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A Pumping Lemma for Homometric Rhythms
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Abstract

Homometric rhythms (chords) are those with the same
histogram or multiset of intervals (distances). The
purpose of this note is threefold. First, to point out
the potential importance of isospectral vertices in a
pair of homometric rhythms. Second, to establish a
method (“pumping”) for generating an infinite sequence
of homometric rhythms that include isospectral vertices.
And finally, to introduce the notion of polyphonic homo-
metric rhythms, which apparently have not been previ-
ously explored.

1 Introduction

Both chords of k notes on a scale of n pitches, and
rhythms of k onsets repeated every n metronomic
pulses, are conveniently represented by n evenly spaced
points on a circle, with arithmetic mod n, i.e., in the
group Zn. This representation dates back to the 13th-
century Persian musicologist Safi Al-Din [Wri78], and
continues to be the basis of analyzing music through
geometry [Tou05] [Tym06]. Such sets of points on a
circle are called cyclotomic sets in the crystallography
literature [Pat44] [Bue78]. It is well-established that
in the context of musical scales and chords, the inter-
vals between the notes largely determine the aural tone
of the chord. An interval is the shortest distance be-
tween two points, measured in either direction on the
circle. This has led to an intense study of the inter-
val content [Lew59]: the histogram that records, for
each possible interpoint distance in a chord, the num-
ber of times it occurs. This same histogram is studied
for rhythms [Tou05] and in crystallography.

Of special interest are pairs of noncongruent
chords/rhythms/cyclotomic sets that have the same his-
togram: the sets are homometric in the terminology of
Lindo Patterson [Pat44], who first discovered them. In
crystallography, such sets yield the same X-ray pattern.
In the pitch model, they are chords with the same in-
terval content. One of the fundamental theorems in
this area is the so-called hexachordal theorem, which
states that two non-congruent complementary sets with
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k=n/2 (and n even) are homometric, whose earliest
proof in the music literature is due to Milton Babbitt
and David Lewin [Lew59].

Henceforth we specialize to the rhythm model, with
each (n, k)-rhythm specified by k beats and n−k rests
on the Zn circle; and we specifically focus on the struc-
ture of homometric rhythms. Figure 1 shows a pair of
homometric rhythms with (n, k)=(12, 5).
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Figure 1: Homometric (n, k)=(12, 5) rhythms:
(0, 1, 2, 4, 7) and (0, 1, 3, 5, 6). Vertices 0 and 5
in the first and second rhythms (respectively) are
isospectral.

2 Isospectral Vertices

Let P and Q be two different rhythms, with p ∈ P
and q ∈ Q vertices (onsets) in each. The vertices p
and q are called isospectral1 if they have the same his-
togram of distances to all other vertices in their respec-
tive rhythms. In Figure 1, vertex 0 in the first rhythm,

1The term is used in the literature on Golomb rulers.
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and 5 in the second, are isospectral, with spectrum
{1, 2, 4, 5}.

There are two reasons we consider isospectral vertices
of potential significance. The first is that removal of a
pair of isospectral vertices from a pair of (n, k) homo-
metric rhythms leaves a homometric pair of (n, k − 1)
rhythms. This raises the possibility of shelling : remov-
ing a particular onset from a rhythm while retaining
a certain property. Shellings of Erdős-deep rhythms
are studied in [DGMM+08]. Here we want to perform
shelling by removing an onset from each rhythm while
keeping the pair homometric.

Shellings of rhythms play an important role in mu-
sical improvisation. For example, most African drum-
ming music consists of rhythms operating on three dif-
ferent strata: the unvarying timeline usually provided
by one or more bells, one or more rhythmic motifs
played on drums, and an improvised solo (played by the
lead drummer) riding on the other rhythmic structures.
Shellings of rhythms are relevant to the improvisation
of solo drumming in the context of such a rhythmic
background. The solo improvisation must respect the
style and feeling of the piece, which is usually deter-
mined by the timeline. A common technique to achieve
this effect is to “borrow” notes from the timeline, and
to alternate between playing subsets of notes from the
timeline and from other rhythms that interlock with
it [Ank97][Aga86]. The borrowing of notes from the
timeline may be regarded as a fulfillment of the require-
ments of style coherence, and shellings can be viewed as
capturing a particular type of borrowing that achieves
coherence through homometricity.

