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Abstract

In this note we sketch two of the main theorems in the monograph Re-
shaping Convex Polyhedra [OV22a], one from Part I and one from Part II.
The proofs, including preliminaries and variations, are about 100 pages
each, justifying these sketches.

1 The First Result

Part I of the monograph Reshaping Convex Polyhedra [OV22a] contains a proof
of this theorem:

Theorem 1 Every convex polyhedron P can be reshaped to any convex polyhe-
dron Q ⊂ P via a sequence of O(n4) digon tailorings.

Here, n is the maximal number of vertices of P,Q.
We explicate this theorem and sketch its proof. Later (Section 9) we similarly

sketch the proof of a theorem from Part II. We largely ignore computational
complexities throughout.

With some abuse of notation, we use the term “convex polyhedron” with
two meanings. One is for the solid object, e.g. when writing Q ⊂ P . Another
one is for the boundary surface, e.g. when considering “digon tailoring”. This
identification of the two is justified by Alexandrov’s Gluing Theorem, introduced
in 2.1.

2 Digon Tailoring

A digon is a subset of (the surface of) P bounded by two equal-length geodesic
segments that share endpoints x and y. A geodesic segment is a shortest geodesic
between its endpoints. A digon tailoring step excises a digon that contains a
single vertex v, and then sutures closed the two sides of the digon. Informally,
if the surface were made of paper, one could view digon tailoring as pinching a
neighborhood of v flat, slicing off v, and then identifying the two sides of the
slice. As we will see, the modified surface is again a convex polyhedron.
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Fig. 1(a) shows a digon enclosing vertex d, and (b) show the result of excising
the digon. In (a,b), the digon endpoints are interior to faces of P . However,
either or both could be at vertices. A digon tailoring step always removes one
vertex, and either adds two new vertices, or one, or no new vertex. So after
suturing, if P has n vertices, the new polyhedron P ′ has n+1, n, or n−1 vertices.
Although not obvious, P ′ is a convex polyhedron, in this case of 5-vertices, as
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Figure 1: Vertex excision via digon tailoring.

shown in Fig. 1(c).

2.1 Alexandrov’s Gluing Theorem

The reason that suturing closed the sides of the removed digon results in a
convex polyhedron is Alexandrov’s Gluing Theorem [Ale05]:

Theorem [Alexandrov] Glue together (flexible) planar polygons edge-to-edge
such that

1. All perimeters are matched: no overlaps, no gaps.

2. The glued angle at every point is ≤ 2π.

3. The resulting surface is homeomorphic to a sphere.

Then the resulting surface is isometric to a unique (up to rigid motions and
symmetries) convex polyhedron, possibly degenerated to a doubly-covered convex
polygon.

As yet there is no effective procedure to construct the three-dimensional shape
of the polyhedron guaranteed by this theorem. It has only been established
that there is a theoretical pseudopolynomial-time algorithm [KPD09], but this
remains impractical in general. Fig. 1(c) was constructed by ad hoc techniques.

Because the sides of the digon are geodesics, gluing them together to seal the
hole leaves 2π angle at all but the digon endpoints. The endpoints lose surface
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angle with the excision, and so have strictly less than 2π angle surrounding
them. So Alexandrov’s Theorem applies and yields a new convex polyhedron.

Thus digon tailoring converts a given P to another convex polyhedron P ′.
Next we describe how to “aim” the tailoring toward a given target Q ⊂ P .

2.2 Slicing

Vertex truncation is analogous to digon tailoring in that it removes a vertex
v, but instead by slicing P with a plane and then filling the created hole with
new surface forming a convex k-gon face, where k is the degree of v. This is
how, for example, the truncated cube can be formed from the cube by 8 vertex
truncations.

More generally, we will say a slicing of a polyhedron P is removal of a portion
of P—perhaps including many vertices—in a half-space bounded by the slicing
plane. If Q ⊂ P , it is easy to sculpt Q from P by repeatedly slicing P with
planes each containing a face of Q. Consider, for example, a tetrahedron Q in
the corner of a cube P , as shown in Fig. 2. In this simple case, a single slice

p1
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p5
p6

p7

Q

p8

Figure 2: Tetrahedron Q inside cube P .

along the diagonal face p1p3p8 sculpts P to Q.

2.3 Algorithm Tracking Sculpting

Our proof of Theorem 1 is constructive, and can be viewed as an algorithm
that tracks a sequence of sculpting slices. At the top level, we track a sculpting
sequence of slices of P , and for each slice identify a sequence of “stacked” pyra-
mids such that, if each pyramid is reduced to its base by digon tailorings, the
pyramids collapse to the slice face of Q.

