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Abstract

Given a convex polyhedral surface P , we define a tailoring as excising from P
a simple polygonal domain that contains one vertex v, and whose boundary
can be sutured closed to a new convex polyhedron via Alexandrov’s Gluing
Theorem. In particular, a digon-tailoring cuts off from P a digon containing
v, a subset of P bounded by two equal-length geodesic segments that share
endpoints, and can then zip closed.

In the first part of this monograph, we primarily study properties of the
tailoring operation on convex polyhedra. We show that P can be reshaped
to any polyhedral convex surface Q ⊂ conv(P ) by a sequence of tailorings.
This investigation uncovered previously unexplored topics, including a notion
of unfolding of Q onto P—cutting up Q into pieces pasted non-overlapping
onto P .

In the second part of this monograph, we study vertex-merging processes
on convex polyhedra (each vertex-merge being in a sense the reverse of a
digon-tailoring), creating embeddings of P into enlarged surfaces. We aim
to produce non-overlapping polyhedral and planar unfoldings, which led us
to develop an apparently new theory of convex sets, and of minimal length
enclosing polygons, on convex polyhedra.

All our theorem proofs are constructive, implying polynomial-time algo-
rithms.

MSC Classifications

Primary: 52A15, 52B10, 52C45, 53C45, 68U05.

Secondary: 52-02, 52-08, 52A37, 52C99.
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Preface

The research reported in this monograph emerged from exploring a simple
question: Given two convex polyhedra P and Q, with Q inside P , can one
reshape P to Q by repeatedly “snipping” off vertices? We call this snipping-
off operation tailoring. A precise definition is deferred to the introductory
Chapter 1, but here we contrast it with vertex truncation, which slices off
a vertex with a plane and replaces it with a new facet lying in that plane.
This is, for example, one way to construct the truncated cube: see Fig. 1.
Tailoring differs from vertex truncation in two ways: first, it does not slice

Figure 1: Truncated cube. [Image by Tilman Piesk, Wikipedia].

by a plane but instead uses a digon bound by a pair of equal-length geodesics
(again, definition deferred), and second, rather than filling the hole with a
new facet, the boundary of the hole is “sutured” closed without the addition
of new surface.

Our first experiment started with a paper cube and tailored its 8 vertices,
producing the shape shown in Fig. 2. Although not evident from this crude

ix
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Figure 2: Cube after tailoring 8 vertices.

model, this shape is actually a convex polyhedron of 16 vertices, an implica-
tion of Alexandrov’s Gluing Theorem. This led us imagine that continuing
the process on the 16 vertices might allow reshaping the cube into a roughly
spherical polyhedron—“whittling” a cube to a sphere. And indeed, one of
our main theorems is that any P can be reshaped to any Q ⊂ P by a fi-
nite sequence of tailorings (Theorem 4.6). This holds whether Q has fewer
vertices than P or more vertices than P : see Fig. 3.

Figure 3: Cube inside dodecahedron. Icosahedron inside cube.

Investigating tailoring in Part I uncovered previously unexplored topics,



xi

including a notion of “unfolding” Q onto P—cutting up Q into pieces pasted
non-overlapping onto P . This led us to a systematic study of vertex-merging,
a technique introduced by Alexandrov that can be viewed as a type of inverse
operation to tailoring, a study we carry out in Part II. Here we start with P
and gradually enlarge it via vertex-merges until P is embedded onto a nearly
flat shape S: a doubly-covered triangle, an isosceles tetrahedron, a pair of
cones, or a cylinder. The first two “vertex-merge irreducible shapes” (doubly-
covered triangle or isosceles tetrahedron) are the result of vertex-merging in
arbitrary order, and can result in disconnecting an n-vertex P into O(n2)
pieces (Corollary 11.2). In contrast we pursue the goal of minimizing the
disconnection of P , with the ultimate goal of achieving a planar net for
P—a nonoverlapping simple polygon.

Toward this end, we partition P into two half-surfaces by a quasigeodesic
Q, a simple closed curve on P , convex to both sides.1 Then we can prove that
a particular spiral vertex-merge sequence avoids disconnecting P in each half.
(Theorems 15.7 and 15.14.) This approach requires a notion of convexity and
convex hull on the surface of a convex polyhedron, apparently novel topics,
explored in our longest chapter, Chapter 13.

We can achieve a net for P (Theorem 16.5) assuming the truth of a
conjecture concerning quasigeodesics (Open Problem 18.13). This is among
the many avenues for future work uncovered by our investigations.

Acknowledgements
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Costin Vı̂lcu’s research was partially supported by UEFISCDI, project
no. PN-III-P4-ID-PCE-2020-0794.

