
Vertex �-Lights for Monotone MountainsJoseph O'Rourke �AbstractIt is established that dt=2e = dn=2e�1 vertex �-lightssu�ce to cover a monotone mountain polygon of t =n�2 triangles. A monotone mountain is a monotonepolygon one of whose chains is a single segment, anda vertex �-light is a oodlight of aperture � whoseapex is a vertex.Keywords. art gallery theorems, oodlights, mono-tone polygons.1 IntroductionIt was established in [ECOUX95] that for any � < �,there is a polygon that cannot be illuminated withan �-oodlight at each vertex. An �-oodlight (or�-light) is a light with aperture no more than �. Avertex �-light is one whose apex is placed at a vertex,aiming a cone of light of up to � into the polygon.Each vertex may be assigned at most one light. Theresult of [ECOUX95] is then that n vertex �-lightsdo not always su�ce when � < �. Let a polygonP have t triangles in any triangulation, t = n � 2;we will phrase bounds in terms of t. For � = �,an easy argument shows that t vertex �-lights alwayssu�ce: place a light at an ear tip, cut o� the ear,and recurse. This raises the question of �nding abetter upper bound. Urritia phrased the problem thisway [Urr97]: is there a c < 1 such that cn vertex�-lights always su�ce? The largest lower bound isc = 35 via an example of F. Santos.In this paper we pursue this question, but only inspecial cases. In particular, we show that c = 12 forspirals and, more interestingly, for monotone moun-tains. A monotone mountain is a monotone polygonone of whose chains is a single segment. More pre-cisely, a monotone chain is a polygonal chain whose�Department of Computer Science, Smith College,Northampton, MA 01063, USA. orourke@cs.smith.edu. Sup-ported by NSF grant CCR-9421670.

intersection with any vertical line is at most onepoint. A monotone mountain consists of one mono-tone chain, whose extreme (left and right) vertices areconnected by a single segment. Note this base edgeneed not be horizontal.1 Fig. 5 shows a monotonemountain with base edge xy.Although this is a severely restricted class ofpolygons, it deserves attention for three reasons:the examples establishing the results of [ECOUX95](and [OX94]) are \nearly" monotone mountains; theproblem is already not completely trivial for mono-tone mountains; and there is some reason to hopesimilar techniques will apply to the unrestricted prob-lem.We start with a result on spiral polygons, wherethe problem is trivial.2 Spiral PolygonsA spiral polygon consists of two joined polygonalchains: a chain of reex vertices, and a chain of con-vex vertices.Theorem 1 A spiral polygon S of t = n�2 trianglesmay be covered by dt=2e = dn=2e � 1 vertex �-lights;some spirals require this many.Proof: If S has no reex vertices, S is convex andcan be covered with one vertex �-light at any vertex.So assume S has at least one reex vertex.Let x, y, and z be three consecutive vertices of S,with x reex, y convex, and z convex. Such a triplealways exists, because any polygon has at least threeconvex vertices. The segment xz must be an internaldiagonal of the polygon. Therefore at least two trian-gles are incident to z in any triangulation of S. Plac-ing a light at z, as shown in Fig. 1, therefore coversat least two triangles; because z is convex, the lightcovers the entire angle at z. Removing the covered1This de�nition di�ers in this respect from that introducedin [OX94], which demanded a horizontal base edge. Page 1



triangles leaves a smaller spiral polygon. Repeatingthis process covers S with at most dt=2e lights.Generalizing the polygon shown in Fig. 1 estab-lishes that the bound is tight. 2
xz

yFigure 1: Placing a �-light at z covers at least two tri-angles. The light is shown as a full �-light, althoughonly the angle interior to the polygon is relevant.Notice that the procedure implied by this proofplaces lights only on convex vertices. One reason spi-ral polygons are so easy is that lights never need beplaced on reex vertices, and so the potentially dif-�cult decision of how to orient a �-light at a reexvertex need not be confronted.3 Non-LocalityMonotone mountains are more di�cult than spiralsfor two reasons: reex vertices cannot be avoided,and the decision of how of orient a light at reexvertex cannot be made locally. Many art gallery the-orems can be proved inductively as follows: cut o� asmall piece, illuminate that piece, and recurse on theremainder [O'R87]. The reason this paradigm worksis that decisions can be made locally: what happensin the small piece is independent of the shape of theremainder of the polygon.This is not the case with the vertex �-light problem,even for monotone mountains. Consider the polygonshown in Fig. 2, and imagine trying to decide whetherto shine the light at z left or right, basing the decisiononly on the portion of the polygon to the left of z.One can see that no c < 1 can be achieved withoutlooking at the structure of the right portion: if the\wrong" decision is made at z (as illustrated), then anarbitrarily large fraction of all remaining vertices willneed lights. Although the decision is obvious in thiscase, as it can be based on the number of trianglesincident to z, the e�ect might be more subtle.

