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Abstract

The cut locus C(x) on a convex polyhedron P with respect to a point
x is a tree of geodesic segments (shortest paths) on P that includes every
vertex. In general, edges of C(x) are not edges of P , i.e., not part of the
1-skeleton Sk(P ) of P . We say that P has a skeletal cut locus if there is
some x ∈ P such that C(x) ⊂ Sk(P ). In this paper we study skeletal cut
loci, obtaining three main results.

First, given any combinatorial tree T , there exists a convex polyhedron
P and a point x with a skeletal cut locus that matches the combinatorics
of T . Second, any (non-degenerate) polyhedron P has at most a finite
number of points x for which C(x) ⊂ Sk(P ). Third, we show that almost
all polyhedra have no skeletal cut locus.

Because the source unfolding of P with respect to x is always a non-
overlapping net for P , and because the boundary of the source unfolding
is the (unfolded) cut locus, source unfoldings of polyhedra with skele-
tal cut loci are edge-unfoldings, and moreover “blooming,” avoiding self-
intersection during an unfolding process.

1 Introduction

Our focus is the cut locus C(x) on a convex polyhedron, and the relationship of
C(x) to the 1-skeleton of P—the graph of vertices and edges—which we denote
by Sk(P ). The cut locus C(x) is the closure of the set of points on P to which
there is more than one geodesic segment (shortest path) from x. C(x) is a tree
whose leaves are vertices of P . C(x) is a spanning tree of the vertices; it may
contain vertices of degree-2. Nodes of degree k ≥ 3 are ramification points to
which there are k distinct geodesic segments from x.

The 1-skeleton of a non-degenerate polyhedron is a 3-connected graph by
Steinitz’s theorem. We call a doubly-covered convex polygon a degenerate con-
vex polyhedron, for which the 1-skeleton is a cycle. In general there seems to
be little relation between the cut locus and the 1-skeleton. We say that P has
a skeletal cut locus if there is some x ∈ P such that C(x) ⊂ Sk(P ).

The edges of C(x) are known to be geodesic segments [AAOS97], so it is
at least conceivable that an edge of C(x) lies along an edge of P . Theorem 1
shows that, for certain P and points x, all of C(x) lies in the 1-skeleton of P :
C(x) ⊂ Sk(P ).
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As a simple example, we will see in Lemma 4 that the three edges incident
to a vertex vi of a tetrahedron form C(x) for an appropriate x, and are therefore
skeletal cut loci.

Example 1 Another example is shown in Fig. 1, where T has one node a at
the apex of degree-4, eight degree-2 nodes, and four leaves.

Figure 1: A polyhedron P with a skeletal cut locus. The top is a regular
pyramid. Underneath are frustums. C(x) shown red; x is at the center of the
bottom face.

Although Theorems 2 and 3 will show that skeletal cut loci are “rare” in
senses we’ll make precise, Theorem 1 and its proof establish that uncountably
many polyhedra do admit skeletal cut loci (Proposition 1).

Theorem 1 can be viewed as a companion to the result in [OV23], where we
proved that any length tree—a tree with specified edge lengths—can be realized
as the cut locus on some polyhedron. Here we only match the combinatorics
of T , not metrical properties, but requiring additionally for T to be included in
Sk(P ).

Connection to Unfolding. It has long been known that cutting the cut
locus C(x) and unfolding to the plane leads to the non-overlapping source un-
folding : If x is not itself at a vertex, then the unfolding arrays all the shortest
paths 2π around x, with the image of the cut locus forming the boundary of
the unfolding [Mou85] [SS86]. For the polyhedra in Theorem 1, the source
unfolding is an edge-unfolding. And because it is known that the source un-
folding can be bloomed—unfolded continuously from R3 to R2 without self-
intersection [DDH+11]—Theorem 1 and its companion Proposition 1 provide
perhaps the first infinite class of examples of blooming edge-unfoldings.

Our central open problem (Section 1.4) asks for an accounting of all the
polyhedra P that support a skeletal cut locus. All of these enjoy the property
that source unfoldings are also blooming edge-unfoldings.
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1.1 Theorem 1 Construction

In this section we prove Theorem 1:

Theorem 1 Given any combinatorial tree T , there is a convex polyhedron P
and a point x ∈ P such that the cut locus C(x) is entirely contained in Sk(P ),
and the combinatorics of C(x) match the given T .

