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Abstract

We advance the study of collections of open linkages in 3-space that may be interlocked
in the sense that the linkages cannot be separated without one bar crossing through another.
We consider chains of bars connected with rigid joints, revolute joints, or universal joints and
explore the smallest number of chains and bars needed to achieve interlock. Whereas previous
work used topological invariants that applied to single or to closed chains, this work relies on
geometric invariants and concentrates on open chains.

1 Introduction

Consider a simple polygonal chain that is embedded in 3-space with disjoint, straight-line edges,
which we think of as fixed-length bars. We call a chain with k bars a k-chain. The k + 1 vertices
of a k-chain are the two end points, adjacent to the end bars, and k− 1 internal vertices, or joints.
We can place restrictions that each joint be rigid, permitting no relative motion between its two
incident bars, or be revolute, preserving the angle between its two incident bars, or be flexible,
serving as a universal joint that allows any rotation.

A motion of a chain is a motion of the vertices that preserves the length of the bars, respects
the restrictions on joints, and never causes nonadjacent bars to touch. We say that a collection of
disjoint, simple chains can be separated if, for any distance d, there is a motion whose result is that
every pair of points on different chains has distance at least d. If a collection cannot be separated,
we say that its chains are interlocked.

In this paper, we characterize collections of open chains with small numbers of bars that can
interlock. Our results on pairs of chains are summarized in Table 1. Note that a claim that an
open k-chain can interlock with an m-chain also holds for any open or closed l-chain with l > k,
and a claim that an open k-chain cannot interlock with an m chain also holds for any open l-chain
with l < k.

In addition, we show that
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2-chain 3-chain 4-chain 5-chain
flexible rigid flexible revolute rigid flexible revolute rigid rigid

2-chain flexible − − − − −5 −2 −5 −5 +15

rigid − − − −4 +12 +14 + + +

3-chain flexible − − −1 −6 +18 +11 + + +
revolute − −4 −6 +21 + + + + +
rigid −5 +12 +18 + + + + + +

4-chain flexible −2 +14 +11 + + + + + +
revolute −5 + + + + + + + +
rigid −5 + + + + + + + +

5-chain rigid +15 + + + + + + + +

Table 1: Our results on interlocking pairs of open chains. (+) = can, (−) = cannot interlock. In
superscript is the number of the theorem proving the result, the other entries are implied.

• Two flexible 3-chains with any finite number of flexible 2-chains cannot interlock, but three
flexible 3-chains can interlock.

• A flexible 4-chain with any finite number of flexible 2-chains cannot interlock, but a flexible
3-chain and 4-chain can interlock.

We prove results on separability of chains in Section 2, and on interlocked chains in Section 3. Our
proofs assume general position, namely that no nonincident bars are coplanar and no three joints
collinear. Since we can enforce general position by a small perturbation, this assumption can be
made without loss of generality. We list some remaining open problems in Section 4.

Motions of single chains and of closed chains have been considered in previous work. A straight-
ening of a flexible chain is a motion that makes all joint angles become 180◦. If a single chain
cannot be straightened, we say that it is locked. It is known that a single, open chain in 3-space,
having as few as 5 bars, can be locked [CJ98, BDD+99]. In a companion paper [DLOS01], we
showed examples with open and closed chains that were interlocked, including an open 3-chain
with a quadrilateral and an open 4-chain with a triangle. In these previous works it was possible to
(conceptually) close an open chain by adding a piece of rope, then argue that geometric properties
kept the rope from interfering with any motion and that topological invariants demonstrated that
the resulting closed links were interlocked. However, this approach does not extend: we cannot
simply close two or more open chains with ropes because the ropes may interfere with one another.
Instead we establish geometric invariants, typically about the convex hull of joints and the rela-
tions of the end bars, often established by considering convenient projections of the linkage. We
emphasize the different proof techniques used within each section.

One of the inspirations for our work was a question posed by Anna Lubiw [DO00]: into how
many pieces must a chain be cut so that the pieces can be separated and straightened? This
question is motivated by proteins, which may, according to some theories, temporarily split apart
in order to reach the minimum-energy folding. Our results on open flexible chains, along with the
locked 5-chain of [CJ98, BDD+99], imply that a set of chains can always be separated and every
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chain straightened if the total number of middle bars is less than three. If the end bars are long
enough, there are interlocked configurations whenever the number of middle bars is at least three.
Soss [Sos01] investigated revolute chains, also motivated by proteins, and created a “staple and
hook” example of an interlocked revolute 3-chain and 4-chain. We have an interlocked example
with two revolute 3-chains. [1]: JSS:

I didn’t

rectify

with Erik’s

added

parag

above

We can observe easy upper and lower bounds for Lubiw’s problem: some n-chains require
cutting at least �(n − 1)/4� vertices for separation, and no chain requires cutting of more than
�(n − 1)/2� vertices. The lower bound is obtained by concatenating many copies of the 5-bar
“knitting needles” example from [CJ98, BDD+99], each sharing one bar with the next as in Fig. 1.
Observe that each copy of the locked 5-chain must have one of its four interior vertices cut. The

Figure 1: An n = 17 bar chain that requires cutting at least �(n− 1)/4� = 4 vertices to separate.

upper bound is obtained by cutting every second joint, and observing that the resulting 2-chains
can be separated by blowing up from a point, because the pieces are starshaped sets. We use
variations of this argument, which dates back at least to de Bruijn in 1954 [dB54] and has been
used in other work [Daw84, SS94, Tou85], as one technique to prove non-interlock.

