
Threadable Curves

Joseph O’Rourke and Emmely Rogers∗

January 25, 2018

Abstract

We define a plane curve to be threadable if it can rigidly pass through
a point-hole in a line L without otherwise touching L. Threadable curves
are in a sense generalizations of monotone curves. Our main result is a
linear-time algorithm for deciding whether a polygonal curve is thread-
able, and if so, finding a sequence of rigid motions to thread it through a
hole. In addition, we sketch arguments that show that the threadability
of algebraic curves can be decided in time polynomial in the degree of the
curve, and that threading a 3D polygonal curve through a point-hole in
a plane can be decided in quadratic time. Finally, we connect threadable
curves to the problem known as “moving a chair through a doorway.”

1 Introduction

We define a simple (non-self-intersecting) open planar curve C to be threadable
if there exists a continuous sequence of rigid motions that allows C to pass
through a point-hole o in an infinite line L without any other point of C ever
touching L. For fixed L, we will take L to be the x-axis and o to be the origin;
equivalently we can view C as fixed and L moving (Lemma 1). C could be
a polygonal chain or a smooth curve. C is open in the sense that it is not
closed to a cycle. An example is shown in Fig. 1; animations are available at
http://cs.smith.edu/~jorourke/Threadable/.

Note that our definition requires “strict threadability” in the sense that no
other point of C touches L. So, for example, the curve illustrated in Fig. 2 is
not threadable.

This notion has appeared in the literature in another guise.1 In particular, a
threadable curve C corresponds to a “generalized self-approaching curve” with
width π in both directions, as defined in [AAI+01]. However, those authors do
not explore the concept, but instead say: “One might also consider a symmetric
situation, where curves are φ-self-approaching in both directions. Generaliza-
tions to 3D are also completely open.” So it appears our explorations (which
also touch on 3D) are new, and in any case, focus on different properties of C.

∗Department of Computer Science, Smith College, Northampton, MA, USA. {orourke,
erogers}@smith.edu.

1 We thank Anna Lubiw for this reference.
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Figure 1: Two snapshots of a 10-segment polygonal chain passing through a
point-hole in the x-axis.

Figure 2: (a,b) A curve that is not threadable: two snapshots partially through
o. (c) To pass completely through o, an edge would have to lie on L.
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1.1 Definition Conseqences

We now explore a few consequences of the definition.

Lemma 1 If a curve C is threadable, then through every point p ∈ C there is a
line L that meets C in exactly p: L ∩C = {p}, and L properly crosses C at p.

Proof: This is a nearly immediate consequence of the definition, because at
any one time the x-axis serves as L, meeting C at p = o. So one can imagine C
fixed and L undergoing rigid motions.

Note that L tangent to C is insufficient for threadability, for then C would
locally lie on one side of L. This is why the lemma insists on proper crossings.

What is perhaps not immediate is the implication in the other direction to
Lemma 1:

Lemma 2 If a curve C has the property that through every point p ∈ C there
is a line L that meets C in exactly p, and L properly crosses C at p, then C is
threadable.

The reason this is not immediate, is that it is conceivable that the orientation of
the line changes discontinuously at some point p ∈ C, requiring an instantaneous
“jump” rigid motion of C to pass through L, rather than a continuous rigid
motion. A proof is deferred until we can rule out this discontinuity (Section 3).

1.2 Monotone Curves

A monotone curve C is defined as one that meets all lines parallel to some line
L in a single point (if strictly monotone), or which intersects every line parallel
to L in either a point or a segment (if non-strictly monotone). Every strictly
monotone curve is threadable, and one can view threadability as a generalization
of monotonicity, allowing the orientation of L to vary. Monotone curves and
especially monotone polygons have played a significant role in computational
geometry. It remains to be seen if threadability inherits any of the advantages
of monotonicity.

