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Abstract

This note proves that every polar zonohedron has an edge-unfolding
to a non-overlapping net.

1 Introduction

What has become known as Dürer’s Problem [O’R13] asks whether or not every
convex polyhedron P has an edge-unfolding—a spanning tree of the 1-skeleton
which when cut, unfolds the surface of P to a planar simple polygon known
as a net. A key requirement is that a net does not self-overlap.1 Despite
considerable effort since Shephard first posed the question formally [She75],
there are only finite classes of polyhedra (5 Platonic solids, 13 Archimedean
solids, 92 Johnson solids), and a few infinite classes of polyhedra known to
edge-unfold to a net: prisms, domes [DO07, p. 323], prismoids [O’R01] [DO07,
p. 325], nested prismatoids [Rad21].

A zonohedron is a centrally symmetric convex polyhedron that may be de-
fined as the Minkowski sum of a set of line segments. A polar zonohedron is
formed when the generating segments constitute an equally spaced and equal
(unit) length star (or “umbrella”) at one of its two poles. It is symmetric about
the line through the two poles; we’ll assume this line is vertical. It is also
symmetric about a plane orthogonal to and through the midpoint of the poles
line. All of its edges have the same length; all of its faces are rhombs. A polar
zonohedron is determined by two parameters: n, the number of rhombs incident
to each pole, and θ ∈ (0, π/2), the angle that measures the degree of closure
at the poles. Thus there is a continuum of polar zonohedra. Small θ produce
pancake-like polyhedra, and θ near π/2 produce thin cigar-shaped polyhedra.
See Fig. 1.

The aim of this note is to prove this theorem:

Theorem 1 Every polar zonohedron has an edge-unfolding to a (non-overlapping)
net.

∗Departments of Computer Science and of Mathematics, Smith College, Northampton, MA
01063, USA. jorourke@smith.edu.

1Even though redundant, to block misinterpretation we sometimes call it a non-overlapping
net.
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Figure 1: n = 8, θ = 50◦. One zone Z of (n− 1) = 7 rhombs is marked in red.

The unfolding is illustrated in Fig. 1. It unfolds each of the n zones, each
joined at the image o of the north pole. A zone of a polar zonohedron is
a collection of rhombs all sharing a set of parallel edges. There are n such
congruent zones comprising the surface, each containing (n − 1) rhombs. The
edges cut between each pair of adjacent zones form what George Hart calls a
“surface helix.” Two further examples are shown in Figs. 2 and 3

I rely on Hart’s thorough exposition in [Har21], as well as employing his
Mathematica software. See also [Tow96].

2 Notation

Distinguish between a zone Z in R3 and that zone unfolded, or developed in
the plane as Z. Each Z is composed of (n− 1) rhombs: R1, R2, . . . , Rn−1. Let
α be the angle of R1 at the corner that is incident to the (north) pole point.

Let o be the planar image of the north pole. We focus on two consecutive
unfolded zones, because if adjacent zones do not overlap, then there is no overlap
in the entire unfolding. All zones are congruent in R3 and therefore congruent
in their planar unfoldings. Let Z be one zone, and Z ′ its counterclockwise (ccw)
neighbor sharing an edge incident to the pole o. See Fig. 4.

Arrange Z so that the top edge of R1 is horizontal. Then Z ′ is Z rigidly
rotated about o by α, because the zones are congruent and angle α is incident
to the pole o. In this orientation all the n unit edges of Z are horizontal, all the
unit edges of Z ′ at angle α.
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Figure 2: n = 20, θ = 0.5 ≈ 28.6◦, α ≈ 15.8◦.

3 Proof Plan

Because Z ′ is just a rigid rotation of Z about o, it seems almost obvious that
they cannot overlap. But I have not found a simple proof.

However, the overall plan of the proof presented here is simple. First we
establish a condition on the shape of Z that guarantees non-overlap. Let |C(r)∩
Z| = β(r) be the angular measure of the arc of the circle C(r) centered on o
that intersects Z. (This definition is revisited and clarified in the next section.)
Then the shape condition is that, if β(r) ≤ α for all r, then Z and the rotated
Z ′ do not overlap.

