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Abstract. The structure of the set of all convex polyhedra foldable from
a square is detailed. It is proved that five combinatorially distinct non-
degenerate polyhedra, and four different flat polyhedra, are realizable.
All the polyhedra are continuously deformable into each other, with the
space of polyhedra having the topology of four connected rings.

1 Introduction

If the perimeter of a polygon is glued to itself in a length-preserving manner,
and in such a way that the resulting complex is homeomorphic to a sphere, then
a theorem of Aleksandrov [1] establishes that as long as no more than 2π face
angle is glued together at any point, the gluing corresponds to a unique convex
polyhedron (where “polyhedron” here includes doubly-covered flat polygons).
Exploration of the possible foldings of a polygon to convex polyhedra via these
Aleksandrov gluings was initiated in [2], and further explored in [3, 4]. Theorem 1
in [4] established that every convex polygon can fold to a nondenumerably in-
finite number of incongruent convex polyhedra. Although this set is infinite, it
arises from a finite collection of gluing trees, which record the combinatorially
possible ways to glue up the perimeter. Enumerating the gluing trees leads to an
inventory of the possible foldings of a given polygon to polyhedra. These ideas
were implemented in two computer programs, developed independently by Anna
Lubiw and Koichi Hirata.1 These programs only list the gluings, not the polyhe-
dra. Even though the polyhedra are uniquely determined by the gluings, there is
no known practical algorithm for computing the creases and reconstructing the
3D shape of the polyhedra [5].
The contribution of this paper is to construct the 3D structure of all the

polyhedra foldable from one particularly simple polygon: a unit square. Spare
remarks on regular n-gons will be ventured in the final Section 4. The polyhedra
foldable from a square have from 3 to 6 vertices, and we show they fall into nine
distinct combinatorial classes: tetrahedra, two different pentahedra, hexahedra,
and octahedra; and a flat triangle, square, rectangle, and pentagon. Each achiev-
able shape can be continuously deformed into any other through intermediate
foldings of the square, i.e., no shape is isolated. An illustration of the foldings for

1 Personal communications, Fall 2000. Hirata’s program is available at http://weyl.
ed.ehime-u.ac.jp/cgi-bin/WebObjects/Polytope2.
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a portion of a continuum are shown in Figure 1. In general the crease patterns
vary continuously, as in this figure, with discontinuous jumps at coplanarities
to different combinatorial types. The continua fall into four distinct rings (A,

A = 0 A = 1/2

A A A A A A A AA

Fig. 1. Creases for a section of a continuum of foldings: as A varies in [0, 1

2
], the poly-

hedra vary between a flat triangle and a symmetric tetrahedron. See also Figure 7)
below.

B, C, D), each corresponding to a single parameter change in the gluing, which
join together topologically as depicted in Figure 2. Three of the rings (A, B, D)
share and join at the flat 1 × 1

2
rectangle; rings A and C join at a symmetric

tetrahedron.
An animated GIF of the entire set of polyhedra is available at http://cs.

smith.edu/~orourke/Square/animation.html.

2 Proof

Our goal in this (long) section is to prove that Figure 2 represents a complete
inventory of the shapes foldable from a square; but we will not prove formally ev-
ery detail depicted in the figure. The starting point for the proof is a lemma that
limits the combinatorial structure of gluing trees for convex polygons, specialized
to n = 4:

Lemma 1. [3, 4]; see also [6]. The possible gluing trees for a convex quadrilateral
(n = 4) are of four combinatorial types:

1. ‘|’: a tree of two leaves, i.e., a path.
2. ‘Y’: a tree of three leaves and one internal degree-3 node.
3. ‘I’: a tree of four leaves and two internal degree-3 nodes.
4. ‘+’: a tree of four leaves and one internal degree-4 node.

We will now make an exhaustive list of the possible gluings of a unit square,
applying three facts to increasingly restrict the possibilities:

1. Lemma 1.
2. A square has four corners, each of internal angle π/2.
3. These corners are separated by edges of length 1, and the perimeter is 4.