2 Butterflies

Define the butterfly bf (p) for p ∈ C to be the set of all lines L satisfying the
threadability condition at p: those lines that meet C in exactly p and properly
cross C at p. Let L be one line in bf (p), and view C as passing through L at p.
Then the convex hull H+ of the chain from p upward is above L and meets L
exactly at p, and the hull H− of the chain from p downward is below L and again
meets L exactly at p. (Here “upward” and “downward” are not meant literally,
but just convenient shorthand for the two portions of the curve delimited by
L.) If either hull met L in more than just p, then strict threadability would be
violated at L. Now rotate L counterclockwise until it hits C at some point other
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Figure 3: Here C is fixed, and two bf (p)’s are shown. Note the hulls H+ and
H− meet at exactly p. (a) The stopping point ccw is vertex 6 and cw it is
vertices 4, 5.

than p, and similarly clockwise. The stopping points determine the butterfly
wing-lines. See Fig. 3.

Thus bf (p) is an open double wedge. Its two boundary wing-lines w+ and
w− (which are not part of bf (p)) must both be externally supported by points
of C distinct from p. Each wing must touch C on at least one of its two halves
with respect to p. Note by our definition, bf (p) can never be a line; rather it
becomes empty when the wings-lines merge to one line.

3 Upper and Lower Hulls

It is not difficult to see that the upper convex hull H+ changes continuously
(say, under the Hausdorff distance measure) as p moves along C, and similarly
for H−. This has long been known in the work on computing “kinetic” convex
hulls of continuously moving points (although we have not found an explicit
statement). Roughly, because each point in the convex hull of a finite set of
points is a convex combination of those points, moving one point p a small
amount ε changes the hull by at most a small amount δ. For more detail,
see [Nie17].

Because the hulls change continuously, the butterflies change continuously
as well. So we have finally established Lemma 2: If there is a line through every
p ∈ C meeting the threadability criteria, then indeed C is threadable: there are
continuous rigid motions that move C through a point-hole in a line.

And now this is an immediate consequence of Lemma 2 and our definition
of bf (p):

Lemma 3 A curve C is threadable if and only if bf (p) is never empty for any
p ∈ C.
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We can also now see this characterization, which is the basis of the algorithm
in the next section:

Lemma 4 A curve C is threadable if and only if, for every p ∈ C, the upper
and lower hulls intersect in exactly p: H+ ∩H− = {p}.

Proof:

(⇒) Suppose C is threadable, but H+ ∩H− 6= {p}. We then show C could not
be threadable.

• Case 1: H+ ∩H− is a 2D region (Fig. 4). Then p is strictly interior
to one of H+ or H−. So, the butterfly = ∅. Therefore C is not
threadable by Lemma 3.

• Case 2: H+ ∩H− is a segment (Fig. 5). Note the intersection could
not consist of ≥ 2 segments, for that would violate the convexity of
convex hulls. So, the butterfly wings reduce to a line; so the butterfly
is empty. And again, C is not threadable by Lemma 3.

(⇐) Assume H+ ∩H− = {p} for every p. Then, by the definition of bf (p), for
every p the butterfly is non-empty, because one could rotate a line through
p until it hit H±. So Lemma 3 implies that C is threadable.
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Figure 4: An example of Case 1: H+ ∩H− is a 2D region.
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Figure 5: An example of Case 2: H+ ∩H− is a segment.

4 Algorithm for Threadability

In light of Lemma 4, we can detect whether a polygonal chain is threadable by
computing H+ and H− for all p along C, and verifying that p never falls inside
either hull. Let p be a point on C = (v1, v2, . . . , vn), which we view as moving
“vertically downward” from v1 (top) to vn (bottom). Let the edges of C be
ei = (vi−1vi). We concentrate on constructing H = H+ as p moves downward
along C. Clearly the same process can be repeated to construct H−.

As p moves down along C, H = hull{v1, . . . vi−1, p} grows in the sense that
the hulls form a nested sequence. Thus once a vertex of C leaves ∂H, it never
returns to ∂H (where ∂H is the boundary of H.) At any one time, p is a vertex
of H. Let a1, a2 be the vertices of H right-adjacent to p, and b1, b2 the vertices
left-adjacent, so that (b2, b1, p, a1, a2) are consecutive vertices of H. Finally, let
A and B be the lines through a1a2 and b1b2 respectively. See Fig. 6.