It remains open whether cutting one third of the vertices suffices to disentangle an arbitrary
chain, which would imply an upper bound of �(n − 1)/3� on Lubiw’s problem. We show in Sec-
tion 2.1 that cutting the chain into two 3-chains and the rest 2-chains suffices for separation, proving
an upper bound of �(n− 3)/2� on Lubiw’s problem, which is an improvement by 1 over the afore-
mentioned bound. Actually our results on open flexible chains, along with the locked 5-chain of
[CJ98, BDD+99] imply the more general result: a set of chains where the end bars are large enough
can always be separated and every chain straightened if the total number of middle bars is less
than 3. On the other side, if the set of chains contains at least 3 middle bars, then there is at least
one chain that cannot be separated/straightened.

The complexity of deciding whether a given chain can be unlocked is not known. One decision
procedure applies the roadmap algorithm for general motion planning [Can87, Can88], which runs
in polynomial space but exponential time. Because all of our results are for a few chains each of
a few joints, the roadmap algorithm could in principle establish interlock for our examples, but
couldn’t discover them and probably wouldn’t give insight into their structure. On the other hand,
the separability proofs apply to general classes of sets of chains, rather than the specific instances
handled by the algorithm.
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2 Separable Chains

In this section, we prove that certain configurations are separable by extending de Bruijn’s idea of
scaling or other arguments to find a separating motion. Except for a couple of cases involving a
flexible 2-chain, the theorems in this section are tight in the sense that, for the chains considered,
any additional bars or further restrictions on the motion can allow an interlocked configuration.

2.1 Two flexible 3-chains + many 2-chains cannot interlock

Using de Bruijn’s idea of exploding configurations of convex sets [dB54], we show that two 3-chains
(even with added 2-chains) are insufficient to make an interlocked configuration.

Theorem 1 Two open, flexible 3-chains and any finite number of flexible 2-chains can always be
separated.
Proof: Consider the 3-chains C1 and C2, and especially their middle bars, k1 and k2. Because the
configuration has no crossing bars, we may assume that non-adjacent bars are not coplanar; a small
perturbation will enforce this condition. Let K be a plane parallel to the middle links k1 and k2,
and choose the coordinate system such that the k is the yz plane. If necessary, apply another small
perturbation to ensure that no two vertices have the same x coordinates except the vertices of k1

and of k2.
Now, consider the affine transformation x → αx for any real α ≥ 1. Note that this is a non-

uniform scaling that increases all distances between pairs of points with different x-coordinates.
Thus, it preserves the lengths of k1 and k2, and increases the length of all the other edges.

Create a motion parameterized by time t ≥ 1 by placing the chains according to the transform
for α = t, and truncating the edges at both ends of each chain to preserve the lengths. Because
affine transformations preserve incidence relationships among lines, the motion cannot cause any
bars to touch. As t becomes large, the chains can be separated any arbitrary distance, so they are
not interlocked. ✷

We can prove a similar theorem for an open 4-chain and 2-chains.

Theorem 2 An open, flexible 4-chain and any finite number of flexible 2-chains can always be
separated.
Proof: As in the proof of Theorem 1, assume that non-adjacent bars are not coplanar, rotate the
configuration so that the three joints of the 4-chain are parallel to the yz plane, and apply the affine
transformation x → αx for any real α ≥ 1 to increase the distance between all vertices except the
joints of the 4-chain. Each end bar can be truncated to obtain a separating motion. ✷

This corollary improves the bound on an open problem posed by Lubiw, and first addressed
in [DLOS01].

Corollary 3 Given a n-chain, it is always possible to cut �(n − 3)/2� vertices so that the pieces
obtained can be separated and straightened.
Proof: Cut the 4th and 7th joints, and then every other joint of the remaining chain. ✷

2.2 2-rigid + 3-revolute cannot interlock

The next three subsections establish theorems on restricted motions with 2-chains.
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Theorem 4 A rigid 2-chain and a revolute 3-chain cannot interlock.
Proof: Consider the rigid 2-chain P = (p0, p1, p2) and the revolute 3-chain R = (r0, r1, r2, r3).
Apply a small perturbation to ensure that no two non-adjacent edges are coplanar, and let H be
the plane containing P . Then R intersects H in at most three points: let r′i be the intersection
between riri+1 and H, if it exists.

Q2 Q3

Q4

p0

p1

Q1

p2

Figure 2: 2-chain P in its plane H

The two lines containing p0p1 and p1p2 divide H into 4 quadrants Q1, . . . , Q4 as shown in
Fig. 2. If any of the quadrants Q1, Q2 or Q3 does not contain an intersection point r′i, then P can
be separated by a translation in H: if Q1 is empty, we translate P in the direction p1p2, if Q2 is
empty, we translate P in the direction p2p1, and if Q3 is empty, we translate P in the direction
p0p1. Otherwise, assume r′i1 ∈ Q1, r′i2 ∈ Q2 and r′i3 ∈ Q3. Translate P in H so that joint p1 is
within a distance ε of r′i1 ; this can be done without intersections. If the segment r′i2r

′
i3
does not

intersect P , then we can rotate P counterclockwise about r′i1 until Q2 becomes empty and translate
P in the direction p2p1.

There remains the case in which segment r′i2r
′
i3
intersects P . We analyze two subcases: either

i1 = 1 and r′1 is in Q1, or i1 
= 1.
If r′1 ∈ Q1, suppose that the middle bar of C3 is fixed. Then the end bars r0r1 can move in

a cone with apex r1 and axis r1r2 passing through r′1. If ε was chosen small enough, this cone
intersects H in a curve (a conic section) that connects point r′0 to some point in quadrant Q4

without intersecting Q1. Bar r0r1 can rotate until it reaches the ray from r′1 through r′i3 ∈ Q3

without intersecting bar r2r3, so we can rotate r′0 into Q4, then can separate P by a translation
in H.