We first illustrate the main idea of the construction before addressing details.
Suppose the given tree T is the 7-leaf tree shown in Fig. 2. We select a degree-3
node as root a, which corresponds to the apex of a regular tetrahedron av1v2v3.
We fix x at the centroid of the base Q.

a

Figure 2: Tree T with 7 leaves.

Fig. 3 show one possible construction of P . The edges incident to a are clearly
in C(x) with x at the centroid of the base triangle. All three base vertices of the
tetrahedron are then truncated, with the truncation of v1 truncated a second
time. Now T corresponds to all the non-base edges of P .

The truncations are not arbitrary: the truncation planes must have precise
tilts in order for the edges of each truncation to lie in C(x). Fig. 4 shows the
source unfolding of P , with a1, a2, a3 the three images of a. The red bisector
rays from x through the truncation vertices on the base Q suggest that indeed
any point p on a truncation edge is equidistant from x and therefore on C(x).

Returning to the need for precise tilts of the tuncation planes, let z be the
point on the edge av1 through which the truncation plane passes, creating a
truncation triangle zt1t2. As indicated in Fig. 5, the tilt is uniquely determined
by the location of z: the placement of z determines t1, t2, and the edge t1t2
determines z.
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Figure 3: P is created from a regu-
lar tetrahedron by four vertex trunca-
tions.

x
v3

v2

v1

a3
a1

a2

Figure 4: Source unfolding of P from
x. Bisectors shown red.

Figure 5: The tilt of the truncation plane is determined by the position of z.
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1.2 Cut locus preliminaries

For the readers convenience, we list next several basic properties of cut loci,
sometimes use implicitly in the following.

(i) C(x) is a tree drawn on the surface of P . Its leaves are vertices of P ,
and all vertices of P , excepting x (if it is a vertex) are included in C(x).
All points interior to C(x) of degree 3 or more are known as ramification
points of C(x). All vertices of P interior to C(x) are also considered as
ramification points, of degree at least 2.

(ii) Each point y in C(x) is joined to x by as many geodesic segments as the
number of connected components of C(x) \ y. For ramification points in
C(x), this is precisely their degree in the tree.

(iii) The edges of C(x) are geodesic segments on P .

(iv) Assume the distinct geodesic segments γ and γ′ from x to y ∈ C(x) are
bounding a domain D of P , which intersects no other geodesic segment
from x to y. Then there is an arc of C(x) at y which intersects D and
bisects the angle of D at y.

(v) If the tree C(x) is reduced to a path, the polyhedron is a doubly-covered
(planar) convex polygon, with x on the rim.

Further details can be found in [OV24, Ch. 2].

1.3 Construction Details

If the given T has no nodes of degree ≥ 3, then it must be path, say of n edges.
Then P a doubly-covered convex (n+1)-gon satisfies Theorem 1 with x on the
interior of any edge. So henceforth assume T has at least one node of degree
n ≥ 3. Start with P a pyramid with apex a centered over a regular n-gon base
Q, with x the centroid of Q. Label the vertices of Q as v1, . . . , vn.

1.3.1 No degree-2 nodes

The construction is a bit different when T has degree-2 nodes, so we defer that
case to Section 1.3.2, and assume in this section that T has no degree-2 nodes.

The construction does not depend on the degree of apex a, so it is no loss of
generality to assume a has degree-3 so that P starts as a regular tetrahedron.
Let z be a node of T adjacent to a. (We will often use a and z and other
variables to both refer to a node of T and a corresponding vertex of P .) Let z
have degree k+2 in T . Truncation of k planes through z will create a vertex at
z of degree k + 2. E.g., if z is degree-3, k = 1 plane through z creates a vertex
of degree-3, as we’ve seen in earlier figures

We aim to understand how to truncate k ≥ 1 planes through z so that the
k+1 truncation edges incident to the base Q are part of C(x). We will illustrate
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in detail the case k = 2 shown in Fig. 6. Looking ahead, if we know how to
construct k planes through z, then we can apply the same logic to construct j
planes through a child y of z. The j = 1 case is illustrated in Fig. 7, with the
red truncation triangle incident to y. Then the same construction technique can
be used to inductively create the full subtree rooted at z. We will show later
that the subtrees rooted at the other two children of a can be arranged to avoid
interfering with one another.