1In Part I, Q is the target polyhedron resulting from reshaping P . In Part II, there is
no equivalent fixed “target” polyhedron, and we use Q to denote a quasigeodesic.
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Part I

Tailoring for Every Body
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Chapter 1

Introduction to Part I

Let P and Q be convex polyhedra, each the convex hull of finitely many
points in R3. If Q ⊂ P , it is easy to see that Q can be sculpted from P
by “slicing P with planes.” By this we mean intersecting P with half-spaces
each of whose plane boundary contains a face of Q. If Q 6⊂ P , we can shrink
Q until it fits inside. So a homothet of any given Q can be sculpted from any
given P , where a homothet is a copy possibly scaled, rotated, and translated.
Main results of Part I are similar claims but via “tailorings”: a homothet of
any given Q can be tailored from any given P (Theorems 4.6, 7.5, 8.1).1

With some abuse of notation,2 we will use the same symbol P for a
polyhedral hull and its boundary. We define two types of tailoring. A digon-
tailoring cuts off a single vertex of P along a digon, and then sutures the
digon closed. A digon is a subset D(x, y) of P bounded by two equal-length
geodesic segments that share endpoints x and y. A geodesic segment is a
shortest geodesic between its endpoints. A crest-tailoring cuts off a single
vertex of P but via a more complicated shape we call a “crest.” Again the
hole is sutured closed. We defer discussion of crests to Chapter 7. Meanwhile,
we often shorten “digon-tailoring” to simply tailoring. Cutting out a digon
means excising the portion of the surface between the geodesics, including
the vertex they surround.3 Once removed, the digon hole is closed by natu-
rally identifying the two geodesics along their lengths. This identification is
often called “gluing” in the literature, although we also call it “zipping” or

1A preliminary version of Part I is [OV20].
2Justified by Alexandrov’s Gluing Theorem, see ahead.
3An informal view (due to Anna Lubiw) is that one could pinch the surface flat in a

neighborhood of the vertex, and then snip-off the flattened vertex with scissors.

3



4 CHAPTER 1. INTRODUCTION TO PART I

Figure 1.1: (a) A digon D(x, y) on the regular tetrahedron P = abcd, sur-
rounding vertex d. (b) Digon excised. (c) A digon D(o, c) with one endpoint
at vertex c, the other the centroid o.

“suturing” or “sealing.” Fig. 1.1 illustrates digons on a regular tetrahedron
P . In (a) of the figure, neither digon endpoint x nor y is a vertex of P ;
(b) shows P after excision but before sealing. After sealing, both x and y
become vertices. (See ahead to Fig. 2.6 for a depiction of the polyhedron
that results after sealing.) In (c), one endpoint of the digon coincides with a
vertex. Here, after excision and suturing, o becomes a vertex and c remains
a vertex (of sharper curvature).

1.1 Alexandrov’s Gluing Theorem

Throughout, we make extensive use of Alexandrov’s Gluing Theorem [Ale05,
p.100], which guarantees that the surface obtained after a tailoring of P
corresponds uniquely to a convex polyhedron P ′. A precise statement of this
theorem, which we will abbreviate to AGT, is as follows.

Theorem AGT. Let S be a topological sphere obtained by gluing planar
polygons (i.e., naturally identifying pairs of sides of the same length) such
that at most 2π surface angle is glued at any point. Then S, endowed with
the intrinsic metric induced by the distance in R2, is isometric to a convex
polyhedron P ⊂ R3, possibly degenerated to a doubly-covered convex polygon.
Moreover, P is unique up to rigid motion and reflection in R3.



1.2. TAILORING EXAMPLES 5

The case of doubly-covered convex polygon is important and we will encoun-
tered it often.

Because the sides of the digon are geodesics, gluing them together to
seal the hole leaves 2π angle at all but the digon endpoints. The endpoints
lose surface angle with the excision, and so have strictly less than 2π angle
surrounding them. So AGT applies and yields a new convex polyhedron.

This shows that tailoring is possible and alters the given P to another
convex polyhedron. How to “aim” the tailoring toward a given target Q is a
long story, told in subsequent sections.

Alexandrov’s proof of his celebrated theorem is a difficult existence proof
and gives little hint of the structure of the polyhedron guaranteed by the
theorem. And as-yet there is no effective procedure to construct the three-
dimensional shape of the polyhedron guaranteed by his theorem. It has
only been established that there is a theoretical pseudopolynomial-time al-
gorithm [KPD09], achieved via an approximate numerical solution to the
differential equation established by Bobenko and Izmestiev [BI08] [O’R07].
But this remains impractical in practice. Only small or highly symmetric
examples can be reconstructed, for example [ADO03] for the foldings of a
square, and more recently [ALZ20] for polyhedra built from regular pen-
tagons. Figs. 1.3 and 2.6 (ahead) were reconstructed through ad hoc meth-
ods.

AGT is a fundamental tool in the geometry of convex surfaces and, at a
theoretical level, our work helps to elucidate its implications. While AGT
has proved useful in several investigations, our application here to reshaping
has, to our knowledge, not been considered before as the central object of
study.

1.2 Tailoring Examples

Before discussing background context, we present several examples. Through-
out we let xy denote the line segment between points x and y, x, y ∈ R3.
Also we make extensive use of vertex curvature. The discrete (or singular)
curvature ω(v) at a vertex v ∈ P is the angle deficit: 2π minus the sum of
the face angles incident to v.

Example 1.1. Let T = abcd be a regular tetrahedron, and let o be the center
of the face abd; see Fig. 1.1(c). Cut out the digon on T between c and o
“encircling” d, and zip it closed.
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Figure 1.2: Illustrations for Examples 1.1–1.2. In (c), e and e′ are joined
when the D(x, y) digon is excised.