For the last case, we assume without loss of generality that r′1 ∈ Q2, r′0 ∈ Q1 and r′2 ∈ Q3.
Then, for any δ > 0, we can choose ε small enough so that P can be translated to be at distance at
most δ from r1 without crossings. Because the vertex angles at r1 and r2 are fixed, we can choose
δ small enough in order to rotate r1r2 without crossings to bring it arbitrarily close to r0r1. then,
for some small values of δ and then ε, the cone describing the motions of p1p2 when p0p1 is fixed
does not intersect r1r2, and we can move p1p2 until we fall into one of the previous cases. ✷
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2.3 2-flexible + 3- or 4-rigid cannot interlock

When the 2-chain is flexible, the extra degree of freedom allows it to escape in its plane from any
chain that intersects the plane in at most four points.

Theorem 5 A flexible 2-chain and a rigid 3-chain, 4-chain, or closed 5-chain cannot interlock.
Proof: As in the previous theorem, let the 2-chain P = (p0, p1, p2) define a plane H and four
quadrants, Q1, . . . , Q4. Consider the at most four points where the other chain R intersects H. If
one of the quadrants Qj , for j ∈ {1, 2, 3}, does not contain at least one intersection point, then we
can separate P from R by translation in H.

We could move point p1 along ⇀p2p1, allowing p0p1 to rotate if it reaches any point in Q2, unless
and until p1 approaches a ray ρ12 = ⇀r1r2, with r1 ∈ R ∩Q1 and r2 ∈ R ∩Q2. We could then move
p1 along ray ρ12, until p1 approaches a ray ρ13 =

⇀
r′1r3, with r′1 ∈ R ∩Q1 and r3 ∈ R ∩Q3. If these

motions do not separate the chains, then we have found two rays that cross in Q4. This implies
that r1 
= r′1 and we know the quadrants of all four points of R ∩ H. We can now straighten the
2-chain P by a motion in H that preserves the ray/chain intersection points r12 ∩ P and r13 ∩ P .
Then we can separate P from R by translation. ✷

2.4 3-flexible + 3-revolute cannot interlock

Theorem 6 A flexible 3-chain and a revolute 3-chain cannot interlock.
Proof: Let P = (p0, . . . , p3) denote the flexible 3-chain and R = (r0, . . . , r3) denote the revolute
3-chain. Consider the projection of the two chains from the viewpoint p1 onto a sphere. All three
bars of R and p2p3 project to segments of great arcs of angle < π, and p0p1 and p1p2 project
to points. Thus p0p1 can be moved arbitrarily close to r1r2 unless its projection is enclosed in a
triangle formed by r0r1, r2r3 and p2p3. But then p2p3 can be moved arbitrarily close to r1r2. Once
one of the end bars of P is moved close to r1r2, the second end bar can be moved close to r1r2 as
well, and they can then both be moved close to the midpoint of r1r2.

So we have reached a configuration where both p0p1 and p2p3 are at a distance at most ε from
the midpoint r′1 of r1r2 for some well chosen value ε > 0. Let H be the plane containing p1, p2 and
r′1, and project P onto H in the direction r1r2. For any given δ > 0, we can choose the value of ε
so that for any bar ab intersecting H at a distance > δ from any point of the projection of P , that
segment does not touch any bar of P .

Let r′i be the intersection of riri+1 with H. If we fix the position of r1r2, the possible positions
of r0r1 and r2r3 intersect H in two curves (conic sections). Both these curves are cut into pieces
by the projection of P . Those pieces will be called components for r′0 or r′2.

We will describe several motions of the chain P where the support lines of p0p1 and p2p3 will
remain within a distance ε of r′1 and p1p2 will remain in H and will be translated in some specified
direction. We will call any such motion feasible if there exists a simultaneous motion of R, with r1r2

fixed, such that no two bars of P and R ever touch. If r′0 and r′2 are each contained in components
that never disappear during the entire motion, then the motion is feasible. Conversely, the only way
for a motion not to be feasible is when either r′0 or r′2 is contained in a component that disappears.
Since the curves are convex, and r′1 is inside their convex hull, the disappearance of a component
must involve p1p2.
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p0

p1

p2

p3

r1’

X

Z

Y

y

Figure 3: Possible positions for r′0 on components of the dotted ellipse in H.

Fig. 3 denotes by X, Y and Z the three kinds of components that could disappear. Since we
have only two points to place in those components, at least one of X, Y or Z contains neither r′0
nor r′2, and perhaps does not exist. If X is empty or non-existent, then we can translate p1p2 in
the direction p2p1. This translation does not reduce the size of Z until p1p2 stops bounding Z, and
Y remains unchanged by the motion, and so the motion is feasible. If Z is empty or non-existent,
then translating p1p2 in the direction p1p2 produces a feasible motion for the same reasons. If Y
is non-existent for at least one of the two curves, then X and Z are the same component for that
curve and we fall into the previous case. Finally, if Y exists and is empty for both curves, and there
is a non-empty X component and a non-empty Z component. Assume that X contains r′0 and Z

contains r′2. Then one of the two curves must be an ellipse; assume that it is the curve containing
r′0. We can translate p1p2 with r′0 along its component, away from r′1, until the Y component of r′0
disappears, connecting the X and Z components of r′0 and falling back into the previous case. ✷

3 Interlocked Chains

To show that two or more chains are interlocked we establish geometric invariants, often regarding
the convex hull of selected vertices or joints. We begin with some useful preliminaries. We use a

a

b

c

d

a

b

c

d

Figure 4: Equivalent views of the right-hand rule for determinant [abcd].

bracket [abcd] to denote the 4× 4 orientation determinant of the homogeneous coordinates of four
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points a, b, c, and d:

[abcd] = det

∣∣∣∣∣∣∣∣
1 a.x a.y a.z

1 b.x b.y b.z

1 c.x c.y c.z

1 d.x d.y d.z

∣∣∣∣∣∣∣∣
.