Let c0, c1, c2, c3 be the corners of the square. The proof, an extended case
analysis, follows the structure provided by Lemma 1.
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Fig. 2. The foldings of a square to convex polyhedra. Selected polyhedra are shown
enlarged (including the four flat shapes), together with their crease patterns and cor-
responding gluing trees.
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Case |. The four corners must be distributed along the path. If no corner is glued
to another, and neither leaf is a corner, then we have the structure illustrated in
Figure 3(a). Here, and in subsequent figures, nonzero-curvature vertices of the
polyhedron are marked by circles, with the curvature (in units of π) indicated
inside the circle. (Thus the circled numbers must add to 4 to satisfy the Gauss-
Bonnet theorem.) A shaded circle represents a fold point—a creased edge—
necessarily of curvature π. The corners are labeled ci, with the position of the
labels indicating to which side of the pieces of paper gluing there the corner
resides. The staggered distribution of the corners in (a) are necessary, for if, say,
c0 and c1 were adjacent on the lower side as shown in (b), then two arcs would
have to be zero length in order to have a total perimeter of 4, which would force
nodes to merge. The gluing tree in (a) is a six-vertex polyhedron, generally an

Fig. 3. (a) When all corners are distinct and not leaves; (b) A configuration that forces
the lightly shaded arcs to have zero length; (c) A flat right triangle; (d).A flat rectangle.

octahedron, although there one spot in the continuum (with parameter A ≈ 0.35)
where it becomes a pentahedron with three quadrilateral faces: a triangular
prism, two nearly parallel triangles joined by four near-rectangles. Figure 4 shows
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Fig. 4. The octahedra continuum, a subpart of the A-loop.

an enlargement of the A- (triangle) continuum in Figure 22 that includes the
octahedra.
If one corner of the square is a leaf of the gluing tree, then both leaves are

forced to be opposite corners, and the two other opposite corners mate, resulting
in the structure shown in (c) of the figure, which corresponds to a flat right
triangle, the right end of the octahedron continuum in Figure 4.

If two adjacent corners mate, the structure shown in (d) of the figure is forced,
which folds to a flat 1× 1

2
rectangle the left end of the octahedron continuum in

Figure 4 (where it joins with two other continuua, B and D).

Case Y. The single internal node of a ‘Y’ must consist of two (cc) or three (ccc)
corners, for otherwise the paper there would exceed 2π.

1. ccc. The only issue remaining is where the fourth corner lies. If it is a leaf,
the structure shown in Figure 5(a) is forced. This represents a “fixed” tetra-
hedron, fixed in the sense that the two fold-point leaves are forced to be side
midpoints and so do not form a “rolling belt” [3, 4]. (This tetrahedron is the
shape shared by loops A and C in Figure 2). If the fourth corner is a path
node, then the length of the shaded arc is forced to be zero, which reduces
this case to that in (a).

2 All subsequent closeups of the continuua are rotated 90◦ with respect to the orien-
tation used in Fig. 2.
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Fig. 5. (a) A fixed tetrahedron; (b) An impossible gluing tree.

2. cc. Two corners and an interior point on a square side forms a total angle
of 2π, so the internal node of the ‘Y’ has zero curvature. Thus it is not
a polyhedron vertex; we will indicate such nodes with a box enclosing a 0.
There are two possibilities: either the two corners at the junction are opposite
corners, or adjacent corners.

(a) Opposite. With c0 and c2 (without loss of generality) glued to the junc-
tion, c1 is forced to be at a leaf. This leaves only the location of the
fourth corner to be determined. It might be a leaf node or a path node.
If c3 is a path node, we have the tree shown in Figure 6(a). This corre-
sponds to an asymmetric tetrahedron, a continuum with the two shaded
leaves forming a rolling belt. If c3 is a leaf node, then the shaded arc

Fig. 6. Opposite corners glued to ‘Y’-junction.

in (b) of the figure must be zero length, yielding (c), which is the same
as Figure 3(c): a flat right triangle. The corresponding continuum (part
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of the A-loop) is shown Figure 7; note that its lower end is the flat right
triangle and its upper end the fixed tetrahedron.
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Fig. 7. A portion of the A-loop that includes a continuum of tetrahedra. Compare
Figure 1.