Second, as we show in Lemma 1 below, the presence
of an isospectral pair permits “pumping” the rhythms to
homometric pairs based on a larger n′ > n. So isospec-
tral pairs serve as a natural “pivot” from which to gen-
erate new homometric pairs from old ones both by re-
moving or adding onsets.

This naturally raises the question of whether every
homometric pair of rhythms must contain an isospectral
pair of vertices. The answer is no, as illustrated in
Figure 2. We leave further investigation of isospectral
vertices and shellings to future work.

3 The Pumping Lemma

Let P and Q be a homometric pair of (n, k)-rhythms
on Zn, with isospectral vertices p ∈ P and q ∈ Q. We
define an (m, r)-pumping of P and Q, m ≥ 1, r ≥ 0, to
be a new pair of (n′, k′) rhythms P ′ and Q′ on Zn′ , with
n′ = mn and k′ = k + 2r, obtained by replacing p in P ′

with p + {0,±1,±2, . . . ,±r}, and similarly replacing q
in Q′ with q + {0,±1,±2, . . . ,±r}.

Figure 3 shows a (m, r)=(3, 2)-pumping of the homo-
metric pair from Figure 1 based on the isospectral pair
p=0 and q=5. The original (n, k)=(12, 5) rhythms have
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Figure 2: A pair of (n, k)=(16, 9) homometric rhythms
that has no isospectral pair of vertices, but does have a
pair of two-vertex sets that is isospectral, {1, 9} in (a)
and {2, 10} in (b).

been pumped to (n′, k′)=(36, 9) rhythms. The “pump-
ing” occurs both in n → mn and in k → k+2r, although
it may be that m=1 in which case n′=n, or r=0 in which
case k′=k.
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Figure 3: Pumping p=0 and q=5 in Fig. 1 with m=3,
r=2, n′=mn=36. The rhythm is monophonic.

The literature focuses on monophonic rhythms, those
whose vertices form a set with no repeated elements.
The pumping lemma can produce polyphonic rhythms,
ones in which at least one vertex has multiplicity greater
than 1, i.e., the onsets form a multiset. These will be
discussed further in Section 4.
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Lemma 1 (Pumping) Let P and Q be a homomet-
ric pair of (n, k) monophonic rhythms, with isospectral
vertices p ∈ P and q ∈ Q. Then any (m, r)-pumping
of P and Q creates a new homometric pair P ′ and Q′,
also containing an isospectral pair. If m ≥ r + 1, then
the new rhythms are monophonic; if m ≤ r, the new
rhythms could be polyphonic.

Proof. Call the vertices p + {0,±1,±2, . . . ,±r} in P ′

p′−r, . . . , p
′
−2, p

′
−1, p

′
0, p

′
1, p

′
2, . . . , p

′
r

and similarly for the q replacements in Q′.
To prove that P ′ and Q′ are homometric, let (x′, y′)

be a segment between two vertices of P ′. Consider three
cases.

1. Neither x′ nor y′ is among the p′i. Then d(x′, y′) =
md(x, y), where x and y are the corresponding ver-
tices in P .

2. y′ = p′i. Here there are two subcases. Let d(x, y) =
d(x, p) = d. Note that the diameter of the circle
Zn is n/2.

(a) d = n/2; or r ≤ n/2 − d. (Figure 4(a)).
Consider the latter inequality. It means that
d ± r does not extend beyond the diameter
n/2, so that the p′±i points and x′ all fit in-
side a semicircle, as in (a) of the figure. Then
d(x′, p′±i) = md ± i or md ∓ i, depending on
whether the path x → p or p → x is shorter,
respectively. So, what was the distance d in P
between x and y=p becomes the distance set
{md− r, . . . , md− 1,md,md + 1, . . . ,md + r}
in P ′. If d is the diameter n/2, then the dis-
tance set is {md,md−1,md−1,md−2,md−
2, ...,md− r, md− r}.

(b) r > n/2 − d (Figure 4(b)). Here d ± r does
extend beyond the diameter n/2, at which
point its increase or decrease reverses direc-
tion. In (b) of the figure, the new distance set
is {md− 2,md− 1,md,md + 1,md}.

3. Both x′ and y′ are among the p′i. Here we get a
clique of new distances among the p′i.

In any of these three cases, call the new distance set
D = {d(x′, p′±i) : i = 0, . . . , r}.