Note that transposing two letters negates the bracket [abcd]. It will be positive if the ray ⇀
ab is

consistently oriented with ray ⇀
cd according to a right-hand rule.

Since we are concerned with invariants under motion, the points in a bracket will move over
time. We can make statements about the invariance of faces of convex hulls like the following two
lemmas. Unfortunately, these statements are cumbersome to say in words; see Figure 5 for an
illustration.

Lemma 7 Under continuous motion of a, b, c, and d, determinant [abcd] is positive iff the convex
hull CH (a, b, c, d) is a tetrahedron with edges to a, b, and c appearing in counter-clockwise (ccw)
order around d.
Proof: This is a consequence of properties of the orientation determinant that can be observed in
Figure 4. ✷

p

q

d

c

a

r

b

d

c

a

b

Figure 5: The configurations for Lemmas 7 and 8

Lemma 8 Suppose, as depicted at the right of Figure 5, that the convex hull CH (a, b, c, d, q) ini-
tially has six faces �qac, �qcb, �qbd, �qda, �adc, and �bcd, and that [abcd] > 0. As long as
three conditions hold under motion of a, b, c, and d—specifically, all four points remain vertices
on the convex hull, bar pq intersects the smaller convex hull CH (a, b, c, d) with [pqab] > 0, and bar
qr intersects the hull CH (a, b, c, d) with [qrab] > 0—the full convex hull CH (a, b, c, d, q) retains its
face structure. In particular, ab pierces �qcd.
Proof: The fact that pq and qr intersect CH (a, b, c, d) on opposite sides of ab imply that CH (a, b, c, d)
remains a tetrahedron. By Lemma 7, bracket [abcd] > 0, so this tetrahedron has faces �adc and
�bcd that will be on the convex hull, as long as q does not hide them.

We claim that q remains in the intersection of halfspaces bounded by planes through acd, bcd,
abd, and acb. These planes are indicated by dotted lines at the right of Figure 5. If point q would
exit this intersection by first reaching planes through acd or bcd, then a or b would no longer be
a vertex of the convex hull. If q first reached abd or acb, then pq or qr could no longer intersect

8



the tetrahedron abcd and maintain a positive orientation determinant with ab. (Note that reaching
two or more planes simultaneously still violates the conditions.) Thus, q remains on the convex
hull and keeps all its incident faces. ✷

3.1 Three flexible 3-chains can interlock

w1

w2

w0

x1

x0

x2

y1

y0

y2 y2

x1

x0

x2

y1

y0

z1

z2

z0 w1

w2

w0
z1

z2

z0

Figure 6: Three flexible 3-chains that interlock. At right, added lines show that the convex hull of
the joints is an octahedron.

In this section we show that the three open 3-chains of Fig. 6 interlock. We say that chain i,
for i ∈ {0, 1, 2} has vertices wi, xi, yi, and zi, as illustrated. We will use index arithmetic modulo
3.

To make this example, one could start with Borromean rings made of triangular chains with
wi = zi, then extend the end bars of chain i above and below the surrounding chain (i + 1) until
the end bars are at least three times longer than the middle bars. Let us assume that the middle
bars have length unity.

Theorem 9 Three flexible 3-chains can interlock.
Proof: We can make a number of initial geometric observations, which we will show are geometric
invariants of this linkage. When we say a segment pq pierces a triangle �abc, it is a shorthand
for saying that five brackets are positive: [pabc], [abcq], [pqab], [pqbc], and [pqca]—that is, points p

and q are on opposite sides of the plane abc and �abc is oriented consistent with a right-hand rule
around pq. We have the following for all i ∈ {0, 1, 2}:

(1) The convex hull of the joints Q = CH({xj , yj | 0 ≤ j ≤ 2}) is an octahedron with edges
to xi+1, yi−1, yi+1 and xi−1 appearing counter-clockwise (ccw) around xi and clockwise (cw)
around yi.

(2) Middle bar xiyi pierces �xi−1yi−1xi+1.

(3) End bar xiwi pierces �yi−1xi−1yi+1, forms positive orientation determinants [xiwixi+1yi+1]
and [xiwiyi+1zi+1], and exits the hull Q.
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(4) End bar yizi pierces �xi−1yi−1yi+1 (the same triangle with the opposite orientation), forms
positive determinants [yizizi+1yi+1] and [yiziyi+1xi+1], and exits the hull Q.

As the points and vertices move, let us consider which of these conditions could fail first. We
divide them into two classes: hull conditions, where a joint or end point goes inside the hull or a
hull edge disappearing as two adjacent faces become coplanar, and piercing conditions, where a bar
fails to pierce its triangle or one of its orientation determinants becomes zero.

We begin by showing that the first change cannot be a joint disappearing inside the convex
hull. Consider vertex xi. Segment xiwi pierces �yi−1xi−1yi+1 and xiyi pierces �xi−1yi−1xi+1.
Since both enter the tetrahedron formed by the middle bars xi−1yi−1 and xi+1yi+1, we can apply
Lemma 8 to the 2-chain wixiyi to see that joint xi cannot be first joint to disappear inside the
convex hull. Similarly, the two segments xiyizi intersect the convex hull of the two middle bars
such that we can apply Lemma 8 and show that joint yi cannot be the first inside.

If a convex hull edge disappears, then two adjacent triangles become coplanar. By the pigeonhole
principle, two of the vertices of that quadrilateral are from the same chain, so a middle bar xiyi is
on the convex hull. As long as xiyi pierces its triangle, this cannot happen. We show below that
the triangle piercing is invariant.

First, however, we argue that end points wi and zi never enter the hull, by establishing that
the hull diameter is less than three as long as 1) and 2) hold.