(b) Adjacent. With c0 and c1 (without loss of generality) glued to the junc-
tion, the leaf between is a fixed fold midpoint. The two other corners of
the square must be placed on the other two branches of the ‘Y’ (which
now looks like a ‘T’). We can distinguish four possibilities, determined
by whether each corner is a leaf (L), a path node (P), and when both are
path nodes, whether to the opposite (o) or same (s) side of the junction.

i. LL. When both corners are leaves, we have the structure shown in
Figure 8(a). Knowing that the distance between consecutive corners
is 1, this structure must have perimeter 5. So it is unachievable.

ii. LP. When one corner is a leaf and the other a path node, the path
node could be to the same or the opposite side of the ‘Y’ as the leaf.
If it is to the same side, the total perimeter can be calculated to be
5, ruling out this structure. If it to the opposite side, we have the
structure shown in (b) of the figure. Here the shaded arc must be
zero length to have a perimeter of 4, which reduces this structure to
the three-corner ‘Y’ of Figure 5(a).

iii. PPo. This structure (Figure 8(c)) corresponds to a five-vertex poly-
hedron continuum, which at its midpoint is a flat pentagon, and at
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Fig. 8. Adjacent corners glued to ‘Y’-junction. Labels: L=leaf; P=Path; o=opposite;
s=same.
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either endpoint (when one corner becomes a leaf and the other cor-
ner joins the junction) becomes the fixed tetrahedron of Figure 5(a).
This forms the C-loop of the continuum, as shown in Figure 9.
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Fig. 9. The C-loop containing the flat pentagon.

iv. PPs. This (Figure 8(d)) corresponds to another five-vertex contin-
uum, which at one endpoint is the same fixed tetrahedron, and at
the other the flat rectangle of Figure 3(d). See Figure 10. Note that
c2 and c3 cannot be on the same side of the branch, as then the
perimeter would be too long, so they must be on opposite sides. And
c3 cannot be on the lower side, adjacent to c0, for the same reason.
Thus the structure illustrated is the only one possible.
We will not establish this formally, but the hexahedron continuum
in Figure 10 partitions into three sections, separated by two penta-
hedra which occur when two triangles become coplanar and form a
quadrilateral face.

Case I. Each junction must have two or three corners, which, because there are
two junctions, means that both must have two corners. There are three possible
patterns for the distribution of the corners, illustrated in (a,b,d) of Figure 11,
which we will call mixed, adjacent, and opposite.

1. Mixed. The shaded edge in Figure 11(a) must be zero length to achieve a
perimeter of 4, which reduces this case to (c), which we will discuss below.

2. Adjacent. The pattern of corner distribution shown in Figure 11(b) is pos-
sible, producing two independent rolling belts. This is a two-dimensional
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Fig. 10. The portion of loop A consisting of hexahedra.

continuum of tetrahedra, all four of whose vertices have curvature π. It is
clear that if we roll the upper belt to one extreme and fix it there, thereby
gluing two corners together as in Figure 11(c), the shapes produced by the
rolling of the lower belt include all the shapes achievable through the rolling
of both belts. This is because it is only the relative rolling of the two belts
that is significant. Thus, the 2D continuum of shapes can be captured in the
1D loop D, illustrated in Figure 12. Notice that the polyhedra at symmetric
positions with respect to the flat rectangle are reflections of one another.

3. Opposite. The structure forced here, Figure 11(d), is another continuum of
tetrahedra with curvature-π vertices. Here the upper and lower fold points
form a rolling belt; the two side fold-point leaves are fixed at the midpoint of
the folded edge. The continuum forms the B-loop, Figure 13, shapes mirror-
symmetric about the flat rectangle and square.

The extremes of both continuua, at both ends, lead to the structures shown in
Figure 11(e), which can be recognized as the flat rectangle of Figure 3(d).

Case +. Finally, the degree-4 junction of the ‘+’ can only be realized with all four
corners glued together, which forces the structure in Figure 14: the flat square
of Figure 13.