We now walk through the algorithm, whose pseudocode is displayed as Al-
goirthm 1. Let p be on the interior of an edge ei = (vi−1vi). The portion of ei
already passed by p must lie inside H, and the remaining portion outside H.
As long as p remains within the wedge region delimited by A, B, and ∂H, the
combinatorial structure of H remains fixed (Fig. 6a). If p crosses A or B—say
A—then a1 leaves H and a1, a2 become the next two vertices counterclockwise
around ∂H. If p reaches the endpoint vi of ei, then if ei+1 angles outside H,
vi becomes a new a1 or b1 depending on the direction of ei+1. If instead, ei+1

turns inside H, advancing p would enter H and we have detected that C is not
threadable by Lemma 4.

All the updates just discussed are constant-time updates: detecting if ei
crosses A or B, updating a1, a2 and b1, b2, and detecting if ei+1 turns inside H,
entering 4b1via1.

At the end of the algorithm, H is the hull of C. It may seem surprising
that we can compute the hull of C in linear time (rather than O(n log n)), but
Melkman showed long ago that the hull of any simple polygonal chain can be

6



Figure 6: Algorithm snapshots. (a) H grows without combinatorial change
until p reaches v. (b) p = v event. (c) a1, a2 updated. ei crosses B. (d) b1, b2
updated.

Algorithm 1: Threadable Curve Algorithm: Upper Hull

Input : Polygonal chain C = {v1, . . . , vn}
Output: Upper convex hull H

// p: Moving point on edge ei = (vi−1vi). Fig. 6(a).

// H: Upper convex hull of {v1, . . . , vi−1, p}.
// a1, a2: Vertices of H right-adjacent to p.
// b1, b2: Vertices of H left-adjacent to p.
// A: line through a1a2.
// B: line through b1b2.

while p has not reached last vertex vn do
Compute next event on ei: Intersect ei with A and B.
if Next event is vertex v = vi. then // Fig. 6(b)

if Turn at p = v enters 4a1, v, b1 and so enters H then
return NotThreadable

end
if Turn at p = v angles outside H, so next edge ei+1 is on H then

Update A or B. // Fig. 6(c).

end

end
if Next event is intersection with A or B then

Update A or B, whichever intersected.
// Fig. 6(d).

end

end
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computed in linear time [Mel87].2 The chain C acts almost as a pre-sorting of
the points.

4.1 Rigid Motions

Let H+
j and H−j , j = 1, . . . ,m be the sequence of hulls at the points at which

there is a combinatorial change in either. Let rj ⊆ e be the range of p along
edge e of C between {H+

j , H
−
j } and {H+

j+1, H
−
j+1}. Then as p moves along rj ,

the wings of the butterfly bf (p) have the same set of tangency points on the
hulls. Choosing, say, the line L that bisects bf (p), the range of p along e leads
to a translation of p along rj and a rotation of L. Thus the sequence of hulls
provides a set of rigid motions to thread C, which we used to produce the online
animations cited in Section 1.

4.2 Difficult-to-Thread Curves

One easy consequence of our analysis is that a threadable curve need never
“back-up” while threading through a hole, because p never enters H± as it pro-
gresses along the chain. However, one could define the “difficulty” of threading
by, say, integrating the absolute value of the back-and-forth rotations necessary
to thread. Then variations on the curve shown in Fig. 7 are difficult to thread
in this sense. For each pair of adjacent spikes require a rotation by θ, and with
many short spikes, there is no bound on

∑
|θ| even for a fixed-length chain.3

Figure 7: A threadable curve that requires repeated rotations. Animation:
http://cs.smith.edu/~jorourke/Threadable/.

5 Algebraic Curves

Here we sketch an argument that shows detection of threadability for algebraic
curves is achievable in time polynomial in the degree of the curve. We use this
lemma:

2 See Dan Sunday’s description: http://geomalgorithms.com/a12-_hull-3.html.
3Thanks to Anna Lubiw for this observation.
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Lemma 5 Let C have a non-empty butterfly at p1 ∈ C, and an empty butterfly
at p2 ∈ C. Then for some p∗ ∈ C between p1 and p2, bf(p∗) is empty and the
wing-lines coincide in a line L that is tangent to C at two (or more) points.