The unfolding U(T ) of T with respect to c is a planar regular triangle
cacbcd with center o. Cutting out that digon from T is equivalent to removing
from T the isosceles triangle ocacb. See Fig. 1.2(a). We zip it closed by
identifying the digon-segments cao and cbo, and refolding the remainder of
T by re-identifying cab and bcd, and cba and acd. The result is the doubly-
covered kite K = aobcd, shown in Fig. 1.2(b).

Example 1.2. We further tailor the doubly-covered kite K obtained in Ex-
ample 1.1. Excising a digon encircling o, between points x ∈ oa and y ∈ ob,
and zipping closed, yields a doubly-covered pentagon, as in Fig. 1.2 (b).

If instead we excise a digon encircling o, between corresponding points
x, y ∈ oc on different sides of K (see Fig. 1.2 (c)), and seal closed, the result
is a non-degenerate pentahedron, illustrated in Fig. 1.3. This is among the
rare cases where the polyhedron guaranteed by AGT can be explicitly recon-
structed.

Example 1.3. A digon may well contain several vertices, but for our digon-
tailoring we only consider those containing at most one vertex. The limit
case of a digon containing no vertex is an edge between two vertices. (This
will play a role in Chapter 8.) In this case, gluing back along the cut would
produce the original polyhedron, but we can as well seal the cut closed from
another starting point. For example, cutting along an edge of an isosceles
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Figure 1.3: The non-degenerate pentahedron obtained in Example 1.2. The
point marked e = e′ is the join of the points e and e′ in Fig. 1.2(c), the
midpoint of the edge ab.

tetrahedron (a polyhedron composed of four congruent faces)4 and carefully
choosing the gluing leads to a doubly-covered rectangle. See Fig. 1.4.

By AGT, this limit-case tailoring of an empty-interior digon only applies
between vertices v1, v2 of curvatures ω1, ω2 ≥ π, because both v1 and v2 will
be identified with interior points of the edge.5

In view of Fig. 1.2(c) and Fig. 1.3, it is clear that, even though tailoring
is area decreasing, it is not necessarily volume decreasing.

Let a tailoring step remove vertex v inside digon D = (x, y). In general,
neither x nor y is a vertex before tailoring, but they become vertices after
removing D, thereby increasing the number of vertices of P by 1. This is
illustrated in Fig. 1.1(ab). If one of x or y is a vertex and the other not,
then the total number of vertices remains fixed, as in Fig. 1.1(c). And if
both x and y are vertices, then the number of vertices of P is decreased by
1. The challenge answered in our work is to direct tailoring to “aim” from
one polyhedon P to the target Q, which may have a quite different number
of vertices.

4Also called a tetramonohedron, or an isotetrahedron.
5In [DO07, Sec. 25.3.1] this structure is called a “rolling belt.”
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Figure 1.4: (a) An isosceles tetrahedron: All four faces are congruent. Cut-
ting along v3v4 and regluing the two halves of that slit differently, creasing at
the blue segments, yields a doubly-covered rectangle, as shown in (b), folding
as shown.

1.3 Summary of Part-I Results

Here we list our main theorems in Part I, each with a succinct (and at this
stage, quite approximate) summary of their claims.

• Theorem 4.6: Q may be digon-tailored from P , tracking a sculpting of
P to Q.

• Theorem 7.5: P may be crest-tailored to Q, again tracking a sculpting.

• Theorem 8.1: A different proof of a similar result, that P may be
digon-tailored to a homothet of Q, but this time without relying on
sculpting.

• Theorems 6.2 and 7.5 and 8.3: Tailoring algorithms have time-complexity
O(n4).

• Theorem 9.1: Reversing tailoring yields procedures for enlarging Q in-
side P to match P . As a consequence, Q may be cut up and “unfolded”
isometrically onto P .

Along the way to our central theorems, we obtain results not directly related
to AGT:

• Theorem 2.9: If two convex polyhedra with the same number of ver-
tices match on all but the neighborhoods of one vertex, then they are
congruent.
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• Theorem 3.2: Every “g-dome” can be partitioned into a finite sequence
of pyramids by planes through its base edges.

The above results raise several open problems of various natures, either scat-
tered along the text or presented in the last section of Part I. [Revisit later.]

Finally, we sketch the logic behind the first result listed above, whose
statement in Chapter 4 we repeat here:

Theorem 4.6. Let P be a convex polyhedron, and Q ⊂ P a convex polyhe-
dron resulting from repeated slicing of P with planes. Then Q can also be
obtained from P by tailoring. Consequently, for any given convex polyhedra
P and Q, one can tailor P “via sculpting” to obtain any homothetic copy of
Q inside P .

Start with Q inside P , and imagine a sequence of slices by planes that
sculpt P to Q. Lemma 4.4 shows how to digon-tailor one such slice, which
then establishes the claim that we can tailor P to Q. Theorem 4.6 is achieved
by first slicing off shapes we call “g-domes,” and then showing in Theorem 3.2
that every g-dome can be reduced to its base by slicing off pyramids, i.e.,
by vertex truncations. Lemma 4.4 shows that such vertex truncations can
be achieved by tailoring. And the proof of Lemma 4.4 relies on the rigidity
established by Theorem 2.9. So the path of logic is:

plane slice → g-domes → pyramids → digon removals .

↑
rigidity
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Chapter 2

Preliminaries

In this chapter we present basic properties of cut loci on convex polyhe-
dra, the star-unfolding, prove a rigidity result, and describe the technique
of vertex-merging. All of these geometric tools will be needed subsequently.
The reader might skip this section and return to it as the tools are deployed.