We express the construction as a multi-step algorithm, and later prove that
the truncation edges are in C(x). Fix k ≥ 1, and position z anywhere in the
interior of av1. The goal is to compute the truncation chain t1, t2, . . . , tk, tk+1 on
base Q, where t1 ∈ v1vn and tk+1 ∈ v1v2 (in Fig. 7, t1, t2, t3). Each truncation
triangle is then ztiti+1.

The construction of the truncation chain is effected by first computing the
unfolded positions zi, the images of z in the unfolding. It is perhaps coun-
terintuitive, but we can calculate zi without knowing titi+1; instead we use
zi to calculate titi+1. The next construction depends of our choice of several
parameters; we’ll see later that it provides a suitable polyhedron.

(1) z0 is the position of z unfolded with the left face of the tetrahedron, av3v1.
z0 can be determined by |v1z| = |v1z0|. Then zk+1 is the reflection of z0
across xv1.

(2) Set rz = |xz0| = |xzk+1|.

(3) All the zi’s are chosen to lie on the circle Cz centered on x of radius rz.

(4) Let A be the angle z0xzk+1. Partition A into k + 1 angles α. This is
another choice, to maximize the symmetry of the construction.

(5) The zi’s lie on rays from x separated by α. Together with Cz, this deter-
mines the location of the zi’s.

(6) Set Bi to bisect the angle at x between the zi−1, zi rays, i = 1, . . . , k + 1.

(7) We determine t1 and tk+1 using the first and last bisector: t1 = v1vn∩B1.
tk+1 = v1v2 ∩Bk+1. The intermediate chain vertices t2, . . . , tk are not yet
determined.

(8) Let Πi be the mediator plane through zzi, the plane orthogonal to zzi
through its midpoint. It is these planes that determine ti, i = 2, . . . , k.

(9) Πi intersects the xy-plane in a line Li containing titi+1.

(10) ti = Li ∩Bi.

First note that the mediator plane construction of titi+1 guarantees that z
unfolds to zi. Second, the angles between edges tizi−1 and tizi are split by Bi

by construction. So any point p on the interior of edge zti unfolds to two images
in the plane equidistant from x.
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Figure 6: k = 2 truncation planes through z.

Figure 7: k = 2, j = 1. The y-truncation cuts the zt2 edge in Fig. 6.

7



Lemma 1 Each truncation edge zti is an edge of C(x).

Proof: We first prove that zt1 lies in C(x). Throughout refer to Fig. 8.
Before truncation, the segment zt1 lies on the face av3v1 of the polyhedron

P , which is a regular tetrahedron in this case.
Fix a point p ∈ zt1. The unique shortest path γ to p crosses edge v1v3. After

truncation, γ remains a geodesic arc. We aim to prove that it remains shortest,
and moreover there is another companion geodesic segment γ′, establishing that
p ∈ C(x).

Now we consider the situation after truncation. Let δ be a geodesic arc from
x to p, approaching p from the other side of zt1. If δ crosses the edge t1t2, then
we have |γ| = |δ| by construction, and we have found γ′ = δ.

Suppose instead that δ crosses edge titi+1 for i ≥ 2, and then crosses the
truncation triangles ztiti+1, zti−1ti, . . . , zt1t2 (right to left, i.e., clockwise, in
Fig. 8(a)) before reaching p. To simplify the discussion, we illustrate i = 2, so
δ crosses t2t3 and then triangles zt2t3 and zt1t2. See Fig. 8(b).

Let q2 be the quasigeodesic xt2z on P ′; it must be crossed by δ to reach p.
There are two triangles xt2z1 and xt2z2 bounding q2 to either side, congruent
by the construction. Thus the construction has local intrinsic symmetry about
q2.

