Unfolding Well-Separated Orthotrees

Mirela Damian*

Robin Flatland ${ }^{\dagger}$

Henk Meijer ${ }^{\ddagger} \quad$ Joseph O’Rourke ${ }^{\S}$

1 Introduction

Because of the difficulty of the long-standing open problem of deciding whether every convex polyhedron can be edge-unfolded [DO05], attention has turned to various specializations or alterations of the original problem. To edge-unfold the surface of a polyhedron is to cut a collection of edges so that the surface may be unfolded to a planar, single-piece net. One line of investigation, started in $\left[\mathrm{BDD}^{+} 98\right]$, focuses on orthogonal polyhedra - those whose faces meet at angles that are multiples of 90°. Although not every orthogonal polyhedron has an edge unfolding, in $\left[\mathrm{BDD}^{+} 98\right]$ it is shown that orthostacks have an unfolding with some cuts interior to faces (a general unfolding), and orthotubes have an edge unfolding. Subsequent work [DM04] established that a subclass of orthostacks can be edge-unfolded. The work we report here is closest to that on orthotubes, which are polyhedra made by gluing boxes face-toface such that the dual graph (each node a box, arcs corresponding to glued faces) is a path or cycle. An orthotree is a similar polyhedron, except with the condition that the dual graph be a tree. We use the convention that each box edge is an edge of the polyhedron available for cutting (i.e., edges between coplanar faces are not "erased"). Thus, our orthotrees already include the vertex grid of edges formed by intersecting the polyhedron with coordinate planes through every box vertex. The edges of the vertex grid offer more options for edge-unfolding; see [DIL04] and [DFO05].

Our main result is that a subclass of orthotrees, "well-separated" orthotrees, have an edge unfolding. The algorithm is naturally recursive on the tree structure, and we believe it shows promise for extension.

2 Definitions

An orthotree O is a polyhedron made out of boxes that are glued face-to-face such that the dual graph $G=(V, E)$ of O is a tree. We say that box $b_{i} \in O$

[^0]has degree d if its dual vertex has degree d in G. A box b_{i} is a leaf if it has degree one; b_{i} is a connector if it has degree two, and its two neighbors are glued to opposite faces of b_{i}; otherwise, b_{i} is a junction. An orthotree is well-separated if no neighbor of a junction is another junction, i.e., all neighbors of junctions are either leaves or connectors. See Fig. 1.

Figure 1: A well-separated orthotree; connectors are grey.

In the remainder of this paper, an edge will refer to one of the 12 edges of a box in an orthotree. Any box of degree d has $6-d$ exposed faces. In this paper we show that well-separated orthotrees can be edgeunfolded without overlap. We do allow, however, non-neighboring faces to be placed side by side.

The two faces of a box b_{i} in O perpendicular to the x-axis are denoted by x_{i}^{+}and x_{i}^{-}. The face x_{i}^{+} is the face whose outward normal is the positive x axis. Similarly we define the faces $y_{i}^{+}, y_{i}^{-}, z_{i}^{+}$and z_{i}^{-}. The four edges of x_{i}^{+}and x_{i}^{-}are labeled f, b, u and d, for front, back, up and down. The edges of y_{i}^{+}and y_{i}^{-}are labeled f, b, w and e, with w and e denoting west and east. Faces z_{i}^{+}and z_{i}^{-}contain labels u, d, w and e. So an edge has multiple labels. Fig. 2 illustrates this notation and an unfolding of a single box orthotree.

Figure 2: Notation and unfolding of a single box.

3 Unfolding Techniques

Select any leaf box as the root of O, a well-separated orthotree. Our main result is stated in Theorem 1.

Theorem 1 For any connector or leaf b_{0} in O, the subtree rooted at b_{0} can be unfolded without overlap, and in two different ways, as illustrated in Fig. 3.

Figure 3: The unfolding of T fits within the shaded area and attaches to a z_{0} or y_{0} face on either side. Face x_{0}^{-}is not shown.

Proof sketch: The proof is by induction on the number of boxes in the subtree T_{0} rooted at b_{0}. The base case corresponds to a single box subtree for which the two unfoldings can be easily derived.