As ususal, a pyramid is the convex hull of a base convex polygon X and one
point (the apex ) not on the base plane.

We will illustrate Algorithm 1 with the cube-tetrahedron example (Fig. 2).
Fig. 3(a) shows the full cube P .
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Algorithm 1: Slices to pyramids.

Input : Q ⊂ P
Output: Stacked pyramids.

for each face F of Q Π do
// Conceptually slice P with Π.

Construct a sequence of stacked pyramids
whose reductions collapse the pyramids to F .

end
Result: Lists of stacked pyramids.
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(c) (d)

p1
p2 p2

p7

p4

p5

p5p5

p6

p1

p3

p1

p3

p6

p7p8

p8

p4

Figure 3: Successive pyramid apexes (marked): p2, p6, p5, p7.
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• The first pyramid collapsed Fig. 3(b) has apex p2 and base p1p3p6.

• The second pyramid to be collapsed Fig. 3(c) has apex p6 and base
p1p3p7p5.

• The third pyramid to be collapsed Fig. 3(d) has apex p5 and base p3p7p8.

• The last pyramid to be collapsed has apex p7 and base p1p3p8.

After that final collapse, the tetrahedron in Fig. 2 has been achieved.
There remain three challenges to turning this high-level algorithm to a proof:

(1) Partition the sliced portion of P into stacked pyramids, achieved in two
steps.

(a) Sliced portion of P → g-domes (Section 3).

(b) Each g-dome → stacked pyramids (Section 4).

(2) Collapsing each pyramid to its base (Section 5).

3 Slice → Domes

The sense in which the pyramids are “stacked” is that they can be reduced to
their bases “outside-in,” as in the Fig. 3 example. The way we achieve this is via
domes, and in particular, what we call g-domes. A dome is a convex polyhedron
with every face sharing an edge with its base convex polygon X. We generalize
this slightly to g-domes, with every face sharing an edge or vertex with the base.

Algorithm 2: From one slice Π, O(n) g-domes.

Input : One slice plane Π
Output: O(n) g-domes, a total of at most O(n) vertices.

Let F be the face of Q lying in Π, and e be an edge of F .
Sort vertices angularly about e.
for i = 0, 1, 2, . . . , k do

Rotate Πi about e until the portion swept is no longer a g-dome.
Add to g-domes list.

end
Result: List of O(n) g-domes.

Again we illustrate with the cube-tetrahedron example (Fig. 2). Let e = p1p3
be the base edge of the slice face F = p1p3p8. Rotate a plane Πi about e, initially
Π0 the entire slice, ending at Π on F , and in between, stopping at every rotation
angle whose further rotation would cease to “peel off” a g-dome. In Fig. 4(b),
Π1 partitions off the g-dome whose base is p1p3p7p5 (c), and Π2 = Π partitions
off the g-dome with base p1p3p8 (d). Notice that neither of these pieces is a
pyramid. It should also be clear that these g-domes are “stacked” outside-in,
by construction.
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Figure 4: Slice partitioned by rotation (b) into two g-domes (c,d).
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4 Domes → Pyramids

Now we come to the two most difficult parts of the proof: Patitioning g-domes
to pyramids (exemplified in this section), and reducing pyramids to their bases
(Section 5). For the first, we simply claim that methodical slicing of a g-dome
reduces it to a series of stacked pyramids. Fig. 5 shows an example g-dome
eventually reduced to a pyramid over the same base through a series of pyramid
slices that remove all incidences to v1 one-by-one, leaving v2 as the apex of a
pyramid.

x1 x2
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x4
x3

v2 v1

x1 x2

x5

x6

x4

x3

v2

(a) (b)

Figure 5: (a) g-dome reduced to (b) pyramid.

5 Pyramids → Base

We have so far not yet invoked digon tailoring. Instead, we have outlined
a procedure to track a sculpting of P to Q ⊂ P to guide partitioning each
sculpting slice into a number of g-domes, and each g-dome into a number of
pyramids, all stacked with their apexes accessible from the exterior. Finally we
come to reducing each pyramid to its base. We illustrate the procedure with

Algorithm 3: Tailor one pyramid P to its base X.

Input : A pyramid P of O(n) vertices, base X.
Output: After removal of O(n) digons, P flattened to X.