Let s be the point at which δ crosses t2t3, {s} = δ ∩ t2t3. First assume that
s lies in the triangle xt2z2. Then δ remains in xt2z2 until it crosses q2. Then
there must be another geodesic arc δ′ symmetric with δ about q2, as illustrated
in (b). So δ and δ′ meet at a point of q2. Because δ and δ′ have the same length,
neither can be a shortest path beyond that point of intersection. Therefore δ
cannot reach p as a geodesic segment.

Second, if s instead lies in the triangle xt3z2, then it is clear from the planar
image in (a) of the figure that δ cannot cross the segment xz2 clockwise, which it
must to reach p from the right in the figures. So δ must head counterclockwise,
crossing q3 = xt3z. Then the same argument applies, based this time on the
local intrinsic symmetry about q3, and shows that δ cannot be a shortest path
beyond q3.

We have established that every point p on zt1 is on C(x), and so zt1 ⊂
C(x). The same argument applies to ztk+1, the rightmost truncation edge in
the figures.

So now we know that two geodesic segments from x to z cross t1t2 and tktk+1.
These two segments determine a digon D within which the remaining segments
of C(x) lie. But within D we have local intrinsic symmetry with respect to the
quasigeodesics qi = xtiz, because qi is surrounded by the congruent triangles
xtizi−1 and xtizi. Therefore, the previous argument shows that all the edges
zti are included on C(x).

We now return to the claim that the three subtrees descendant from a do
not interfere with one another.

Lemma 2 The truncations for one subtree descendant of apex a do not interfere
with another subtree descendant.
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Figure 8: Proof that p ∈ zt1 is on C(x). (a) Quasigeodesic q2 = xt2z shown
purple and congruent triangles xt2z1 and xt2z2 shaded green. (b) Abstract
picture depicting geodesic segments γ, δ, δ′.
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Proof: First, as k → ∞, t1 approaches the line xz0. This is evident in
Fig. 13 where k = 8. Thus the leftmost truncation triangle stays to the v1-side
of the midpoint of v1v3, say by ε. Second, subsequent truncations to all but the
extreme edges zt1 and ztk+1 stay inside the t1, . . . , tk chain. The only concern
would be that truncation of the zt1 edge crossed the midpoint of v1v3 (and
so possibly interfering with truncations of av3). However, as is evident in the
earlier Fig. 5, the position of t1 moves monotonically toward v1 as z moves down
av1. Thus we can widen ε to accommodate a truncation of zt1 (or of ztk+1).
So the entire subtree rooted at z stays between the midpoints of v1v3 and v1v2.

Further examples are shown in Appendix A: k = 4 in Figs. 11 and 12, and k = 8
in Figs. 13 and 14.

1.3.2 Degree-2 nodes

We turn now to degree-2 nodes.

Lemma 3 A degree-2 vertex u can realized by modifying the construction that
achieves Lemma 1.

Proof: It will suffice to show how to deal with a degree-2 node u a child of a
in the tree T , and z a child of u of degree ≥ 3. The construction inductively
generalizes to arbitrary placements of degree-2 nodes.

So let u be on edge av1 but z on edge uv′1, where v′1 ̸= v1 is on the line
segment xv1. See Fig. 9. Thus u is a degree-4 vertex of P but we want to
arrange that two of its edges are not part of C(x). The two segments au and uz
are in C(x), as they lie on the vertical symmetry plane containing axv1.

Note that the triangle uzt1 is not coplanar with the left face v3t1ua. Still,
when we truncate through z, cut the truncation edges and unfold, that triangle
uzt1 unfolds attached to the unfolding of the left face. We perform the same
calculations to truncate k times at z, and the same logic (bisectors Bi and
mediator planes Πi) leads to the conclusion that the truncation edges are part
of C(x).

The two side edges ut1 and utk+1 are not part of C(x): a point p ∈ ut1 is
closer to x via a geodesic segment up the left face, closer than any other path
from x to p. So u has degree-4 in Sk(P ) but degree-2 in C(x).

Lemmas 1, 2, and 3 together establish Theorem 1: C(x) ⊂ Sk(P ) matches
the given T .