2.1 Cut locus properties

The cut locus C(x) of the point x on a convex polyhedron P is the closure of
the set of points to which there is more than one shortest path from x. This
concept goes back to Poincaré [Poi05], and has been studied algorithmically
since [SS86] (there, the cut locus is called the “ridge tree”). The cut locus
is one of our main tools throughout this work. The next lemma establishes
notation and lists several known properties.

Lemma 2.1 (Cut Locus Basics). The following hold for the cut locus C(x):

(i) C(x) has the structure of a finite 1-dimensional simplicial complex
which is a tree. Its leaves (endpoints) are vertices of P , and all vertices
of P , excepting x (if it is a vertex) are included in C(x). All points
interior to C(x) of tree-degree 3 or more are known as ramification
points of C(x).1 All vertices of P interior to C(x) are also considered
as ramification points.

1In some literature, these points are called “branch points” or “junctions” of C(x).

11
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(ii) Each point y in C(x) is joined to x by as many geodesic segments as the
number of connected components of C(x) \ y. For ramification points
in C(x), this is precisely their degree in the tree.

(iii) The edges of C(x) are geodesic segments on P .

(iv) Assume the geodesic segments γ and γ′ (possibly γ = γ′) from x to
y ∈ C(x) are bounding a domain D of P , which intersects no other
geodesic segment from x to y. Then there is an arc of C(x) at y which
intersects D and it bisects the angle of D at y.

Proof. The statements (i)-(ii) and (iv) are well known. The statement (iii)
is Lemma 2.4 in [AAOS97].

The following is Lemma 4 in [INV12].

Lemma 2.2 (Path Cut Locus). If C(x) is a path, the polyhedron is a doubly-
covered (flat) convex polygon, with x on the rim.

The following lemma will be invoked in Chapter 5.

Lemma 2.3 (Angle < π). Let x be a point on a convex polyhedron P and let
y be a ramification point of C(x) of degree k ≥ 2. Let e1, ..., ek be the edges
of C(x) incident to y, ordered counterclockwise, and let αj be the angle of
the sector between ej and ej+1 at y (with k + 1 ≡ 1). Then αj < π, for all
j = 1, ..., k.

Proof. Let γ1, ...γk be the geodesic segments from x to y, say with γj between
ej and ej+1 (again with k + 1 ≡ 1). See Fig. 2.1. By Lemma 2.1 (iv), ej is
the bisector of ∠(γj, γj+1). Put 2βj+1 = ∠(γj, γj+1). Then the total surface

angle θy incident to y satisfies θy =
∑k

j=1 2βj ≤ 2π if k ≥ 3, and θy < 2π if

k = 2. Therefore, when k ≥ 3,
∑k

j=1 βj = π and so αj = βj + βj+1 < π. And
when k = 2, α1 = α2 = β1 + β2 < π.

2.1.1 Star-Unfolding and Cut Locus

Next we introduce a general method for unfolding any convex polyhedron P
to a simple (non-overlapping) polygon in the plane. We use this subsequently
largely because of its connection to the cut locus.
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Figure 2.1: Edge e2 of C(x) bisects ∠(γ1, γ2) = 2β2.

To form the star-unfolding of a P with respect to x, one cuts P along
the geodesic segments (unique if x is “generic”) from x to every vertex of
P . The idea goes back to Alexandrov [Ale05]; the non-overlapping of the
unfolding was established in [AO92], where the next result was also proved.
See Fig. 2.2.

Lemma 2.4 (SP Voronoi Diagram). Let SP = SP (x) denote the star-unfolding
of P with respect to x ∈ P . Then the image of C(x) in SP is the restriction
to SP of the Voronoi diagram of the images of x.

Notice that several properties of cut loci, presented in the previous sec-
tion, could easily be derived from Lemma 2.4.

2.1.2 Fundamental Triangles

A geodesic triangle on P (i.e., with geodesic segments as sides) is called flat
if its curvature vanishes.

Lemma 2.5 (Fundamental Triangles [INV12]). For any point x ∈ P , P can
be partitioned into flat triangles whose bases are edges of C(x), and whose
lateral edges are geodesic segments from x to the ramification points or leaves
of C(x). Moreover, those triangles are isometric to plane triangles, congruent
by pairs.

See Fig. 2.2(b) (and ahead to Fig. 8.1).
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Figure 2.2: (a) Cut segments to the 8 vertices of a cube from a point x on
the top face. (No cut is interior to the bottom face.) T, F, R, K, L, B = Top,
Front, Right, Back, Left, Bottom. (b) The star-unfolding from x. The cut
locus C(x) (red) is the Voronoi diagram of the 8 images of x (green). Two
pairs of fundamental triangles are shaded.
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2.1.3 Cut Locus Partition

Another tool we need (in Chapter 4) is a cut locus partition lemma, a gen-
eralization of lemmas in [INV12]. On a polyhedron P , connect a point x to
a point y ∈ C(x) by two geodesic segments γ, γ′. This partitions P into two
“half-surface” digons H1 and H2. If we now zip each digon separately closed
by joining γ and γ′, AGT leads to two convex polyhedra P1 and P2. The
lemma says that the cut locus on P is the “join” of the cut loci on Pi. See
Fig. 2.3.