// Assume apex degree-k, with k = O(n).
for each of xi, i = 1, 2, . . . , k do

Find digon with one endpoint xi, surrounding yi.
Remove digon, suture closed.
Apply Alexandrov’s Gluing Theorem → new convex polyhedron.

end
Result: O(n) digon tailorings flattening P to X.

the pyramid with a regular hexagon base shown in Fig. 6.
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Figure 6: A pyramid with a hexagonal base. Base vertex angle 120◦ vs. lateral
angle 140◦.

Starting at base vertex x1, we locate a digon surrounding the apex v = y0.
That digon is excised and its sides sealed; see Fig. 7(a). Continuing counter-
clockwise, digons are identified with endpoints xi and yi. Here we crucially
use properties of the cut locus and star-unfolding to ensure that yi lies on the
(images of the) lateral sides of the reducing pyramid instead of lying in the base
X. This is one of the most delicate aspects of the proof. The end result is that

x1x1

120°

10° 10°

x6

x5

x4

x3
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x3

x2

x1

x2

100°

20°

40° 60°
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γ1 γ1
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Figure 7: (a) Consecutive digons shaded. Dashed lines are geodesics γi from xi
to the point yi−1 (with y0 = v). (b) After excising all digons, the pyramid is
reduced to its base X. Seals marked.

the pyramid P has been flattened to its base X, with the overlapping digon
removals creating seals as illustrated in (b).

This completes the sketch of the proof of Theorem 1. Our monograph [OV22a]
proves in Part I two similarly universal reshaping theorems.
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We should note that although we invoke Alexandrov’s Gluing Theorem at
several stages of the analysis, we never need the explicit 3D structure of the
intermediate polyhedra to construct cut loci, our main tool, which can be cal-
culated via an intrinsic representation of the surface.

6 Enlarging Q to P

Corollary 1 For any two convex polyhedra P,Q, with Q ⊂ P , Q may be en-
larged to P by insertions of surface.

Proof: (Sketch). First tailor P to Q, tracking the cuts and digons removed.
Then, starting with Q, cut each sealed geodesic and insert the earlier-removed
corresponding digon surface, in reverse order.

This yields in a sense an “unfolding” Q onto P , extending the usual notion of
unfolding a convex polyhedron in the plane.

7 Continuously Folding P onto Q

Corollary 2 For any two convex polyhedra P,Q, with Q ⊂ P , there exists a
continuous non-self-intersecting folding of P onto Q.

Proof: (Sketch). Instead of excising the digon and suturing closed its two sides,
gradually bring together the two digon sides, forming a growing doubly-covered
triangle, which is folded onto the intermediate surface Q′. Now “meld” the
folded triangle into Q′’s surface, and repeat.

Fig. 8 illustrates the main idea. This concept of continuously folding a poly-
hedron onto another one extends the notion of continuously folding a convex
polyhedron onto the plane.

8 An Open Problem

We cite many open problems in [OV22a], but here only repeat one: Corollary 2
establishes existence only. Is there an algorithmic equivalent?
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Figure 8: (a) Digon xy surrounding vertex z. y(t) moves along the geosegment
zy. (b) Each t leads to a doubly-covered triangle T (t) with apex z and base
xy(t). The angle at z is fixed to half of 3π/2 by the curvature of π/2 at vertex
z.
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9 The Second Result

Now we describe one of the main theorems from Part II of the monograph
Reshaping Convex Polyhedra [OV22a] and sketch its proof:

Theorem 2 Every convex polyhedron P with a simple closed quasigeodesic through
at most two vertices, can be embedded on a cylinder as a single connected piece
and then rolled to a net on the plane.

By a net we mean unfolding of the surface of P to a simple polygon in the plane.
Often this term insists that the edges of the net are edges of P—the unfolding
is an edge-unfolding—but here we mean a more general net that results from
cutting the surface anywhere, an “any-cut” unfolding. We defer defining a
quasigeodesic to Section 13.

10 Vertex Merging

In Part I we reduced a polyhedron P by cutting out digon portions of the
surface. In Part II we concentrate on what is in a sense the inverse of digon
tailoring: insert two congruent triangles of new surface along a geodesic arc,
a technique introduced by Alexandrov [Ale05, p. 240]. Let x and y be two
vertices of P whose sum of curvatures ω(x) + ω(y) is less than 2π, and let γ
be a geodesic connecting them. Then one can insert along γ a doubly-covered
triangle T with base angles 1

2ω(x) and 1
2ω(y). This has the effect of flattening

x and y, and adding one new vertex z, the apex of the triangle T . This is called
a vertex-merge: x and y are merged into z, which inherits the curvature lost at
x and y. The process is illustrated in Fig. 9, which the reader will notice is the
reverse process illustrated in Fig. 1. Here γ is an edge of a 5-vertex hexahedron
P , although in general it can be any geodesic, as long as x and y satisfy the
curvature conditions. After such a vertex-merge, the new surface is a convex

y
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(b)
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a

(a)

y

b
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x

b
(c)

d=z

b

ac

y x

Figure 9: (a,b) Vertex-merge of x and y along γ = xy on P . Green indicates
surface-inserts. (c) The new polyhedron. (Images not to same scale.)

polyhedron by Alexandrov’s Gluing Theorem. Although hardly obvious from
(b), the result (c) is a regular tetrahedron.