The remainder of the proof calculates β(r) and verifies that it is ≤ α, for
all n and all θ. It is these calculations that are not straightforward. The main
open problem (Section 7) is to find a proof that can establish β ≤ α without
these calculations.

4 Overlap Condition

We say that two regions A and B in the plane overlap if there is a point p
strictly interior to both A and B.

Let C(r) be a circle of radius r centered on o. Define |C(r) ∩ Z| = β(r) as
the angle subtended at o by the shortest arc of C(r) that covers C(r) ∩ Z. (We
will drop the r in β(r) when clear from the context.) Note here we are allowing
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Figure 3: n = 12, θ = 1
2

◦
.

Figure 4: Z and Z ′ for n = 16. Left to right: θ = 1◦, 20◦, 50◦.
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for the possibility that C(r) ∩ Z might be disconnected. And in fact, this is
necessary, for in extreme situations (θ → 0), this can occur. See Fig. 5. We will
revisit disconnected arcs in Section 6.1.

Figure 5: |C(r) ∩ Z| is disconnected. n = 16, θ = 1◦. Rn/2 = R8 is pink.

Lemma 1 If Z and Z ′ overlap at point p on circle C(r), r = |op|, then |C(r) ∩
Z| = β(r) > α.

Proof: Suppose for contradiction that Z and Z ′ overlap at p but |C(r) ∩ Z| =
β ≤ α. Because Z ′ is the rotation of Z about o by α, there is a gap of length
α − β ≥ 0 along C(r), which separates C(r) ∩ Z to the left (cw) and C(r) ∩ Z ′
to the right (ccw). Therefore, Z and Z ′ are separated or just touch along C(r),
and p cannot exist.

Note that, because C(r) ∩ Z could be disconnected, it is possible that β(r) > α
but there is no point p witnessing overlap. However, if there is a p, then it must
be that β(r) > α.

In Fig. 6, C(r)∩Z is the red arc spanning β(r) < α. Therefore when this arc
is rotated by α > β(r) to the blue arc, the red and blue arcs cannot overlap.

Corollary 1 If |C(r) ∩ Z| = β(r) ≤ α for all r, then Z and Z ′ do not overlap.

The remainder of the proof of Theorem 1 concentrates on proving β ≤ α.

5 Regular Polygon: θ = 0

There is a sense in which the situation when θ → 0 is the most “dangerous,” for
then there can be a flattened rhomb such as that illustrated in Fig. 5. When
θ = 0, the zonohedron degenerates to a doubly-covered regular n-gon, with
the only curvature at the vertices on the rim. (See the earlier Fig. 3.) Then
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Figure 6: β ≤ α implies no overlap.

the unfolding of a zone Z resembles mirrored S-shape composed to two half-
regular polygons. Fig. 7(a) shows an example with θ = 1◦, and (b) the θ = 0
counterpart. The 1◦ example (a) shows that one rhomb R8 is nearly flat; in (b)
that rhomb collapses to a line segment.

Whether one counts the doubly-covered regular n-gon as a “polyhedron,” it
is an interesting case, with regularities not present when θ > 0.

There is a slight difference for n even or odd; compare Figs. 7 and Fig. 8.
We will concentrate on n even, leaving n odd to remarks.

Let ∂ZL and ∂ZR be the right and left boundaries of Z, with Z in the
previously described orientation. Let Z+ and Z− be the upper and lower halves
of the S-shape. Let Pn be the regular polygon of n vertices that passes through
the n/2 vertices of ∂Z+

R . Let CR be the circle circumscribing Pn.2 In Fig. 7(b),
n = 16 and α = 2π/n = 22.5◦.

We will prove that |C(r)∩Z+| is exactly α, and |C(r)∩Z−| is less than α/2.
Thus the rotation from Z to Z ′ leaves Z+ and Z ′+ touching, with a large gap
between Z− and Z ′−. This is evident in Fig. 3 when θ = 1

2

◦
.