Proof: The existence of p∗ follows from the continuity of the butterflies: As
a point p moves from p1 to p2, the non-empty butterfly at p1 must disappear
before p2 is reached. Let p be close to the disappearing point p∗, with bf (p)
non-empty with wings w+ and w−. Each of w+ and w− must be tangent to
C at a point, and the two tangency points must be distinct. As p approaches
p∗, at some stage these tangency points will no longer discontinuously change.
Then at p∗, A = B = L passes through those limit tangency points, t1 and t2
in Fig. 8.

Figure 8: A non-threadable smooth curve. Red section has no butterflies. Both
bf (p∗) = ∅ and bf (q∗) = ∅. t1, t2 and s1, s2 are the wing-line tangency points,
for p∗, q∗ respectively.

This lemma allows us to detect threadability by checking all the double
tangencies (bi-tangents) of C, as follows. Let L be a bi-tangent of C, tangent
at t1 and t2. If L does not cross C at some other point p, then it is irrelevant
to threadability. Suppose L does cross C uniquely at p. Then check whether
or not this implies an empty bf (p). This depends on whether p is between t1
and t2 (p∗ in Fig. 8) or outside those tangencies along L (q∗ in the figure), and
whether C is locally left or right at the tangency points.

If, for every bi-tangent L, and every corresponding crossing p, bf (p) is
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non-empty, then C is threadable. Otherwise, it is not threadable. The time-
complexity of this algorithm is dependent on the number of bi-tangents. The
other computations (intersecting L with C, whether C is left or right at a tan-
gency) are achievable within the degree of C.

It is known that the number of bi-tangents to a curve of algebraic degree d
is O(d4) [Økl17], and they can be listed in that time. So, without delving into
details, we can see that the threadability of an algebraic curve can be decided
in time polynomial in the degree of the curve.

6 Threadable Curves in 3D

The results in Section 4 can be extended to R3, asking whether a 3D polygonal
chain C can pass through a point-hole in a plane. Here we just roughly sketch
an algorithm.

Again Lemma 4 is the key: we need that H+ ∩ H− = {p} holds for all p
on C. Again computing H+ and H− will suffice to answer all questions; see
Fig. 9. But now what was the simple wedge region between A, B, and ∂H,

Figure 9: Upper and lower hulls for a 3D polygonal chain.

becomes a more complex region R bounded by O(n) planes, and a portion of
∂H (which has size O(n)). Although it seems quite likely the intersection of the
next edge ei+1 on which p will travel with the planes bounding this region R
could be computed in O(log n) time with appropriate data structures, we have
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not pursued this in detail, and so we only claim linear-time per step, which
leads to quadratic time overall. Again, if p never enters either hull, then C is
threadable. And if C is threadable, selecting planes in the more complex bf (p)
regions leads to rigid motions that achieve the threading.

7 Moving a Chair through a Doorway

Finally we make a connection between threadable curves and a classic problem,
moving a polygon through a segment-slit in a line, or, as it was known, “moving
a chair through a doorway.” Chee Yap solved the problem with an innovative
quadratic algorithm [Yap87], which both computed the “door-width” of the
polygon—the narrowest door through which it could pass—and provided the
rigid motions necessary to execute the passage. Here we cannot improve his
results, but instead reinterpret a version of the problem in terms of threadability.

Given a simple polygon P, partition it at vertices a and b into two chains,
which we’ll call P and Q. See Fig. 10. For p on P and q on Q, say the

Figure 10: bf (q) is compatible with bf (p1) and with bf (p3), but not with bf (p2).

butterflies bf (p) and bf (q) are compatible if the segment pq falls inside both
butterflies. Here the butterflies are defined for each chain P or Q, ignoring the
other chain. Then it would be possible to place the polygon P in a slit in the
line L containing pq. The doorway width needed there is |pq|. Note however,
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that the set of points p ∈ P that are compatible with bf (q) need not form a
subchain of P , as illustrated in Fig. 10.