11



There are only two classes of irreducible polyhedra, i.e., that admit no vertex
merge: isosceles tetrahedra—those whose vertices all have curvature π—and
doubly-covered triangles. Aside from these special cases, one can enlarge any
convex polyhedron by repeated vertex-merges until it reaches an irreducible
state.

11 Forest of Slits

We called a closed suture resulting from digon tailoring a seal ; we now call the
geodesic γ supporting a vertex-merge a slit. As our goal in Theorem 2 is to
result in a single-piece net, we want the slit graph to be a forest of trees. For
any cycle in the slit graph will separate the surface into disconnected pieces.

We now describe in some detail how Theorem 2 applied to the cube in Fig. 10
leads to a net. We perform all together six vertex-merges, three on the top face
vertices and symmetrically three on the bottom face vertices. In (a) of the
figure, we first merge v7 and v8 by inserting a doubled right triangle (yellow)
along the slit edge v7v8. The π

2 surface added to v7 and v8 flattens both vertices,
and they are replaced by v78.

Next we merge v5 with v78 along the indicated geodesic, flattening both
of those and creating a vertex v578 at the tip of the inserted doubly-covered
triangle (blue).

The angle incident to the merge vertex v578 is π
2 , and the angle incident to

the as-yet unmerged top vertex v6 is 3π
2 . So technically we cannot merge v578

with v6 because the curvatures sum to 2π. However, we can imagine a merge
resulting in a pair of parallelograms (rather than triangles). If we cut the surface
along the geodesic segment v6v578 (of length 2

√
2 for a unit cube) and insert

the parallelograms, the result is a cylinder as depicted in Fig. 10(b). Note the
two π

4 angles inserted at v6 flatten that vertex, and the insertion of the two 3π
4

angles flattens v578.
Finally, symmetric merges on the bottom-face vertices leads to embedding

the cut cube onto an unbounded cylinder in both directions.
Note that the three slits on the top face of the cube form a tree, as do the

slits on the bottom face. Thus we have reduced the cube to a cylinder by slits
forming a forest of—in this case two—trees. So we have not disconnected the
original cube surface. And therefore rolling the cylinder on the plane unfolds
the cube to a non-overlapping net: see Fig. 11.

12 Spiral Slit Tree: the 2D model

The three vertex-merges on the top of the cube in Fig. 10(a), and the three on
the bottom, are what we call sequential merges: at each step, the newly created
merge vertex is connected to an as-yet unmerged vertex: v78 to v5, and v578
to v6. In particular, we choose a spiral merge order, which we illustrate in 2D
in Fig. 12. Here a slit is a line segment s, and each triangle insert degenerates
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Figure 10: (a) Cutting along the v6v578 geodesic segment (green), and inserting
double parallelograms (b) leads to a cylinder. In (b) the yellow regions are
inserted merge triangles; pink regions pieces of the top and bottom cube faces.
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Figure 11: Unfolding of cube to a net by rolling the cylinder on the plane.
Labels correspond to those in Fig. 10.

to just s, and creates a merge vertex somewhere along s. First two vertices
on the convex hull of the vertex set V are merged, and from then onward,
the merges occur in a counterclockwise order on reduced nested hulls of the
remaining vertices. We proved that, following this ordering, the slit graph Λ is
a tree.

13 Quasigeodesics

The cube has a simple closed geodesic between and paralleling the top and
bottom face rims, which naturally partitions the vertices into two sets. To mimic
the 2D spiral construction on P in R3, we need a similar partition. Most convex
polyhedra have no simple closed geodesic, but every one has a simple closed
quasigeodesic. A quasigeodesic has at most π surface angle on either side, and
so can pass through vertices. By a theorem of Pogorelov [Pog49], every convex
polyhedron has at least three simple closed quasigeodesics. An example of a
2-vertex quasigeodesic on a regular tetrahedron is shown in Fig. 13.