Lemma 2 |C(r) ∩ Z+| = α for all r intersecting Z+.

Proof: We refer to Figs. 7(b) and 9 throughout this proof.

2With unit rhombs, the radius of CR is 1/(2 sinα/2).
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Figure 7: n = 16. (a) θ = 1◦. Two enlargements of rhomb R8 are shown.
(b) θ = 0, α = 22.5◦.
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Figure 8: n = 17. (a) θ = 1◦. (b) θ = 0, α ≈ 21.17◦.
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Figure 9: n = 16, θ = 0, α = 22.5◦. (a) Each unit segment inscribed in CR

spans α = 2π/n from the center of CR. (b) Each segment spans α/2 form a
center on CR.

Each side of a rhomb along ∂Z+
R is a unit-length chord of CR, and so spans

angle α from the center of CR; see Fig. 9(a). Therefore each edge spans α/2
from o = v0, which lies on CR; see Fig. 9(b). In Fig. 7(b), v6v7 is such an
edge, of rhomb R6. A full rhomb of Z+ spans a second edge, e.g., v8v9. This
determines a chord c = v6v8 (red in Fig. 7(b)), which therefore spans α from o.
Thus C(r) with the appropriate r intersects a rhomb passing through diagonal
endpoints, R6 in our example.

Now we argue for the same conclusion when C(r) passes through Z+ at an
arbitrary location, rather than spanning a diagonal of some specific rhomb Ri.
Let C(r) enter Z+ at x and exit at y; see Fig. 10. We now argue that the length
of the arc C(r) ∩Z+ is exactly α, just as it is for the diagonal of each Ri. First
note that the arc can cross at most two rhombi, i.e., it can cross at most one
horizontal segment of Z+. Second, note that the arc can be partitioned into
two parts, each part is symmetric with respect to a diagonal. In the figure, the
diagonals are v8o and v7o. Then the left part of the arc (green) has length 2a
and the right part (orange) has length 2b. Now notice that a + b is the length
of the arc spanned by two adjacent diagonals. But we know that is α/2. So we
have established that |C(r) ∩ Z+| = α.

Thus we proved that |C(r) ∩ Z+| = α for all r crossing Z+.

Now we turn to the claim for |C(r) ∩ Z−|. Even though this arc is small, I
have not found a simple proof that it is ≤ α. In fact, it is strictly less than half
of α. Because my proof is technical, and only applies to the degenerate polar
zonohedron when θ = 0, it is relegated to the Appendix.

Lemma 3 |C(r) ∩ Z−| < α/2 for all r crossing Z−.
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Figure 10: |C(r) ∩ Z+| = 2a+ 2b.
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Proof: See the Appendix, Section 8. .

There remains the situation where C(r) intersects both Z+ and Z−. We
analyze this case separately in Lemma 5 in Section 6.1, which establishes that
arc C(r) ∩ Z subtends exactly α from o.

6 Positive θ

In comparison to θ = 0, Z for θ > 0 is “stretched out” in that the turn angle of
∂ZL between adjacent rhombs is less than α. (This turn angle is not constant
rhomb-to-rhomb but it is strictly less than α when θ > 0.) This means that
C(r) crosses Z closer to the horizontal, intersecting rhombs nearer to unit length.
Thus the intuition is that these arcs are short, and become shorter as r increases
and pushes the chords further from o.

Lemma 4 |C(r) ∩ Z| ≤ α for all r crossing Z.

Proof: The proof has four parts:

(1) The chord c determined by C(r) ∩ Z is more shallow (more horizontal)
than rhomb diagonals.

(2) If the chord c includes a corner of rhomb Ri, then it remains in Ri: c ⊂ Ri.

(3) If c does not include a corner of a rhomb, then it fits inside the rhomb
immediately above or below.

(4) The most broad presentation of a rhomb to o is the nearly flat rhomb,
with diagonal near 2, which subtends strictly less than 2 ·α/2 = α from o.