This completes the inventory of the polyhedra foldable from a square.

3 Reconstructing the 3D Shapes

We mentioned that it is an unsolved algorithmic problem to compute the three-
dimensional coordinates of a polyhedron given the face structure determined by
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Fig. 11. The gluing trees with two degree-3 nodes: (a) Not possible; (b) Double belt;
(c) Equivalent single belt; (d) Another tetrahedron continuum.
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Fig. 12. Twisting tetrahedra: loop D.
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Fig. 14. This gluing tree corresponds to a flat square.

a particular gluing. We now describe how it was possible nevertheless to compute
the structure of all the polyhedra foldable from a square, as displayed in Figure 2.
There are two issues: (1) Identifying the creases, and therefore the edge

lengths; and (2) reconstructing the 3D shape from the edge lengths.

(1) Although we have no systematic method for identifying the creases, there are
only a finite number of possibilities, as Aleksandrov observed [7]. The vertices are
determined as the points of nonzero curvature, and we know that every edge is a
shortest path between the vertices that are its endpoints. So, lacking any other
information, we could try all

(

n

2

)

possibilities. In practice, some of the creases
are obvious from physical models, leaving only a few uncertainties. These were
resolved by “trying” each, and relying on Aleksandrov’s theorem guaranteeing a
unique reconstruction: the wrong choices failed to reconstruct, and the correct
choice led to a valid polyhedron.

(2) All of the nonflat polyhedra foldable from a square have 4, 5, or 6 ver-
tices. Aside from isolated special cases caused by coplanar triangles merging
into quadrilaterals, all faces are triangles. In fact, only three distinct combi-
natorial types are realized: tetrahedra, hexahedra equivalent to two tetrahedra
glued base-to-base (i.e., a “trigonal dipyramid”), and octahedra combinatorially
equivalent to the regular octahedron. Reconstructing tetrahedra from their six
edge lengths is not difficult. Reconstructing the hexahedra from their nine edge
lengths can be accomplished by reconstructing the two joined tetrahedra.
Reconstructing octahedra is more challenging, for the structure is not deter-

mined by the union of tetrahedra all of whose edges are on the surface. Any par-
titioning into tetrahedra leaves edges of tetrahedra as internal diagonals, whose
lengths are not determined by creases of the square. The strategy we used is to
partition the octahedron into two hexahedra, each a trigonal bipyramid. Con-
sider one half of the octahedron, for which we know eight lengths: the four edges
of the quadrilateral “base” (which will not in general be a flat polygon), and
the four edges from the base to an apex. These lengths leave the structure with
one degree of flexibility. The unknown length x of the “internal” diagonal d
splitting the base quadrilateral is one parameter that determines this flex. Two
octahedron halves together with the same x may join only if the dihedral angle
in each at the edge d sum to 2π. This gives us a method to solve for x: find an x
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such that the angles sum to 2π. Although one can express x as a polynomial of
some large degree (perhaps 16), we found it possible to solve for x via numerical
search.

4 Discussion

Constructing the entire set of polyhedra permits us to answer a special case of
a question posed by Joseph Malkevitch3: What is the maximum volume poly-
hedron foldable from a given polygon? We found (by numerical search) that
the maximum is achieved by an octahedron along the A-ring (at about the 4-
5 o’clock position), with a volume of approximately 0.055849. We expected to
observe symmetry here but did not.
The work reported here is part of a larger project to understand the structure

of all the convex polyhedra foldable from any given polygon. Although that goal
does not appear close with our current understanding, the foldings of regular n-
gons seem more approachable. It was established in [3] that, for n > 6, there is
only one nonflat folding of regular n-gons, the class of “pita polytopes” produced
by perimeter halving. (For the square, this corresponds to the path gluing of
Figure 3(a).) One might expect a one-ring continuum of polyhedra for these n-
gons. The complexity of the multiple rings manifest with the square may be an
artifact of small n ≤ 6. For arbitrary convex polygons, it would be of interest to
establish that the space of folded polyhedra is connected, i.e., that no shape is
isolated.
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