zFigure 2: A wrong orienting decision at z can lead tosuboptimal coverage.4 Worst CaseIt is clear that if the number of triangles incident toz in Fig. 2 from the left is k and from right is alsok, then a lower bound of c = 12 is attained: t =2k + 1, and k + 1 = dt=2e lights are necessary, oneat z and k on the opposite reex chain. The samebound is acheived by the shape shown in Fig. 3. Inthis polygon, the extension of v1v2 meets v5v6; theextension of v2v3 meets v4v5; and so on.
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6Figure 3: dt=2e lights are necessary: t = 5 andd5=2e = 3 are needed.We prove this simple fact for later reference:Lemma 1 The generalization of the polygon M inFig. 3 requires dt=2e = dn=2e � 1 vertex �-lights.Proof: Each vertex on the left chain can only see twovertices on the right chain, and vice versa: v5 can seev2 and v3, because the extensions of v1v2 and v2v3straddle v5; etc. Thus at most (in fact exactly) threetriangles are incident to v in a triangulation of M . A�-light at v can only fully cover two of these threetriangles, because v is reex. So each light covers atmost two triangles, and dt=2e are needed overall. 2Page 2



5 DualityOne way to view the phenomenon illustrated in Fig. 2is as follows: the polygon naturally partitions intotwo monotone mountain subpolygons at z. If at lightis placed at z and aimed left, then in the right sub-polygon, placing a light at z is forbidden (as thatwould place two lights at one vertex). Moreover, thatexample shows that a (sub)polygon with one vertexforbidden a light could in fact require one light pertriangle.However, there is an interesting \duality" at playhere, in the following sense: if a polygon with oneforbidden vertex requires many lights, then placing alight at the forbidden vertex permits it to be coveredwith few lights. In other words, there is no polygonstructure that is both bad with a forbidden vertexand bad without that vertex forbidden.IfM is a monotonemountain with extreme left andright vertices x and y, let L10(M) be the number ofvertex �-lights needed to cover M when vertex x isassigned a light and y is forbidden to have a light; andlet L01(M) be the number needed when y is assigneda light and x is forbidden. Note that, in these de�-nitions, not only is one vertex forbidden a light, butthe other extreme vertex must be assigned a light.The precise statement of duality is captured in thefollowing lemma:Lemma 2 For any monotone mountain M of t tri-angles, L10(M) + L01(M) � t+ 1.The generalization of Fig. 4 establishes that the sumis sometimes as large as t+1: here L10(M) = 1 (v0 as-signed) and L01(M) = t (v0 forbidden, as illustrated).
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Figure 4: Duality: L10(M) + L01(M) = t + 1.

Lemma 2 is the key to the main theorem in thenext section. We now prove it via induction.Proof: Let M be a monotone mountain of t tri-angles. The induction hypothesis is that L10(M 0) +L01(M 0) � t0 + 1 for any monotone mountain M 0of t0 < t triangles. The base case is a single trian-gle T , t = 1, when L10(T ) = L01(T ) = 1, and soL10(T ) + L01(T ) = 2 = t+ 1.Let the base edge of M be xy, and let z be thevertex �rst encountered by sweeping the line contain-ing xy vertically; see Fig. 5. It must be the case thatboth xz and yz are internal diagonals. This providesa natural partition of M into three pieces: 4xyz, asubpolygon A sharing diagonal xz, and a subpolygonB sharing diagonal yz. Note that it may well be thateither A or B is the empty polygon ;; if both areempty, t = 1 and we fall into the base case of theinduction.
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Figure 5: Induction partition of M into A, B, and4xyz.It is clear that A and B are monotone mountains.In particular, the angle at z in A is convex, as is theangle at z in B: for the monotone chain enters z fromthe left and leaves it from the right (Fig. 6), as do thediagonals xz and zy respectively.We prove the lemma in two cases.Case 1: Neither A nor B is empty.We compute a bound on L10(M), which places alight at x but forbids a light at y. Because the angleat x in M is convex, the light at x covers 4xyz. Thislight also serves as a light at x in A. It makes sense inthis situation to place a light at z and aim it into B.Doing this gives us an upper bound on L10(M), upperbecause this sensible light placement and orientationat z might not optimal. This strategy yieldsL10(M) � L10(A) + L10(B) : (1)Page 3