1.4 Theorem 1 Discussion and Open Problem

We mentioned in Section 1 that Theorem 1 leads to an uncountable number of
skeletal polyhedra. This follows immediately from the freedom to place z at
any point interior to av1 in the construction detailed in Section 1.3. We can be
more quantitatively precise, as follows.
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Figure 9: u is degree-2 node. k = 1 truncation at z.
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Assume that T is a cubic tree without degree-2 nodes, so it has n leaves
and n − 2 ramification points. Aside from the first ramification point, which
is chosen as the apex of the starting tetrahedron, all others are free to vary on
their respective edges in our construction, which implies n− 3 free parameters.
Because C(x) is skeletal, each ramification point of T is a vertex of P , so P has
V = 2n− 2 vertices, and n = V/2 + 1. Since the space of all convex polyhedra
with V vertices, up to isometries, has dimension 3V −6 (see for example [LP22]),
we have the next result.

Proposition 1 The set of convex polyhedra admitting skeletal cut loci—and
hence blooming edge-unfoldings—contains a subset of dimension ≥ V/2 − 2 in
the (3V−6)-dimensional space of all convex polyhedra with V vertices, up to
isometries.

If T has no degree-2 nodes, then our construction for Theorem 1 results in
a dome, a convex polyhedron P with a distinguished base face Q, with every
other face sharing an edge with Q. It was already known that domes have edge-
unfoldings [DO07, p. 325], although the proof of non-overlapping for our domes
is almost trivial—the source unfolding does not overlap.

If T has degree-2 nodes, our construction results in what we called in [OV24]
g-domes, slight generalizations requiring that every face to share at least a point
with base Q. In Fig. 9, triangle uzt1 shares just the vertex t1 with Q.

Beside the g-domes we have constructed, other convex polyhedra may well
have skeletal cut loci, see e.g., Example 1. Our main open question is: Which
do?

Open Problem 1 Characterize all convex polyhedra P which admit skeletal
cut loci.

As motivation for the following considerations, note that every such P has a
blooming edge-unfolding, for the same reasons as do the constructed g-domes:
The source unfolding is a net, and the boundary of the source unfolding is an
image of the cut locus, cut along edges of Sk(P ).

The remainder of the paper addresses and partially answers Problem 1,
completing Proposition 1.

2 Several Skeletal Cut Loci

Beside the previous open problem, several natural questions suggest themselves:

(1) For a fixed P , how many distinct points x can lead to skeletal cut loci?
(Theorem 2).

(2) Can all of Sk(P ) for a given P be covered by several cut loci? (Proposi-
tion 2).

(3) How common / rare are skeletal cut loci in the space of all convex poly-
hedra? (Theorem 3).
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In the first two questions above, degenerate P play a special role:

Proposition 2

(a) There exists infinitely many points x with C(x) ⊂ Sk(P ) if and only if P
is degenerate.

(b) There exists two points x1, x2 on P whose cut loci together cover Sk(P ) if
and only if P is degenerate.

Theorem 2 is then a corollary of claim (a). Before arguing for a quantitative
statement of this theorem, we make two observations. First, for P degenerate,
Sk(P ) is the rim of P , and for any x on the rim, C(x) is a subset of Sk(P ).
So one direction (a) of the proposition is trivial. Second, a special case asks
whether it could be that each vertex v of P leads to a skeletal cut locus C(v).
The answer is yes, realized, for example, by the regular octahedron.

Theorem 2 For non-degenerate P with E edges, there are at most 2
(
E
2

)
flat

points x of P such that C(x) ⊂ Sk(P ).

Proof: (of the Theorem). Assume there exists a flat point x of P , such that
C(x) ⊂ Sk(P ). Then x belongs to one or two faces, x ∈ Fj , with j ∈ {1, 2}. Let
F denote either F1 if j = 1, or the union F1 ∪ F2 if j = 2.

Denote by vi, i ≥ 3, the vertices of F , and by ei the edge of C(x) ⊂ Sk(P )
incident to vi and not included in F . Finally, denote by γi the geodesic segment
from x to vi.

Because ei ⊂ C(x), γi and ei together bisect the complete angle at vi, by the
bisection property (iv) of the cut locus. In other words, the straight extensions
Ei into F by all ei are concurrent: they intersect at the point x.