The induction assumption is that Theorem 1 holds for subtrees with fewer than d nodes, giving us two unfoldings. Observe that by reversing these two unfoldings, we get unfoldings starting from the remaining two adjacent face pairs (e.g. pairs y_{0}^{+}, z_{0}^{-}and z_{0}^{-}, y_{0}^{-}in Fig 3). To prove the inductive step, consider a subtree T_{0} with d nodes rooted at connector b_{0}. W.l.o.g, assume that $T_{0} \backslash\left\{b_{0}\right\}$ attaches to x_{0}^{+}. Let b_{1} be the box in T_{0} glued to x_{0}^{+}. We distinguish six cases, depending on the degree of b_{1}. Here we only have space to discuss the cases when b_{1} is a junction of degree 5 and 6 . For any i, let T_{i} be the subtree rooted at b_{i}.

Figure 4: Box b_{1} is a junction of degree 5.
Case 1: $\quad b_{1}$ is a junction of degree 5 . There are only two distinct cases for a degree 5 junction; see Figs. 4a and 4 b . We can assume w.l.o.g. that the junction is oriented as shown, since we will provide unfoldings
starting from each pair of adjacent faces of b_{0}, i.e. the two inductive step unfoldings and their reverses. The first case is shown in Fig. 4a: starting at y_{0}^{+}, unfold T_{2} first, then move across z_{1}^{+}to unfold T_{4}, T_{3}, and T_{5}, and finally back to b_{0}. Because the orthotree is well-separated, T_{2}, \ldots, T_{5} are rooted at connectors or leaves and can be recursively handled. The second unfolding corresponding to Fig. 3a is equally easy to find. In Fig. 4b, the unfolding order is T_{3}, T_{2}, x_{1}^{+}to get us to T_{4}, T_{5}, and back to b_{0}.

Case 2: b_{1} is a junction of degree 6. One unfolding is shown in Fig. 5. Due to symmetry, the second unfolding is a horizontal mirror image of this one.

Figure 5: Interior box b_{1} is a junction of degree 6.
We note that nothing in our algorithm depends on the boxes being cubes. The obvious open problem is to remove the well-separated assumption.

References

$\left[\mathrm{BDD}^{+} 98\right]$ T. Biedl, E. Demaine, M. Demaine, A. Lubiw, J. O'Rourke, M. Overmars, S. Robbins, and S. Whitesides. Unfolding some classes of orthogonal polyhedra. In Proc. 10th Canad. Conf. Comput. Geom., pages 70-71, 1998.
[DFO05] M. Damian, R. Flatland, and J. O'Rourke. Unfolding Manhattan towers. In Proc. 17th Canad. Conf. Comput. Geom., pages 204207, 2005.
[DIL04] E. D. Demaine, J. Iacono, and S. Langerman. Grid vertex-unfolding of orthostacks. In Proc. Japan Conf. Discrete Comp. Geom., 2004. To appear in LNCS, 2005.
[DM04] M. Damian and H. Meijer. Grid edgeunfolding orthostacks with orthogonally convex slabs. In 14 th Annu. Fall Workshop Comput. Geom., pages 20-21, 2004.
[DO05] E. D. Demaine and J. O'Rourke. A survey of folding and unfolding in computational geometry. In J. E. Goodman, J. Pach, and E. Welzl, editors, Mathematics Sciences Research Institute Publications, volume 52, pages 167-211. Cambridge University Press, 2005.

[^0]: *Dept. of Comp. Sci., Villanova University, Villanova, PA 19085, USA. mirela.damian@villanova.edu.
 ${ }^{\dagger}$ Dept. Comput. Sci., Siena College, Loudonville, NY 12211, USA. flatland@siena.edu.
 \ddagger School of Computing, Queen’s Univ., Kingston, Canada. henk@cs.queensu.ca.
 ${ }^{\S}$ Dept. Comput. Sci., Smith College, Northampton, MA 01063, USA. orourke@cs.smith.edu. Supported by NSF Distinguished Teaching Scholars award DUE-0123154.