Imagine now parametrizing p and q along the chains P and Q over [0, 1], and
creating the following surface S over the 1× 1 square, whose lowerleft corner is
p(0) = q(0) = a and upper-right corner is p(1) = q(1) = b:

d(p, q) = |pq| if bf (p) and bf (q) are compatible

d(p, q) = ∞ if incompatible

Finding a continuous path ρ on S between the a and b corners, avoiding all
d(p, q) = ∞ points of S, corresponds to finding a sequence of motions to move
P through a segment-slit in a line L, entering with a and exiting with b, such
that the intersection of P with L is always a segment (pq). And the lowest path
ρ—the ρ whose maximum on S is minimized—corresponds to the door-width of
such a motion.

Note that the condition that the intersection of P with L is always a segment
is not needed to move P through a slit in L. In fact, it may be that it is better
not to attempt to maintain this condition. Fig. 11 illustrates this. Here P fits

Figure 11: (a) Moving a polygon P through a slit (red) in L. (b) Moving such
that the intersection with L is always a segment.

through a rather narrow doorway (a), but at some stages the intersection L∩P
is two segments. Insisting on L ∩ P remaining one segment requires a wider
doorway (b). This leads us to a generalization of monotone polygons.

7.1 Threadable Polygons

We noted in Section 1.2 that threadable polygonal chains can be viewed as
generalizations of monotone chains. Similarly we can define a generalization
of a monotone polygon: a threadable polygon P can be partitioned by vertices
a and b into two chains P and Q such that, for every p ∈ P , there is a line
L that meets ∂P at exactly two points p ∈ P and q ∈ Q, and crosses each

12



there, and similarly when reversing the roles of p and q. Note that if P is
threadable, then the chains P and Q are threadable. However, it could be both
chains are threadable, but the polygon is not (at least as partitioned by a, b).
Fig. 11a provides an example when partitioned into upper and lower chains. A
threadable polygon P can move through a slit in L so that L ∩ P is always a
single segment, as described above. Properties of threadable polygons remain
to be explored.

7.2 Backing Up

Finally we note a difference between threading a curve through a point in a
line L and moving a polygon through a slit in L: the polygon might have to
“back-up” or reverse, in that some points of ∂P might first be on one side of L,
later on the opposite side, and later still back on the original side. An example
is shown in Fig. 12,4 based on an idea in [JO90]. Fig. 12a shows the polygon,
with two slots a and b aligned with two spikes a′ and b′. The door-width is just
a bit greater than |aa′| = |bb′|, which is greater than the height of the rectangle.
Points along the edge x of ∂P exhibit the back-up phenomenon. Fig. 12b shows
snapshots of L reaching the b′ spike at position 2. Then L rotates (3, 4) to reach
the b slot. Because the a slot is narrow, it cannot be used to circumvent the
b′ spike, so L must move over to the b slot. Then it can move up the slot and
over the tip of the b′ spike. Fig. 12c shows snapshots as L performs similar
manuevering to clear the a′ spike. Notice that the segment x is traversed three
times: forward (left-to-right), backward, and forward again. In terms of the
surface S mentioned previously, this polygon requires a path ρ shaped like the
letter S narrowly skirting d(p, q) =∞ regions.

Adding more spikes and slots to the example can lead to points of ∂P passing
back-and-forth through L a linear number of times.

8 Open Problems

1. Define the minimum above/below clearance for a threadable curve C as
the minimum width region above and below L through which points of C
pass as it threads through the hole o, with width the dimension parallel
to L. (See again Fig. 1, and the animations at http://cs.smith.edu/

~jorourke/Threadable/.) If C were a rigid pipe (e.g., a hydraulic tube),
it would be necessary to ensure the clearance regions are empty of other
objects to avoid collisions. Finding the minimum requires more careful
selection of L in bf (p), rather than just using the bisector as we suggest
in Section 4.1.

2. Detail an algorithm for threadability of a polygonal curve in R3, as sketched
in Section 6. Can O(n log n) be achieved?

4 Incidentally, this is a threadable polygon when partitioned into upper and lower chains.
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Figure 12: (a) A polygon that requires “back-up.” (b,c) Snapshots of the posi-
tion of L. The red subsegment of L is the doorway.
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3. Can a simple, connected algebraic curve of degree d have Ω(d4) bi-tangents?
The d4 bound mentioned in Section 5 is achieved for quartics by discon-
nected, closed zero-sets [O’R17].

4. Do threadable polygons (Section 7.1) have interesting/useful properties?
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