Now we count all the possible locations x over all edges of P . Consider
a pair of edges ei, ej . Each has possible edge extensions from each endpoint.
So the edge extensions are geodesic rays. Two such straight extensions could
intersect several times on P . However, only their first intersection beyond the
endpoints is a possible location for x. Each edge has two extensions, one from
each endpoint, and because there are E straight extensions of the E edges of P ,
there are at most 2

(
E
2

)
possible locations for x.

So this theorem settles the other direction of Proposition 2(a).
Now we prove Proposition 2(b), that only degenerate P allows covering Sk(p)

by only two cut loci.

Proof: If P is degenerate then any two points on its rim, but not on the same
edge, satisfy the conclusion.

Assume now that P is non-degenerate and x ∈ P such that C(x) ⊂ Sk(P ).
Then C(x) has at least one ramification point of degree d ≥ 3, as it is known
that only degenerate P support path cut loci. The d edges of C(x) lie in at least
3 faces of P . Then there exists a cycle in Sk(P ), formed by edges of those faces
which are not in C(x). But such a cycle cannot be covered by only one other
cut locus, which is a tree.
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Example 2 Consider a regular dipyramid P over a convex 2m + 1-gon; see
Fig. 10. One can see that, for every midpoint x of a “base edge” e, C(x) is
included in Sk(P ). More precisely, C(x) contains all base edges other than e,
and the two “lateral edges” opposite to x. In particular, this provides 2m + 1
such points, for V = 2m+ 3 vertices.

Figure 10: P : pentagonal dipyramid. C(x): red and blue edges of Sk(P ).

The following lemma will explain a condition in Theorem 3 to follow.

Lemma 4 Every tetrahedron T has four points x ∈ T such that C(x) ⊂ Sk(T ).

Proof: For each vertex vi, denote by xi the ramification point of C(vi). It
follows, from cut locus property (ii), that that vi is the ramification point of
C(xi). Then, by (i) and (iii), C(xi) consists of the three edges incident to vi.

The next theorem establishes the rarity of skeletal cut loci. In the statement,
by almost all we mean “all in an open and dense set.”

Theorem 3 For almost all convex polyhedra P with V > 4 vertices, there exists
no point x ∈ P with C(x) ⊂ Sk(P ).

Note that Lemma 4 establishes the need for V > 4.

Proof: Notice first that almost all convex polyhedra P are non-degenerate.
Assume, for the simplicity of the exposition, that every face of P is a triangle

and Sk(P ) is a cubic graph.

Case 1. Assume there exists a flat point x interior to some face F of P , such
that C(x) ⊂ Sk(P ).

14



Repeating the notation in Theorem 2, denote by vi, i = 1, 2, 3, the vertices
of F , and by ei the edges of P incident to vi and not included in F .
Moreover, denote by γi the geodesic segment from x to vi.

As in Theorem 2, it follows that ei ⊂ C(x) so, together, γi and ei bisect
the complete angle at vi. In other words, the straight extensions Ei into
F by all the ei are concurrent: they all intersect at the same point.

Now we perturb the vertices of P to destroy this concurrence. If P were
a tetrahedron, then perturbing the apex would simultaneously move the
edges incident to it. But the assumption that V > 4 means that there
are at least two vertices outside the 3-vertex face F containing x. Per-
turbing these two vertices independently moves the edges incident to F
independently, breaking the concurrence at x.

Because there are at most finitely many such points x by Theorem 2, the
conclusion follows in this case.

Case 2. Assume there exists a flat point x interior to some edge e of P , such
that C(x) ⊂ Sk(P ). Denote by vi, i = 1, 2, the vertices of e, and by ei
the edges of P incident to vi included in C(x). As above, it follows that
the straight extensions of e1, e2 coincide with e. Now, small perturbations
of the vertices of P destroy this coincidence. Note that if e, e1, e2 form a
triangle, then e1, e2 will move together. But still, perturbations at other
vertices of P (not v1, v2, e1 ∩ e2) will destroy the concurrence.

Case 3. Assume finally there exists a vertex v of P , such that C(v) ⊂ Sk(P ).
Here we obtain again that the straight extensions of two edges contain
(other) edge-pair extensions, and small perturbations of the vertices of P
destroy this coincidence.