Lemma 10 If the diameter of the convex hull Q is ≥ 3, then either Q contains a joint, or a middle
bar is on the boundary of Q.
Proof: If the hull diameter is three or more, cut the diameter segment into three equal pieces with
perpendicular planes. By the pigeonhole principle, one of the end pieces will contain (the interior
of) a single middle bar xiyi. If both joints of this bar are on the convex hull, then the bar is on the
hull because all other joints are separated by a perpendicular plane. ✷

Thus, the first failures must be piercing conditions, possibly accompanied by an edge (but not
a vertex) disappearing from the hull. Without loss of generality, we consider that among the first
piercing conditions to fail is one for a bar on chain 1. In preparation for finding a contradiction,
we draw the projections of relevant bars from the perspectives of joints y1 and x1 in Figure 7, just
before any piercing condition fails.

w1

y2

View from x1:

x2

y1
w2

z2y0

x0

z1

y2

View from y1:

x2

x1

z2

w2
y0

x0

Figure 7: Views of selected bars and hull edges from y1 and from x1
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Consider the projection of the octahedron from y1. By (1), we see a convex quadrilateral
y2y0x2x0 oriented ccw. By (2), point x1 is initially inside �x0y0x2; since x2y2 pierces �x1y1x0, we
also know that x1 is inside �x2y2y0. By (3), bar w2x2 pierces �x1y1y0, so the projection of w2x2

has x1 to the left and y0 to the right, which restricts the placement of x1 to the shaded region in
the figure.

Now, suppose that the condition that x1y1 pierces �x0y0x2 is among the first to fail—that
is, one or more of its five orientation determinants become zero. We show that each case contra-
dicts a known property. (We do one case analysis in detail to develop character.) We know that
[x1x0y0x2] > 0 and [x0y0x2y1] > 0, since the triangle is strictly inside the convex hull and both
vertices x1 and y1 are on the boundary of Q. Thus, it follows from Lemma 7 that [x1y1x0y0] can
become zero only if bars x1y1 and x0y0 are touching. Bracket [x1y1y0x2] can become zero only if the
projection of x2w2 has moved to be disjoint from the projection of x1y0, meaning that the piercing
condition for x2w2 has previously failed. Finally, [x1y1x2x0] can become zero only if the condition
that x2y2 pierces �x1y1x0 has previously failed. This establishes that the piercing condition for
x1y1 cannot be among the first to fail.

We make a similar argument in the projection from y1 for the piercing conditions for y1z1. By
(4), point z1 projects to the left of x2y2 and y0x0. Because y2z2 pierces �x1y1y0, the projection of
y2z2 has y0 to the right and x1 to the left; the orientation determinant also says that, in projection,
z1 is to the left of y2z2. Thus, z1 is restricted to the shaded region. Since y1z1 goes through the
hull, Lemma 7 implies that the y1z1 will touch the bars x0y0, x2y2, or y2z2 if their corresponding
brackets go to zero. Thus, z1 can leave the shaded region only by touching a bar or by a previous
failure of a piercing condition. Notice that the points in the shaded region satisfy all the conditions
imposed upon y1z1 in (4).

The argument for x1w1 is similar and establishes that there can be no first failure of piercing
conditions. This completes the proof of Theorem 9. ✷

3.2 A 3-chain and 4-chain can interlock

C y

x
B D

C y

x

E

B

w
A

D

z

E
w

A

z

Figure 8: An example showing a locked 3-chain and 4-chain. At right, added lines show that the
convex hull of joints is a bi-pyramid.

Theorem 11 Open flexible 3- and 4-chains can interlock.
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Proof: Figure 8 depicts the core of two linked chains, ABCDE and wxyz, where bars between
joints have unit length and end bars have length greater than BC +CD+ xy = 3. We analyze the
convex hull of joints Q = CH (B,C,D, x, y) as the points move.

In the initial embedding of Figure 8, we make several observations that we will show are invari-
ants. Recall that a statement that, for example, xy pierces �DCB is shorthand for saying that
five orientation determinants are positive: [xDCB], [DCBy], [xyDC], [xyCB], and [xyBD].

(1): Bar xy pierces �DCB. Equivalently, the hull Q is a bi-pyramid, with edges to B, C, and D

in ccw order around x and cw order around y.

(2): End bar DE pierces �Byx and hull face �BCx and makes positive orientation determi-
nant [DExw].

(3): End bar BA pierces �Cyx and hull face �DCy and makes positive determinants [BAzy]
and [BAxw].

(4): End bar xw pierces �DCB and hull face �CBy and makes positive determinant [xwzy].

(5): End bar yz pierces �BCD and hull face �BCx.

Any motion that separates these chains must change the convex hull Q and invalidate observation
(1), so some set of observations must be first to fail. We show by finding contradictions that none
of these can be among the first, establishing that there is no separating motion. Unfortunately,
this configuration has no symmetries to cut down on the number of cases.

To begin, we apply Lemma 8 to argue that the first event cannot include x or y vanishing inside
the hull Q. Consider x first. Since xw and xy pierce �DCB, both bars intersect tetrahedron
CH (B,C,D,E). Since [DEyx] and [DExw] are positive, we can apply Lemma 8 to show that x

cannot vanish into tetrahedron CH (B,C,D,E) without some other hull change occurring. But
vanishing into CH (B,C,D,E) would be necessary before x could vanish into hull Q. Similarly,
yx and yz pierce �BCD and straddle BA, so Lemma 8 implies that y cannot vanish into the
tetrahedron CH (A,B,C,D) unless Q has already changed.