Lemma 2.6 (Cut Locus Partition). Under the above circumstances, the cut
locus C(x, P ) of x on P is the join of the cut loci on Pi: C(x, P ) = C(x, P1)ty
C(x, P2), where ty joins the two cut loci at point y. And starting instead from
P1 and P2, the natural converse holds as well.

Proof. Notice first that a straightforward induction and Lemma 2.5 on funda-
mental triangles shows that the cut locus of x on Pi is indeed the truncation
of C(x, P ). Therefore, C(x, P ) = C(x, P1) ty C(x, P2).

Assume we start now from P1 and P2, having vertices x1, y1 ∈ P1 and
x2, y2 ∈ P2 such that

• ρP1(x1, y1) = ρP2(x2, y2), where ρPi
( ) is the geodesic distance between

the indicated points on Pi.

• θx1 + θx2 ≤ 2π, where θx is the total surface angle incident to x, and

• θy1 + θy2 ≤ 2π.

Then we can cut open Pi along a geodesic segment γi from xi to yi, i = 1, 2,
and join the the two halves by AGT, such that x1, x2 have a common image
x, and y1, y2 have a common image y.

Now, all geodesic segments starting at x into Hi remain in Hi, because
geodesic segments do not branch. Therefore, H1 has no influence on C(x, P2)
and H2 has no influence on C(x, P1).

2.2 Cauchy’s Arm Lemma

In several proofs, we will need an extension of Cauchy’s Arm Lemma, which
we now describe.
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Figure 2.3: Geodesic segments γ and γ′ (purple) connect x=x1=x2 to
y=y1=y2. P1 folds to a tetrahedron, and P2 to an 8-vertex polyhedron, with
x and y vertices in each. P1 and P2 are cut open along geodesic segments
from xi to yi and glued together to form P . Based on the cube unfolding in
Fig. 2.2(b).
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Let C = x1, . . . , xn be a directed polygonal chain in the plane, with left
angles θi = ∠xi−1xixi+1, where xn = x1 if C is closed, and θ1 and θn undefined
if C is open. Let d = |x1xn| be the distance between the endpoints, with
d = 0 if C is closed. If θi ≤ π for all i, then C is a convex chain. Cauchy’s
Arm Lemma applies to reconfiguration of C while all the edge lengths remain
fixed (the edges are bars). We use primes to indicate the reconfigured chain.
The lemma says that if the θi angles are “straightened” while remaining
convex, in the sense that θi ≤ θ′i ≤ π, then the distance d′ = |x′1x′n| only
increases: d′ ≥ d.

For the extension needed later, we reformulate in terms of turn angles
τi = π−θi ≥ 0, as described in [O’R01]. Now the straightening condition says
that 0 ≤ τ ′i ≤ τi. The extended version of Cauchy’s arm lemma says that,
as long as, in the reconfiguration, −τi ≤ τ ′i ≤ τi, then the same conclusion
holds: d′ ≥ d. Thus C ′ might no longer be a convex chain, but its reflexivities
are bounded by the original turn angles. One way to interpret d′ ≥ d is that
there is a “forbidden” disk of radius d = |x1xn| centered on x1 that x′n cannot
penetrate. See Fig. 2.4. We summarize in a theorem:

Figure 2.4: Any turns within the indicated ±τi angle ranges constitute
straightening. Then xn will not penetrate the |x1xn| disk.

Theorem 2.7. (Cauchy’s Arm Lemma.) A straightening reconfiguration of
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a planar convex chain C—retaining edge-lengths fixed and confining new turn
angles τ ′i to lie in [−τi, τi]—only increases the distance between the endpoints:
|x′1x′n| ≥ |x1xn|.

The next elementary result assures the angle increase, in the frameworks
in which we will apply Cauchy’s Arm Lemma.

Lemma 2.8. Consider three rays r1, r2, r3 in R3, emanating from the point
w, and put τi = ∠(ri, ri+1), with 3 + 1 ≡ 1 mod 3. Then θ1 ≤ θ2 + θ3.

Proof. Imagine a unit sphere S centered on w and let {si} = ri ∩ S, and use
ρ to indicate spherical distance. Then the claim of the lemma is the triangle
inequality for spherical distances: ρ(s1, s2) ≤ ρ(s1, s3) + ρ(s2, s3).

2.3 A Rigidity Result

In this section we present a technical result for later use, which may be of
independent interest. The theorem says that two convex polyhedra that are
isometric on all but the neighborhoods of one vertex, are in fact congruent.
We also show this result cannot be strengthened: two convex polyhedra can
differ in the neighborhoods of just two vertices.

Theorem 2.9. Assume P,Q are convex polyhedra with the same number
of vertices, such that there are vertices p ∈ P and q ∈ Q, and respective
small neighborhoods Np ⊂ P , Nq ⊂ Q not containing other vertices, and an
isometry ι : P \Np → Q \Nq. Then P is congruent to Q.

Proof. The existence of ι on all but neighborhoods of p and q yields, in
particular, that the curvatures ωP (p) of P at p and ωQ(q) of Q at q are
equal, to satisfy the curvature sum of 4π (by Gauss-Bonnet).