(1). Let c = xy = C(r)∩Z be the chord of C. It must be that the perpendicular
bisector of xy passes through o, the center of C(r). Recall that the diagonals
in the regular-polygon case—θ = 0, Fig. 9—extend directly through o. The
two diagonals of a rhomb meet orthogonally at their midpoints, so if xy is one
diagonal, the other aims toward o.

Fig. 11(a) contrasts the θ > 0 situation with θ = 0. There, for example, the
diagonal of R5, because of the turn-angle reduction/straightening, cannot any
longer aim toward o (red), as it did when θ = 0 (dashed). Extending this to all
rhomb diagonals leads to Fig. 11(b), which displays all these potential diagonal
chords, and shows that c cannot be a diagonal of Ri for i ≥ 2: for each possible
rhomb diagonal, the chord perpendicular falls below o.3

(2). This shows that the diagonals are too vertically steep (in our orientation
of Z) to serve as the chord c: c must be more nearly horizontal. This implies
that c would stay inside Ri were it to pass through a corner of Ri: c ⊂ Ri.

3Just barely below for R2, by 10−6.
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Figure 11: n = 16, θ = 20◦. (a) Contrast with θ = 0. Diagonal midpoint
perpendicular of R5 falls below o. (b) All diagonal perpendiculars fall below o.

12



Figure 12: The red arc C(r) ∩ Z can be translated up or down to fit into an
adjacent rhomb. The convex corner at an endpoint of the blue translated arc is
marked in each case.
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(3). First we note that if an arc of C(r) intersects three or more rhombs, then
with one exception, its chord c is steeper than the diagonal of a middle rhomb.
The exception concerns the nearly flat rhomb Rn/2 illustrated earlier in Fig. 5.
Because the argument for this exception is not straightforward, we address that
in a separate lemma, Lemma 5 in Section 6.1 below. So henceforth assume
c = xy crosses a horizontal and intersects two rhombs, Ri and Ri+1.

Fig. 12 shows that the arc fits in either the adjacent upper or lower rhomb,
by sliding an arc endpoint toward the convex vertex of ∂Z. One endpoint of the
horizontal Ri ∩Ri+1 is a convex vertex and the other endpoint a reflex vertex.
Sliding/translating the arc endpoint x along the side of the rhomb toward the
convex vertex results in the other end of the arc y to lie strictly internal to either
Ri or Ri+1. This follows because the reflex vertex implies that the extension
of the incident Ri rhomb side enters Ri+1, and the extension of the incident
Ri+1 rhomb side enters Ri. The only exception is when there is zero turn angle
between the rhombs (which occurs for example with R8 and R9 in Fig. 8), when
the translated arc has both endpoints on rhomb sides. So in all cases, the arc
fits inside a rhomb. In the next step it does not matter in which rhomb it fits,
for we use an upperbound over all rhombs.

(4). Now that we know C(r) ∩ Z fits inside some rhomb Ri of Z, we look at
the angle subtended at o by the full rhomb Ri. This is an upperbound on the
measure of the arc inside (often a considerably generous upper bound).

Now, the broadest extent of a rhomb from the point of view of o is the nearly
flat rhomb whose long diagonal is nearly 2 units. For example, this is the middle
rhomb R8 illustrated previously in Fig. 7(a). As we know from Fig. 9, each unit
side of a rhomb subtends α/2 in Z+ when θ = 0. For θ > 0, each unit side
subtends < α/2, not only in Z+ but for all unit sides in a rhomb of Z. Therefore
a whole rhomb subtends < α.

Fig. 13 illustrates the actual βi subtended angles for Ri, i = 1, . . . , n − 1,
in two examples. As claimed, β < α, with equality only for i = 1. (The small
upticks visible at R12 when n = 16, and at R18 when n = 24, reflect the lower
tail of the S-shape, where the rhombs become more flattened.)

Equality to α only occurs when C(r) crosses the first rhomb R1. For all
larger r, the inequality is strict.