Next, we show that (1) cannot be among the first conditions to fail; that xy must remain
inside the hull. Since we know that x and y remain on opposites sides of the plane BCD, we
can most easily to argue about orientation determinants in 3D by considering projections from the
perspectives of one of the joints, as illustrated in Figure 9. Consider the view from x, where we

E

y

x
B

w

C

C
y

x

A D

D

z
C

y E

B

A

D

C

xE
B

A

z

view from yview from x view from Bview from D

w

w

Figure 9: Projections of the linkage of Figure 8 from x, D, B, and y.

see y inside a ccw-oriented triangle �BCD. By condition (2), DE pierces �BCx, and [DEyx]
is positive (from DE piercing �Byx); these further restrict y to lie in a triangle formed by the
projections of bars BC, CD and DE. By Lemma 7, the projection of y cannot reach the projections
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of BC or CD without causing bars to intersect. Nor can it reach reach BD without causing bars
xy and DE unless there has been a previous failure of DE to pierce �BCx, violating condition (2).
Thus, condition (1) cannot be among the first condition to fail.

As long as the hull keeps its structure, we can make an argument like that of Lemma 10 to
show that the diameter of the hull is at most three, which implies that end vertices never enter
the hull. For end bar piercing conditions, therefore, we can continue to consider projections from
joints, without worrying that a joint or end vertex will disappear inside the hull.

To see that condition (2) cannot be among the first to fail, consider the view from D, where
we see a convex quadrilateral xCyB whose diagonals are bars that restrict the point that is the
projection of DE. By (4) and (1), bars xw and xy pierce �DCB, so there is a triangle formed by
projections of bars xw, xy, and BC that contains the projection of E. For this point to leave the
projection of �Byx or �BCx or change the sign of [DExw], bar DE would intersect bars xw, xy,
or BC inside Q, or the condition of (4) that xw pierces �DCB would have previously failed.

For condition (3), we have a similar case in the view from B. If the projection of A were to
leave the projection of �Cyx or �DCy, bar BA would intersect bar xy, yz, or CD, or there would
have been a previous failure of condition (5), that yz pierces �BCD.

For the piercing conditions of (4), it is sufficient to establish that xw always pierces �CBy,
because as long as it is satisfied and (1) xy pierces �DCB, we automatically have xw pierc-
ing �DCB. We must also establish that [xwzy] > 0 as points move. Consider once again the view
from x. Bar xw projects to a point in a region bounded by the projections of BC, yz, and BA, as
long as bar (4) xw pierces �CBy, (5) bar yz pierces �BCx and satisfies [xwzy] > 0, and (3) bar
BA pierces �Cyx. (We ignore the condition [DExw] > 0, although it happens that in our figure
this is actually more restrictive than [xwzy] > 0.) Since xw cannot intersect bars BC, yz or BA,
for the projection of w to leave �CBy or cause [xwzy] to become negative, a piercing condition
from (5) or (3) must have previously failed. Thus condition (4) cannot be among the first to fail.

For (5), consider the view from y. As long as xy pierces �DCB, bar yz piercing �BCx is
the more restrictive condition. Bar yz projects to a point in a triangle bounded by projections of
AB, CB, and xw, since (3) AB pierces �Cyx and (4) xw pierces �CBy. (In this case, we cannot
use the condition [DExw] > 0, since the projection of E could lie inside �CBx.) Since yz cannot
intersect bars AB, BC, or xw, the only way to leave �BCx would be after a previous failure of
piercing conditions from (3) or (4).

Since no event can occur among the first events, we know that any motion will preserve the
triangles of the convex hull Q, and that the chains remain interlocked. ✷

3.3 2-rigid + 3-rigid can interlock

The remaining subsections investigate interlocking configurations with restricted motion.

Theorem 12 A rigid 2-chain can interlock with a rigid 3-chain.
Proof: The starting configuration is as shown in Fig. 10. For the two chains P = (p0, p1, p2), and
Q = (q0, q1, q2, q3), we assume that point q1 = (0, 0, 0), point q2 = (1, 0, 0), bar q0q1 goes through
the point q′0 = (1,−1,−1), bar q2q3 goes through the point q′3 = (0, 1,−1), and all end bars have
length L. The vertex angle at p1 is π/2 < β < π. Draw a central projection of the configuration
onto the xy plane from viewpoint p1, as in Figure 10.
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View from p1

p2
p0

q1q2
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Figure 10: A rigid 2-chain and a rigid 3-chain can interlock.

In the starting configuration, both bars of P intersect T = CH (q′0, q1, q2, q
′
3), and during any

separating motion, those bars will have to stop intersecting T . The diameter of T is less than 3, so
if L > 3/ tanβ, we know that if p0 or p2 enter T , then one of the end bars of P will have already
left T . So during any separating motion, one of p0 or p2 will have to cross one of the dotted lines
in the projection shown in Figure 10. Note that before the motion starts, the dot product of the
planar vectors in the projection p0p2 · q1q2 > 0, and as soon as one of p0 or p2 intersects one of
the dotted lines in the projection, p0p2 · q1q2 < 0. Since this is a continuous motion, we must have
been a stage where p0p2 · q1q2 = 0, that is, the plane containing 2-chain P is perpendicular to q1q2.
Consider the intersections of Q with the plane containing P at that stage. The intersection with
q1q2 is at (y, z) = (0, 0), the intersection with q0q1 lies on the segment joining (0, 0) to (−1,−1),
and the intersection with q2q3 lies on the segment joining (0, 0) to (1,−1). Thus, the support line
of p0p1 would have to be below (−1,−1) and above (0, 0) and the support line of p1p2 would have
to be above (0, 0) and below (1,−1). But this would imply that β < π which contradicts the fact
that P is rigid. ✷

3.4 2-rigid + 4-flexible can interlock

p1

p2p0

q1

q2

q3

q4q0 p1

p2p0

q2

q3

View from p1 View from q1

p2p0 r

q1

q2

q3

q4q0 q0 q0

p0
p2

Figure 11: A rigid 2-chain P and a flexible 4-chain Q, with views from vertices p1 and q1.