Take a point x ∈ P joined to each vertex of P by precisely one geodesic
segment, a generic point x. Such an x maybe be found in a “ridge-free”
region of P [AAOS97]; it is equivalent to the fact that no vertex of P is
interior to C(x). Moreover, we may choose x such that ι(x) has the same
property on Q.

Denote by u the ramification point of C(x) neighboring p in C(x), i.e., the
ramification point of degree ≥ 3 closest to p. Let v be the similar ramification
point of C(ι(x)) neighboring q in C(ι(x)). Since Np and Nq are small, we
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Figure 2.5: (a) A 6-vertex polyhedron P . The F andK faces are unit squares;
B is a 1 × 1

2
rectangle, with x ∈ B. (b) Star-unfolding SP of P . ∠x1pu is

marked. (c) Moving xα on the circle arc moves the bisectors incident to u,
and so moves p1 and p2. Refolding results in a polyhedron incongruent to (a).

may assume they are disjoint from u and v and all the segments described
above.

Star unfold P with respect to x, and Q with respect to ι(x), and denote by
SP and SQ the resulting planar polygons. We’ll continue to use the symbols p
and q, u and v to refer to the corresponding points in SP and SQ respectively.
Let xi, i = 1, 2 be the images of x surrounding p in SP , and ι(xi) the similar
images in SQ. See Fig. 2.5(a,b).

By hypothesis, we have respective neighborhoods N̄p ⊂ SP and N̄q ⊂
SQ and an isometry ῑ induced by ι, with ῑ : SP \ N̄p → SQ \ N̄q. Thus
in Fig. 2.5(b), all of SP outside of the wedge (x1, u, x2) is identical in SQ.
Therefore the triangles x1ux2 and x′1vx

′
2 are congruent. Moreover, p lies

on the bisector of the angle ∠x1ux2, and q lies on the bisector of the angle
∠x′1vx

′
2. Since ∠x1pu = ∠x′1qv = π− 1

2
ω(p) = π− 1

2
ω(q), p and q are uniquely

determined. Consequently, SP and SQ coincide, and refolding according to
the same gluing identifications leads to congruent P and Q.

Remark 2.10. It is perhaps surprising that the above result cannot be ex-
tended to claim that isometries excluding neighborhoods of two vertices always
imply congruence.

Proof. If the points p1, p2 ∈ P and q1, q2 ∈ Q do not have a common neighbor
in C(x) and C(ι(x)) respectively, the above proof establishes rigidity.
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Next we focus on P , and try to find positions for p1, p2 ∈ P determined
by the hypotheses. Assume, in the following, that p1, p2 ∈ P have a common
degree-3 ramification neighbor u in C(x).

Star unfold P with respect to some x ∈ P , to SP . The region of SP
exterior to the wedge (x1, u, x2) is uniquely determined and identical in SQ.
See Fig. 2.5(c).

Take a point xα on the circle of center u and radius |x1u| = |x2u|. We
now argue that positions of xα on this circle allow p1 and p2 to vary while
maintaining all outside of the (x1, u, x2) wedge fixed.

Let ∠xαux1 = 2α. On the bisector of that angle incident to u, one can
uniquely determine a point p1 such that ∠x1p1u = π − 1

2
ω(p1). Similarly,

one can uniquely determine a point p2 on the bisector of that angle ∠xαux2,
such that ∠x2p2u = π − 1

2
ω(p2).

Thus we have identified a continuous 1-parameter family of star-unfoldings,
and consequently of convex polyhedra, verifying the hypotheses.

2.4 Vertex-Merging

Digon-tailoring is, in some sense, the opposite of vertex-merging, a technique
introduced by A. D. Alexandrov [Ale05, p. 240], and subsequently used later
by others, see e.g. [Zal07], [OV14], [O’R20]. We will employ vertex-merging
in Chapters 8 and 9, and focus on it in Part II.

Consider two vertices v1, v2 of P of curvatures ω1, ω2, with ω1 + ω2 < 2π,
and cut P along a geodesic segment γ joining v1 to v2. Construct a planar
triangle T = v̄′v̄1v̄2 of base length |v̄1 − v̄2| = |γ| and the base angles equal
to ω1/2 and ω2/2 respectively. Glue two copies of T along the corresponding
lateral sides, and further glue the two bases of the copies to the two “banks”
of the cut of P along γ. By Alexandrov’s Gluing Theorem (AGT), the result
is a convex polyhedral surface P ′. On P ′, the points (corresponding to) v1

and v2 are no longer vertices because exactly the angle deficit at each has
been sutured-in; they have been replaced by a new vertex v′ of curvature
ω′ = ω1 + ω2. So vertex-merging always reduces the number of vertices of P
by one. See Fig. 2.6.

In order to repeat vertex-merging, we need to know when there is a pair
of vertices that can be merged. This is answered in the following lemma.

Lemma 2.11. Every convex polyhedron Q has at least one pair of vertices
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Figure 2.6: (a) Q is a 5-vertex, 6-face polyhedron, symmetric about a vertical
plane through xy. Its base abc is an equilateral triangle. (b) Vertex merging
x and y by gluing a pair of xyz triangles. (c) The merging reduces Q to a
regular tetrahedron (not to same scale). Cf. Fig. 1.1(a,b).
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admitting merging, unless it is an isosceles tetrahedron or a doubly-covered
triangle.