Recently an exponential algorithm was developed to find one such quasi-
geodesic [CdM22]. Henceforth, we will assume that Q is a simple closed quasi-
geodesic on P , partitioning P into two “halves” P+ and P−.1

14 Convex Hull on Half Surface

As is evident from the 2D spiral merge model in Fig. 12, to extend that process to
3D requires taking the convex hull of a set of vertices on P . Although there are

1Note the symbol Q in Part II represents a quasigeodesic, not a polyhedron as it did in
Part I.

14



Figure 12: Trace of 2D spiral merges with |V | = 20.
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Figure 13: A 2-vertex simple closed quasigeodesic. From [OV22b].

several definitions of convexity on P in the literature, none satisfy our needs.
To cite just one example, applying the definition of the “metric-convex hull”
in [GM01] to the set of vertices of P does not result in the entire surface of P
as the hull, which we find unnatural. In contrast, if we define a set S as convex
if every geodesic segment between two points of S is in S, and the convex hull
of S as the smallest convex set enclosing S, then the hull of the vertices of P is
the whole of P .

Still, there remains a serious problem for our application: If S is a set of
vertices V , two of which are vertex-merged, the hull of the new set V ′ can
enclose S, counter to intuition and counter to our needs. This leads us finally
to define the relative convex hull, rconv(V ), of a set of vertices V in either P+

or P−. This resolves the issue with vertex-merging: the new hull after a merge
just adds the inserted triangles to the interior of the hull. Moreover, rconv(V )
for V ⊂ P+ can be constructed in polynomial time.

A second—and different—notion of convex hull, based on the minimal length
enclosing polygon, is also developed in [OV22a], with similar unfolding conse-
quences.
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15 Spiral Slit Tree in 3D

One of the more intricate components of the proof of Theorem 2 is proving
the properties of the spiral vertex-merging on P+. We only sketch the process,
referencing Fig. 14. Here V is the six vertices on the half-surface P+ of a
regular icosahedron, above a simple closed geodesic Q (not shown). rconv(V )
is the pentagon v1v2v3v4v5 enclosing v6.

v1

v4

v6

v5

v2

v3

v1

v6

v5

v2

v3

m1

m'2

m'3m'4

m'1

Figure 14: The vertex-merge cuts on a regular icosahedron P .

First v1 is merged with v2, and a doubly-covered triangle (yellow) is inserted
along v1v2, with apex m1. At this stage, Alexandrov’s Gluing Theorem is
applied to produce a new polyhedron P ′, and rconv(V ′) = m1v3v4v5. Next,
m1 is merged with v3, and a (large) doubly-covered triangle is inserted along
the geodesic segment m1v3 (red). The apex m2 is not shown, but instead the
point m′2 is where the next geodesic segment m2v4 (green) enters P on its way
to v4. Continuing in this manner, all six vertices are merged, the last one, m4

to v6 (gray) resulting in a cylinder analogously to the situation with the cube
in Fig. 10(b). Because the slit graph Λ is a tree, we have not disconnected the
original P . See Fig. 15.

Repeating the merging on P−, and joining the two symmetric half-cylinders
together, permits rolling on the plane to produce a net for the icosahedron. This
accords with the claim of Theorem 2.
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Figure 15: The half-cylinder obtained from Fig. 14.
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16 The Quasigeodesic Condition

The reason Theorem 2 requires that the quasigeodesic Q includes at most two
vertices is somewhat subtle. The two examples we detailed both have natural
Q through zero vertices—geodesics, so the issue did not arise.

Suppose Q contains vertices q1 and q2. Then applying the spiral merge on
P+ will first merge q1, q2 along the slit γ12, producing a merge vertex m+ ∈ P+.
Similarly, the spiral merge on P− will include γ12 and produce m− ∈ P−. The
γ12 slit connects the two slit trees Λ+ and Λ−.

But now if Q contains a third vertex q3, then m+ will merge with q3 along
a slit in P+, as will m− along a slit in P−. These merges create slits that form
a cycle connecting γ12 to q3 in both P+ and P−, disconnecting P .

Without the ≤ 2 condition on Q, we can only prove that P can be embedded
on the union of two cones, one for each of P+, P−. It still may be possible to roll
one cone and then the other to obtain a net for P , but we have only established
that under certain conditions.

17 Another Open Problem

The previous remarks lead to this problem: Prove or disprove that every convex
polyhedron has a simple closed quasigeodesic through at most two vertices.
We have only proved this in a few special cases, e.g., doubly-covered convex
polygons [OV22a], and tetrahedra [OV22b].
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