6.1 Nearly Flat Rhomb Rn/2

We encountered a disconnected arc C(r) ∩ Z earlier in Fig. 5. This is also
an example where the arc crosses three rhombs. This nearly flat transitional
rhomb only occurs when n is even. Even as θ → 0, no rhomb for n odd becomes
arbitrarily close to flat; see Fig. 8.

In order to complete step (4) of Lemma 4—to show the angle subtended at
o by the full rhomb Ri is < 2—we analyze this exceptional case in the following
lemma.
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Figure 13: βi is the angle (in degrees) subtended from o by rhomb Ri: for
n = 16, θ = 20◦ when α = 22.5◦; and for n = 24, θ = 40◦, when α ≈ 11.48◦.

Lemma 5 If C(r) intersects Rn/2, n even, then the chord c of arc C(r)∩Z has
length < 2.

Proof: To simplify notation, let R0 = Rn/2, and let R− and R+ be the con-
gruent rhombs above and below R0. Refer to Fig. 14 throughout.

We first analyze the situation when θ = 0 when R0 reduces to a segment.
If C(r) passes through the upper corner a of R+, then it also passes through
the lower corner b of R−. See the blue arc in (a) of the figure. If r′ < r is a
bit smaller, then still the span of C(r′) ∩ Z = |xy| is exactly 2. This follows
because the portion of the arc in R− is symmetric about the diagonal line bo,
so |ax| = |by|. Note that C(r′)∩Z (red) is disconnected, and intersects all three
rhombs.

Now consider the situation when θ is small, (b) of the figure. (This is an
annotated version of the earlier Fig. 5.) R0 is a nearly flat rhomb between R−
and R+. If C(r) passes through the upper corner a of R+, it falls below the
lower corner b of R−, because the small intervening height of R0 lifts up b. See
the blue arc in (b) of the figure. If r′ < r is a bit smaller, then the right end
of the C(r′) arc (red) crosses R−, but because b is lifted, the span C(r′)∩R− is
smaller than in the θ = 0 case. The result is that the span |xy| is strictly less
than 2.

We can quantify the lifting as follows. Symbolic calculation show that the
angle of the central rhomb R0 is exactly 2θ; so 2◦ in Fig. 5(b). Let d = |ax| ≤ 1
be the horizontal distance from a to x. Then the entry of C(r′) at x into R0 is
lifted by d sin θ, whereas the lifting of b is at least twice that: 2 sin θ.

Although we have ignored the slight deviation from the horizontal of the
bottom and top edges of R− and R+ when θ is positive, that deviation can be
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Figure 14: n = 16. (a) θ = 0: |xy| = |ab|. (b) θ = 1◦: |xy| < 2.
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removed by a slight rotation, leaving the key inequality |xy| < 2 intact.

The slight deviation from the horizontal noted above implies that the nearly
vertical diagonal of R0 does not aim through o, and so the diagonal argument
used in Lemma 4 still holds for Rn/2. This is discernible in the enlargement of
Rn/2 shown in Fig. 7(a).

With Lemma 5 completing Lemma 4, we have now proved Theorem 1 via
Corollary 1 for all polar zonohedra for θ > 0. And Lemmas 2 and 3 settle it for
the degenerate polyhedron when θ = 0.

7 Open Problem

That the zone-by-zone unfolding avoids overlap seems almost obvious, yet the
proof presented of Theorem 1 feels labored. Surely there is a simpler proof.

Acknowledgements. My unfolding software employs code from Hart’s sup-
plement to [Har21]. I benefitted from discussions with Boris Aronov, Richard
Mabry, and Joseph Malkevitch.
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8 Appendix: Lower Regular n-gon

In order to prove Lemma 3, we first abstract the S-shaped regular polygon
to circles, surrounding Z+ and Z−, passing through ∂ZL and ∂ZR. We call
these circles C±L and C±R . We compute arc lengths through these circles. These
arc lengths are clearly an upperbound on the arcs intersecting Z sandwiched
between the circles.