Recall from Chapter 1 that an isosceles tetrahedron T is a tetrahedron with
four congruent faces, and each vertex of curvature π. See Fig. 1.4.

Proof. If there is a pair of vertices whose sum of curvatures is strictly less
than 2π, then vertex-merging is possible, as just described. So assume that,
for any two vertices of Q, their sum of curvatures is at least 2π. In this case,
it must be that n ≤ 4. Indeed, since

∑
v∈Q ω(v) = 4π (by the Gauss-Bonnet

theorem), if the sum of at least 5 positive numbers is 4π then the smallest
two have sum < 2π.

If n = 3, the cut locus of any vertex is a line-segment, by Lemma 2.1(i),
so Q is a doubly-covered triangle (see Lemma 2.2).

If n = 4 then necessarily all vertex curvatures of Q are π. Indeed, if the
sum of 4 positive numbers is 4π then the smallest two have the sum ≤ 2π,
with equality if and only if all are π. So Q is an isosceles tetrahedron.



Chapter 3

Domes and Pyramids

One of our goals in this work, achieved in Theorem 4.6, is to show that if
Q can be obtained from P by sculpting, then it can also be obtained from
P by tailoring. A key step (Lemma 4.1) repeatedly slices off shapes we call
g-domes. Each g-dome slice can itself be achieved by slicing off pyramids,
i.e., by suitable vertex truncations. Lemma 4.4 will show that slicing off a
pyramid can be achieved by tailoring, and thus leading to Theorem 4.6.

Our main goal in this chapter is to prove that g-domes can be partitioned
into “stacked” pyramids, a crucial part of the above process. We illustrate the
slice→ g-domes and g-dome→ pyramids of the process on a simple example,
a tetrahedron Q inside a cube P . Later (in Chapter 4) this example will be
completed by tailoring the pyramids.

3.1 Domes

As usual, a pyramid P is the convex hull of a convex polygon base X, and
one vertex v, the apex of P , that does not lie in the plane of X. The degree
of v is the number of vertices of X.

A dome is a convex polyhedron G with a distinguished face X, the base,
and such that every other face of G shares a (positive-length) edge with X.
Domes have been studied primarily for their combinatorial [Epp20], [EL13] or
unfolding [DO07] properties. In [Epp20] they are called “treetopes” because
removing the base edges from the 1-skeleton leaves a tree, which the author
calls the canopy.1 Here we need a slight generalization.

1These polyhedra are not named in [EL13].

23
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Figure 3.1: A g-dome with base 4x1x2x3 and top-canopy v1v2.

A generalized-dome, or g-dome G, has a base X, with every other face of
G sharing either an edge or a vertex with X. Every dome is a g-dome, and it
is easy to obtain every g-dome as the limit of domes. An example is shown
in Fig. 3.1, which also shows that removing base edges from the 1-skeleton
does not necessarily leave a tree: (v1, x2, v2) forms a cycle. Let us define the
top-canopy T of a g-dome G as the graph that results by deleting from the
1-skeleton of G all base vertices and their incident edges. In Fig. 3.1 the
top-canopy is v1v2.

Lemma 3.1. The top-canopy T of a g-dome G is a tree.

Proof. If G is a dome, the claim follows, because even including the edges
incident to the base X results in a tree, and removing those edges leaves a
smaller tree.

If G is not a dome, then slice it with a plane parallel to, and at small
distance above, the base. The result is a dome, and we can apply the previous
reasoning.

3.2 Cube/Tetrahedron Example

In this section we start to track an example, tailoring a cube to a tetrahedron.
P is a triangulated unit cube. Q is a right tetrahedron in the corner of P ; see
Fig. 3.2(a). Q can be obtained from P by a single slice by plane Π = p1p3p8.
The algorithm to be described in Chapter 6 will first produce two g-domes G1
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and G2, and reducing those g-domes will lead to four pyramids P1, P2, P3, P4.
Later (in Chapter 4) we will show how each of those pyramids is reduced by
digon-tailoring, finally yielding Q.

3.2.1 Slice → G-Domes for Cube/Tetrahedron

Now we describe at an intuitive level what will be proved in Lemma 4.1:
that the slice by Π can be effected by partitioning the sliced portion of P
into g-domes.

We start by rotating the plane Π about the edge p1p3 until it encounters
a face of P ; call that plane Π0 = p1p2p3. Now continue rotating until we
reach Π1 when (a) The portion of P between Π0 and Π1 is a g-dome with
base on Π1, and (b) Any further rotation would render the portion between
the planes to a polyhedron no longer a g-dome. Π1 = p1p3p7p5, because any
further rotation would isolate the face p5p6p7 of P , no longer touching Π1.
Note here the top face of the cube is triangulated with the diagonal p5p7.
See Fig. 3.2(bc). Continuing to rotate, we reach the original Π, partitioning
the g-dome illustrated in Fig. 3.2(d). So G1 has base X1 = p1p3p7p5 and
top-canopy p2p6, and G2 has base X2 = p1p2p3 and top-canopy p5p7. It is
clear that removing G1 ∪G2 would reduce P to Q.

3.3 Proof: G-dome → Pyramids

We now prove the reduction of a g-dome to pyramids, using Fig. 3.3 to
illustrate the proof details. Afterward we will return to the cube/tetrahedron
example to apply the constructive proof to G1 and G2.