Consider the 2-chain P = (p0, p1, p2) and 4-chain Q = (q0, . . . , q4) shown in Fig. 11. The lengths
of the internal edges k1 = q1q2, and k2 = q2q3 are unity, and the length of all end edges is set to
some large value L to be determined later. Let T be the tetrahedron with vertices {p1, q1, q2, q3}.
We show:

Lemma 13 Starting from the configuration portrayed at the left of Fig. 11, consider any motion
where none of the vertices p0 or p3 ever enter the tetrahedron T . Then at all times, the edges p0p1
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and p1p2 both intersect triangle q1q2q3.
Proof: Along with the conclusion stated in the lemma, we will show that a few other conditions
remain true at all times during the motion:

[q0q1q2q3] < 0, [q1q2q3q4] > 0

[p0p1q0q1] < 0, [p0p1qiqi+1] > 0 for i = 1, 2, 3

[p1p2q3q4] > 0, [p1p2qiqi+1] > 0 for i = 0, 1, 2

and the edges p0p1 and p1p2 intersect triangle �q1q2q3, q0q1 intersects �p1q2q3 and q3q4 intersects
�p1q1q2. We prove this by showing that none of these conditions can be the first one to become
false. Note that these conditions also imply that p1 remains above the plane containing �q1q2q3.

First consider all determinants involving p0p1 or p1p2. For this, we project the configuration
from the viewpoint p1 onto the �q1q2q3 as in the middle of Fig. 11. Let q′0 be the intersection
of the edge q0q1 and the triangle �p1q2q3, q′0 projects to the intersection point of the projections
of the edges q0q1 and q2q3. Likewise, let q′4 be the intersection of the edge q3q4 and the triangle
�p1q1q2, q′4 projects to the intersection point of the projections of the edges q3q4 and q1q2. Also,
let r be the projection of the intersection between the projections of the edges q0q1 and q3q4. r is
the projection of points on those two edges that lie inside T .

In the projection, p0 becomes a point lying inside the triangle �rq′0q3. The three edges of this
triangle are the projection of portions of edges completely contained in T , and p0 is not contained
in T , so none of the determinants involving p0p1 can change sign as the first violated condition
without involving an edge crossing. The same argument can be made about edge p1p2 and triangle
�rq′4q1. The same projection also shows that the edges p0p1 and p1p2 will not stop intersecting
triangle �q1q2q3 before some determinant involving one of these two edges changes sign.

For the events involving q0q1, we project the configuration from the viewpoint q1 onto the
�p1q2q3 as in the right of Fig. 11. Let p′0 be the intersection of p0p1 and �q1q2q3, p0′ projects to
the intersection point of the projections of the edges p0p1 and q2q3. Let p′2 be the intersection of
p1p2 and �q1q2q3, p2′ projects to the intersection point of the projections of the edges p1p2 and
q2q3. In the projection, q0 becomes a point lying inside the triangle �p′0p1p

′
2. The three edges

of this triangle are the projection of portions of edges completely contained in T , and q0 is not
contained in T , so none of the determinants involving q0q1 can change sign as the first violated
condition without involving an edge crossing. The same projection also shows that q0q1 will not
stop intersecting triangle �p1q2q3 before some determinant involving q0q1 changes sign. The events
involving q3q4 can be treated in the same manner, and so none of the events can occur first. ✷

Theorem 14 Given any angle 0 < β < π, there is an interlocked configuration of a 2-chain with
a 4-chain, if the vertex angle of the 2-chain is restricted to stay ≥ β during the entire motion.
Proof: Consider the configuration shown at the left of Fig. 11. By the previous lemma, in order to
unlock P and Q, p0 or p3 have to enter T through �q1q2q3. At the time one of these endpoints, say
p0, enters �q1q2q3, p1p2 still intersects �q1q2q3. But the closest point to p0 on p1p2 is at distance
L tanβ. So, since the diameter of the triangle �q1q2q3 is less than 2, the configuration will be
locked if L tanβ > 2, or L > 2/tanβ. ✷
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View from p1

Figure 12: A flexible 2-chain and a rigid 5-chain can interlock.

3.5 2-flexible + 5-rigid can interlock

Theorem 15 A flexible 2-chain can interlock with a rigid 5-chain.
Proof:We can build this configuration with the coordinates of Figure 12 and check that initially it
has positive orientation determinants [p1p2qiqi+1], for i ∈ {0, 1, 2}, and [p0p1qiqi+1], for i ∈ {2, 3, 4}.
The four planes qiqi+1qi+2 for i ∈ {0, 1, 2, 3} define a tetrahedron τ , shown dotted in Figure 12,
that contains p1. We can calculate the coordinates s and t, as in the figure, so tetrahedron τ =
CH (q2, q3, s, t).

In fact, p1 cannot leave τ without causing bars of the two chains to intersect. Consider the view
from p1. Ends p0 and p2 project to points that are contained in triangles that are projections of
bars of Q. These projected triangles are invariant as long as p1 is in τ : Because the planes q0q2q3

and q5q3q2 completely contain τ , the end bars of Q project onto q2q3 until two edges of a projected
triangle becomes collinear, which occurs only if p1 reaches a face of τ . But this would also force an
intersection in the projection between an end bar of P and a bar of Q. Since the length of the end
bars of P is > 9, and the greatest distance of τ from a point of the projected triangle is |sq1| = 6,
the bars do intersect, as promised. ✷

3.6 3-rigid + 3-flexible can interlock

As shown in Section 2.1, two flexible 3-chains cannot interlock. To obtain a locked configuration
for two 3-chains, we could restrict the motion of the chains in several ways. To make these ways
precise, consider a 3-chain with vertices p0, p1, p2, and p3, and define

• the vertex angle at pi, for i = 1, 2, which is the angle ∠pi−1pipi+1, and

• the dihedral angle of the 3-chain, which is the angle between the orthogonal projections of
p0p1 and p2p3 onto a plane perpendicular to p1p2.