So now we see, in the P → P ′ transition, either
the change d → md or d → D. But we see exactly
the same distance changes in the Q → Q′ transition.
For the distances not involving q are stretched by m,
and the distances involving q′i get stretched by m ± i,
i = 0, . . . , r. Because P and Q are homometric, all the
former changes are identical between them, and because
p and q are isospectral, all the latter changes are identi-
cal between them. Even in the case where the inflation
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Figure 4: (a) The inflation fits inside a semicircle:
r=2, new distances {md − r, . . . , md − 1,md,md +
1, . . . ,md + r}. (b) The inflation crosses a diameter,
here at (x′, p′−1).

of (x, p) crosses a diameter in the P → P ′ inflation,
there is a point z ∈ Q that achieves the same distance
d(x, p) = d(z, q) (because p and q are isospectral), so the
crossing-diameter behavior, and the distance set D, is
exactly mirrored in the Q → Q′ transition.2 Therefore,
P ′ and Q′ are homometric.

The counterparts of p and q, p′0 and q′0, are isospectral
in P ′ and Q′, because their distance spectra are simply
scaled by m (most clearly seen in Figure 3).

We turn now to the mono- and polyphonic claims
of the lemma. It should be clear that if we inflate by
m ≥ r + 1, then the closest vertices, separated by 1 in
P , become separated by ≥ r + 1 in P ′, which is enough
to accommodate the addition of r new vertices to each
side of p. (If the closest vertices are separated by more
than 1, then even smaller inflation will avoid overlap.)
Continuing our example, inflation by m=r+1=3 suffices
to avoid overlap and so maintain a monophonic rhythm,
as illustrated in Figure 3.

When m ≤ r, there could be overlap of the newly
added vertices on top of the old vertices. So the result-
ing rhythm may be polyphonic. However, the rhythms
are still homometric, where we treat vertices with multi-
plicity more than 1 as if they were distinct vertices (and
distance 0 is ignored). This is illustrated in Figure 5,

2An instance of this behavior is illustrated in Figure 5 below,
where the set D for segments (7, 0) ∈ P and (0, 5) ∈ Q have
inflated distance set D = {3, 4, 5, 6, 5}.
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where we have used m=1, i.e., n′=n. �

The inspiration for the transformation described in
this lemma is Property 7 in [AG00], which similarly in-
flates a particular pair of homometric quadrilaterals by
replacing a vertex in each by a sequence of vertices, and
increasing n to accommodate. However, their inflation
does not rely on isospectral vertices, and appears to only
work on that specific quadrilateral pair.

Corollary 2 From any pair of rhythms satisfying the
preconditions of the pumping lemma, we can generate
an infinite sequence of increasingly larger homometric
pairs.

Proof. Because (P ′, Q′) again contain an isospectral
pair, a pumped pair can be pumped again. �

Given the preconditions of the pumping lemma, it
would be useful to characterize the homometric pairs of
rhythms that contain an isospectral pair of vertices.

4 Polyphonic Rhythms

As mentioned in the proof above, if we do not pump
n enough to accommodate the pumping of k without
overlap, i.e., when m ≤ r, an (m, r)-pumping may con-
vert a monophonic rhythm to a polyphonic rhythm. In
general, vertices of a rhythm have integer weights repre-
senting their multiplicity. In Figure 5, two vertices have
weight 2 whereas all others have weight 1. The inter-
val histogram still makes sense by treating a vertex of
weight w as w-distinct colocated vertices. For example,
in the histogram of the first rhythm, the distance 6 is
achieved three times: by (10, 4) and twice by (7, 1) be-
cause vertex 1 has weight 2. And the pumping lemma
still guarantees homometricity.

One could interpret onsets of weight greater than 1
as representing greater emphasis, or several drums with
different timbre, or several voices sounded in unison in
the pitch model, each an octave apart from the oth-
ers (an elementary form of harmony). Homometric-
ity in polyphonic rhythms is an apparently unexplored
topic, which we believe opens new directions for re-
search in music theory. For example, we have estab-
lished that the hexachordal theorem extends to poly-
phonic rhythms (and beyond) [BBGM+08]. Shellings
of polyphonic rhythms are also a natural topic of inves-
tigation.
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