Secondly, for computational convenience, we reflect Z− across the vertical
so that all arcs are to the right of the vertical. The key result is a “crescent
lemma” that is perhaps known under another name, as it is pure elementary
geometry.

8.1 The Crescent Lemma

Refer to Fig. 15 throughout the proof below.

Lemma 6 Let C(r) centered on o intersect C−L and C−R , the two circles circum-
scribed and inscribed about Z−. Let S be the crescent shape between C−L and C−R
(shaded blue in the figure). Then |C(r) ∩ S|, the angle subtended from o across
S, is a constant independent of r.

Proof: Incident to o we label four rays A,B,C,D. The arc C(r) ∩ S subtends
an angle β at o, between B and D. To simplify notation, we will use ∠BD to
indicate that angle, and similarly for the other labeled rays.

We first define three of the four rays.

• A is the vertical ray through o and C−L ∩ C
−
R .

• B is the ray through the point where C(r) crosses through C−L .

• D is the ray through the point where C(r) exits through C−R .

Let β = ∠BD and γ = ∠AB. Define the fourth ray C so that ∠CD = γ.
Rotate BD rigidly clockwise about o by γ. By definition, this maps B to A,

and maps D to C. So now we see that β = ∠AC.
Now consider any other r′ with C(r′) intersecting A and C. Then the arc

between A and C for this r′ is exactly β, for this arc is just an arc of the circle
C(r′), concentric with C(r), delimited by ∠AC. Therefore, |C(r)∩S| = β for all
r crossing the crescent.

We label the next result as a Proposition rather than a Lemma, because we
rely on a bound calculated from an explicit equation.

Proposition 1 The angle β = ∠BD defined in Lemma 6 is strictly less than
α/2.

Proof: Because all the arc |C(r)∩S| are the same length β, it suffice to measure
the length of one, say the vertically lowest arc shown in Fig. 15. We would like
to compare this β to α, which is the counterpart in Z+. These angles depend
on n, which determines the length of each rhomb side. (Here we use unit radius

18



Figure 15: Z− lies in the crescent between C−L and C−R . C(r) intersects the
crescent in an arc of angle β independent of r.
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circles C−L and C−R , so the rhomb sides have length L as a function of n.) Even
though n is a natural number, in the context of circles replacing the discrete
rhombs, we can calculate that

α = 2π/n

L = 2 sin(α/2)

n = π/ arcsin(L/2)

The last equation turns n into a continuous variable.
Using this, I calculated the ratio β/α as a function of this continuous n. The

result is shown in Fig. 16. For all n ≥ 3, β/α < 1
2 . It is evident that as n→∞,

Figure 16: The ratio β/α for different values of n.

the fraction diminishes to 1
3 , and as n gets small, the fraction increases but does

not reach 1
2 by n = 3, the smallest n.4

A formal proof that β/α < 1
2 is left for future work, but in light of this plot

and the equations below, there can be little doubt it holds.
We have established Lemma 3: |C(r) ∩ Z−| = β < α/2.

8.2 Equations

Using L to represent the length of a rhomb side when the radii of C−L and C−R
are both 1, the equations that lead to the plot in Fig. 16 are explicitly:

tanα =
L
√

4− L2

2− L2
. (1)

4For n = 3, the polar zonohedron is a combinatorial cube.

20



tanβ =
3
(
L4 − 4L2 −

√
4− L2

√
L4 (4− L2)

)
L
(

9
√

4− L2L2 − 36
√

4− L2 +
√
L4 (4− L2)

) . (2)

β/α =
arctan(tanβ)

arctan(tanα)
. (3)

Calculations with these equations verify that the graph shown in Fig. 16
is accurate. In particular, a Taylor-series expansion of the ratio tanβ/ tanα
results in an expression that verifies that, as n→∞ (and so L→ 0), the ratio
approaches β/α and its limit is indeed 1/3:

lim
L→0

√
L4 + L2

6L2
=

1

3
. (4)
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