In a flexible chain, these angles are completely unrestricted. For a revolute chain, the vertex angles
cannot change during the motion. We will prove that two 3-chains can be locked if:

• The sum of the two vertex angles for each chain is bounded from above by some angle α < π,
or

• The three angles of one of the chains are bounded from below by some angle β > 0, the other
chain being completely flexible.
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Figure 13: Two 3-chains that interlock if the joints are restricted

Consider the 3-chains P = (p0, . . . , p3) and Q = (q0, . . . , q3) shown in Fig. 13. The lengths of
middle edges / = p1p2 and k = q1q2 are unity, and the length of all end edges is set to some large
value L to be determined later. Let T be the tetrahedron with vertices {p1, p2, q1, q2}. We first
show:

Lemma 16 Starting from the configuration of Fig. 13, consider any motion where none of the
vertices p0, p3, q0 or q3 ever enter the tetrahedron T , then at all times,

[pipi+1qjqj+1]

{
< 0 for i = j = 1
> 0 otherwise,

(1)

and the end edge starting at each vertex of T intersects the opposite facet of the tetrahedron.
Proof: It can be verified that expression(1) is true at the starting configuration. Consider the first
occurrence of an event that might cause (1) to become false. To consider [p0p1qjqj+1] for j = 0, 1, 2,
we project the inside of T from vertex p1. This is illustrated in figure XXX. Point p1 sees the triangle
q1q2p2 containing p0, the segment q0q1 passing through triangle p1p2q2 and thus intersecting p2q2 in
the projection, and the segment q2q3 passing through triangle p1p2q1 and so intersecting p2q1 in the
projection. Since p0 is actually the projection of p0p1, the possible projections of p0p1 are bounded
by the segments q0q1 q1q2 and q2q3. All the other cases are symmetric to this one except [p1p2q1q2].
But this corresponds to the segments / and k becoming coplanar and T becoming empty. But this
cannot happen before one of the other events. ✷

Theorem 17 Given any angle 0 < β < π, there is an interlocked configuration of two 3-chains
where the dihedral angle and both vertex angles of the first chain are ≥ β during any motion and
the other chain is unrestricted.
Proof: By Lemma 16, the dihedral angle of P is at most the angle θ between triangles p1p2q1 and
p1p2q2 (and thus θ ≥ β) as long as p0, p3, q0 and q3 stay out of T . The restriction on the vertex
angles of P also imply that one of the angles p1p2q1 and p1p2q2 is at least β, and the same for the
angles p2p1q1 and p2p1q2. Since / and k are both of length 1, then if the longest distance between
any two points in T is D, then p1q1, p1q2, p2q1 and p2q2 are all of length ≥ D − 2. Along with the
restrictions on the angles of P , this implies that (D−2)(sinβ)2 ≤ 1 as long as p0, p3, q0 and q3 stay
out of T . Thus if we set the length L of the end edges larger than 2 + 1/(sinβ)2, p0, p3, q0 and q3

will never enter T , and the configuration is locked. ✷

Corollary 18 A rigid 3-chain and a flexible 3-chain can interlock.
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3.7 3-revolute + 3-revolute can interlock

In this subsection we consider 3-chains of Figure 13 as revolute chains, and consider the two cones
obtained by rotating one of the end edges around the middle edge. We will need a new lemma:

Lemma 19 In any motion starting from the configuration of Fig. 13, the four cones defined by
the chains P and Q have a non-empty intersection as long as none of the vertices p0, p3, q0, or q3

enter the tetrahedron T .
Proof: Using Lemma 16, we claim that the end edges of one of the chains has to intersect both
cones of the other chain. To see this, observe that if, say, bar p0p1 does not intersect the cone
at q1, then [p0p1q0q1] and [p0p1q1q2] have opposite signs (because q0q1 is inside the cone), which
contradicts lemma 16. Pick a point q̂ at the intersection of the boundary of the two cones of Q,
such that −→̂qq1 and

−→
q2q̂ have a positive orientation with p0p1 and p2p3. This implies that bars p0p1

and p1p2 both intersect the triangle q1q2q̂. Construct p̂ the same way, and notice that the triangles
p1p2p̂ and q1q2q̂ intersect. Since the triangles are subsets of the cone intersections of their chains,
this completes the proof. ✷

Theorem 20 Given any angle 0 < α < π, there is an interlocked configuration of two 3-chains
where the sum of the two vertex angles of each chain stays ≤ α during any motion (and the dihedral
angles are unrestricted).
Proof: Let Ri, for i = 1, 2 be the union, over all possible pairs of vertex angles with sum ≤ α, of
the intersections of the two cones of Ci. Note that Ri is contained in a sphere of radius tan(π/2)/2
centered at the midpoint of its middle bar. By Lemma 19, we know that R1 and R2 intersect, and
so do the spheres that contain them, as long as the conditions of lemma 16 are satisfied. So if we
set the length L of the end edges larger than tan(π/2)+1, then vertices p0, p3, q0 and q3 will never
enter T , and the configuration is interlocked. ✷

Corollary 21 Two revolute 3-chains can interlock.

4 Conclusion

We have settled the majority of the problems for small interlocked chains. Two problems that
would complete Table 1 remain open, as well as other questions that we find interesting:

1. What is the smallest k for which a flexible k-chain can interlock with a flexible 2-chain? We
believe that 6 ≤ k ≤ 11.

2. What is the smallest k for which a revolute k-chain can interlock with a flexible 2-chain?

3. Can cutting one third of the vertices of a flexible chain lead to an interlocked collection of
subchains? Our results do not immediately lead to an answer to this question.

4. Explore possible interlock for sets of three or more chains with restricted motions. For
example, we conjecture that a revolute 3-chain and 2 rigid 2-chains can interlock

5. What is the complexity of deciding whether given chains are interlocked?
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