We mentioned that the octahedron has the property that for every vertex v,
C(v) is skeletal. In Appendix B we detail the special conditions such polyhedra
must satisfy.
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A Appendix: Theorem 1 Examples

Figure 11: k = 4.

Figure 12: k = 4, j = 3.
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Figure 13: k = 8.

Figure 14: k = 8, j = 1.
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B Every Vertex is a Skeletal Source

By Theorem 3, few convex polyhedra P have a point x with C(x) ⊂ Sk(P ). So
assuming that every vertex of P has this property should yield some exceptional
polyhedra.

Theorem 4 Assume that every vertex of P has a skeletal cut locus. Then the
following statements hold.

1. Every face of P is a triangle.

2. Every vertex of P has even degree in Sk(P ).

3. The edges at every vertex v split the complete angle at v into evenly many
sub-angles, every two opposite such angles being congruent.

4. If, moreover, every vertex of P has degree 4 in Sk(P ) then P is an octa-
hedron:

• with three planar symmetries, and

• all faces of which are acute congruent (but not necessarily equilateral)
triangles.

Proof:

(1) Assume there exists a non-triangular face F of P , so there are non-adjacent
vertices u, v of F . Because v ∈ C(u) ⊂ Sk(P ), there exists an edge vw
of P with vw ⊂ C(u). Moreover, the diagonal uv of F and vw bisect the
complete angle at v.

Because vw is an edge, it is a geodesic segment from w to v. So v is a leaf
of C(w), and C(w) starts at v in the direction of the diagonal vu, hence
C(w) ̸⊂ Sk(P ).

(2) Consider now a vertex u of P of degree d in Sk(P ), and denote by
u1, . . . , ud its neighbors in Sk(P ).

For every ui, i = 1, . . . , d, u is a leaf of C(ui), so the edge uiu and the edge
of C(ui) ∩ Sk(P ) at u bisect the complete angle at u. Hence the edges at
u can be paired two-by-two, hence their number is even.

(3) Denote by e1, . . . , ek, ek+1, . . . , e2k the edges sharing the vertex u, indexed
circularly, and put αi = ∠(ei, ei+1), with index equality 2k + 1 = 1.

The bisecting property of cut loci implies that the edge e1 (as a geodesic
segment from vertex u1 to u) and the edge ek+1 (as the branch of C(u1)
at leaf u) bisect the complete angle at u:

k∑
i=1

αi =

k∑
i=1

αk+i.

18



Similarly,
k+1∑
i=2

αi =

k+1∑
i=2

αk+i.

Subtracting, we get α1 = αk+1.

Analogous reasoning implies the other equalities: αi = αk+i, with index
equality 2k + j = j.

(4) For the combinatorial part, denote by F,E, V the number of faces, edges,
and respectively vertices of P . Euler’s formula for convex polyhedra gives
F − E + V = 2. Our assumptions imply 3F = 2E, and 4V = 2E. These
equations yield V = 6 and F = 8, hence P is an octahedron.

Denote by u, v, a, b, c, d the vertices of P , with a, b, c, d neighbor to both u
and v.

Applying the hypothesis for a, b, c, d shows that the cycle C = abcda in
Sk(P ) is a bisecting polygon. Therefore, there exists a local isometry ι
of the ‘upper’ and ‘lower’ neighborhoods Nu, Nv of C. In particular, the
curvatures at u and v are equal, by Gauss-Bonnet.

It follows even more, that the local isometry ι extends to an intrinsic
isometry between the ‘upper’ and the ‘lower’ closed half-surfaces bounded
by C (regarding them as cones), hence it further extends to an isometry of
P fixing C. Therefore, C is planar and P is symetric with respect to the
respective plane, by the rigidity part of Alexandrov’s Gluing Theorem.

Repeating the reasoning for other pairs of ‘opposite’ vertices shows that
all faces of P are congruent triangles.

The four faces sharing the vertex u have congruent angles at u, hence
those angles are acute.

Example 3 Suitable dipyramids over convex 2m-gons, similar to Example 2,
provide non-octahedron polyhedra whose the cut loci of the vertices cover the
1-skeleton.
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