epts

edge

edge epts

vertex

line

diagonal

edge

vertex

point

vertex

diagonal

vertex

point

vertex

vertex

point

vertex

Lower Bound Upper Bound
(necessary) (sufficient)
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[n/3\

[r/2\ + 1
1

2

L«/5J [n/3j

[r/2\ + 1

[n/4\ = [r/2j + 1

Ln/4J
Ln/4J

[n/4\ [(n + 2h)/4\

[(3n + 4)/16j

\n/2]

[n/31

L«/4J + 1

r«/2l [2n/3\

\n/2] +r

[n/4]+l |7n/16j+5

L2n/3J
n

Section
Discussed

1.2.1
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5.2

5.1

3.2.1
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4.2

2.2.2

5.3

3.3

6.2.1

6.2.3

6.2.2

6.3.1

6.3.2
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