zFigure 6: The monotone chain enters each vertexfrom the left halfplane and leaves in the right half-plane.Analogous reasoning (again the light at y (illustratedin Fig. 5) covers 4xyz) yieldsL01(M) � L01(A) + L01(B) : (2)Adding Eqs. 1 and 2 yieldsL10(M)+L01(M) � [L10(A)+L01(A)]+[L10(B)+L01(B)] :Suppose A contains a triangles and B contains b tri-angles, so that t = a + b + 1. Then applying theinduction hypothesis to each yieldsL10(M) + L01(M) � [a + 1] + [b+ 1]L10(M) + L01(M) � t+ 1 :This is the claim to be proved.It only remains to handle the case where one of Aor B is empty.Case 2: A = ; but B is not empty.This case is illustrated in Fig. 7; the case withB = ; is symmetric and need not be considered. If alight is placed at x, it serves to cover 4xyz, and thereasoning is just as before:L10(M) � 1 + L10(B) :If a light is placed at y, then it covers 4xyz (as illus-trated in Fig. 7), and there is no need to an additionallight to cover the empty A:L01(M) � L01(B) :Adding yieldsL10(M) + L01(M) � 1 + [L10(B) + L01(B)]L10(M) + L01(M) � 1 + [b + 1]L10(M) + L01(M) � t+ 1 : 2
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zFigure 7: A = ;.6 Main ResultWith Lemma 2 in hand, the �nal step is easy:Theorem 2 A monotone mountain polygon M oft = n�2 triangles may be covered by dt=2e = dn=2e�1vertex �-lights; some monotone mountains requirethis many.Proof: We know from Lemma 2 thatL10(M) + L01(M) � t + 1 :Let L(M) = minfL10(M); L01(M)g :By the pigeonhole principle,L(M) � b(t+ 1)=2c = dt=2e :Lemma 1 established that this bound can be at-tained (Fig. 3). 2The proofs of Lemma 2 and Theorem 2 imply asimple algorithm: compute a bound on L10(M) byplacing lights at the left corners of A and of B andrecursing, and compute a bound on L01(M) similarly.Use the light placement of whichever is smaller. Thealgorithm is easily seen to be O(n logn): spend lin-ear time �nding z, and recursively process the pieces.This leads to the familiar divide-and-conquer recur-rence.An example is shown in Fig. 8. Here M has t = 14triangles, and L10(M) + L01(M) � 5 + 10 = t + 1.This example illustrates a number of features of thelight placements implied by the bound computationon L10 and L01:1. Every vertex that is not a local maximum is as-signed a light in either the L10 or L01 compu-tation. (Some vertices are assigned a light inboth.)2. All the lights in the L10 placement aim to theright; and all those in the L01 placement aim tothe left. Page 4



Figure 8: Example: t = 14, L10 = 5 (top), L01 = 10(bottom).

3. The sum L10(M) + L01(M) achieved is alwaysexactly t + 1, because blindly following the pro-cedure places lights even if they might not beneeded (e.g., when M is convex).4. Lights at reex vertices are turned either fullycounterclockwise (in L10) or clockwise (in L10):intermediate positions are never needed.7 DiscussionMany of the features present in monotone mountainshold for the problem for general simple polygons aswell: for example, non-locality. For other features,it remains unclear: for example, whether every lightmay be fully turned (observation 4 above). In anycase, I believe that a version of the duality describedin Lemma 2 holds and will be a key to solving Urru-tia's problem. I conjecture c = 23 is achievable.References[ECOUX95] V. Estivill-Castro, J. O'Rourke, J. Urru-tia, and D. Xu. Illumination of polygonswith vertex oodlights. Inform. Process.Lett., 56:9{13, 1995.[O'R87] J. O'Rourke. Art Gallery Theorems andAlgorithms. Oxford University Press,New York, NY, 1987.[OX94] J. O'Rourke and D. Xu. Illuminationof polygons with 90� vertex lights. InSnapshots of Computational and Dis-crete Geometry, volume 3, pages 108{117. School Comput. Sci., McGill Univ.,Montreal, PQ, July 1994. Technical Re-port SOCS-94.50.[Urr97] J. Urrutia. Art gallery and illumina-tion problems. In J.-R. Sack and J. Ur-rutia, editors, Handbook on Computa-tional Geometry. North-Holland, 1997.To appear.
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