Theorem 3.2. Every g-dome G of base X can be partitioned into a finite
sequence of n pyramids Pi with the following properties:

• Each Pi has a common edge with X.

• Each Gj = G \
⋃j
i=1 Pi is a g-dome, for all j = 1, ..., n.

• The last pyramid Pn in the sequence has the same base X as G.

The partition into pyramids specified in this theorem has the special prop-
erties listed. Without these properties, it would be easier to prove that every
g-dome may be partitioned into pyramids. But the properties are needed
for the subsequent digon-tailoring described in Chapter 4. In particular, the
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Figure 3.2: (a) Q in corner of cube P . (b) Partitioning sliced portion of P
into two g-domes. (c,d) G-domes G1 and G2.
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Figure 3.3: (a) A dome G. Vertex v1 of degree k1 = 6 is adjacent to X, i.e.,
there are edges v1xi. (b) G′ after removal of v1.

pyramids are “stacked” in the sense that each can be sliced-off in sequence,
with each slice retaining X unaltered.

The proof is a double induction, and a bit intricate. One induction simply
removes one vertex v1 from the top-canopy. The second induction, inside the
first one, reduces the degree of v1 to achieve removal of v1, at the cost of
increasing the degree of v2.

Proof. Let m be the number of vertices in the top-canopy T of G. If m = 1,
G is already a pyramid, and we are finished. So assume G’s top-canopy T
has at least two vertices. Choose v1 to be a leaf of T given by Lemma 3.1,
and v2 its unique parent. Let v1 be adjacent to k vertices of X. If G is a
dome, v1 has degree k + 1; if G is a g-dome, then possibly v1 has degree
k + 2. Since the later case changes nothing in the proof, we assume for the
simplicity of exposition that G is a dome. Our goal is to remove v1 through
a series of pyramid subtractions.

Let the vertices of X adjacent to v1 be x1, x2, . . . , xk. Let Π1 be the plane
x1x2v2. This plane cuts into G under v1, and intersects the edges v1xi, i ≥ 3,
in points ai. In Fig. 3.4(a), those points are a3, a4, a5, a6. Remove the pyramid
whose apex is v1 and whose base (in our example) is x1, x2, a3, a4, a5, a6, v2.

We now proceed to reduce the chain of new vertices a3, . . . , ak one-by-one
until only ak remains.

First, with the plane x2x3a4, we slice off the tetrahedron whose degree-3
apex is a3; Fig. 3.4(b). Next, with the plane x2x3a5, we slice off the pyramid
with apex a4. Unfortunately, because a4 has degree-4, this introduces a new
vertex a′4; Fig. 3.4(c). So next we slice with x3x4a5 to remove the tetrahedron
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Figure 3.4: (a) After slicing by the plane Π1 = x1x2v2. (b) Removing a3.
(c) Removing a4 creates a′4. (d) Removing a′4. (e) a6 has replaced v1 with
one lower degree. (f) Intersection points with Π2 = x2x3v2.
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whose degree-3 apex is a′4; Fig. 3.4(d). Continuing in this manner, alternately
removing a tetrahedron followed by a pyramid with a degree-4 apex, we reach
Fig. 3.4(e).

Note that v1 was connected to k = 6 vertices of X, but a6 is only con-
nected to 5: the connection of v1 to x1 has in a sense been transferred to v2.
In general, ak has degree one less than v1’s degree, and the degree of v2 has
increased by 1.

Now we repeat the process, starting by slicing with Π2 = x2x3v2, which
intersects the akxi edges at b4, . . . , bk. We remove the pyramid apexed at a6

with base (in our example) of x2, x3, b4, b5, b6, v2; Fig. 3.4(f). The same me-
thodical technique will remove all but the last new vertex bk, which replaces
ak but has degree one smaller.

Continuing the process, slicing with Πi = xixi+1v2, up to i = k − 1, will
lead to the complete removal of v1, as previously illustrated in Fig. 3.3(b),
completing the inner induction. Inverse induction on the number of vertices
of the g-dome then completes the proof: each step reduces the number of top
vertices by 1, and the degree of v2 increases by k + 1, the degree lost at v1.

With G0 = G, each Gj is the intersection of Gk−1 with a closed half-space
containing a base edge, so it is convex for all j = 1, ..., n. Indeed each Gj is
a g-dome, because all untouched faces continue to meet X in either an edge
or a vertex, and new faces always share an edge with X.

The partition of a g-dome into pyramids given by Theorem 3.2 is not
unique. For our example in Fig. 3.3(a), we finally get the pyramid apexed
at v2 in (b) of the figure, but we could as well have ended with a pyramid
apexed at v1.

We will see in Chapter 4 that one g-dome of O(n) vertices reduces to
O(n2) pyramids of constant size, and O(n) pyramids each of size O(n).

3.3.1 G-domes → Pyramids for Cube/Tetrahedron

We now return to the cube/tetrahedron example, and show that following the
proof of Theorem 3.2 partitions the two g-domes G1 and G2 into pyramids.
We will see that the two g-domes partition into two pyramids each.

The analysis for G1 is illustrated in Fig. 3.5. Note G1 has been reoriented
so that its base X1 = p1p3p7p5 is horizontal, and relabeled x1x2x3x4 to match
the proof.

We proceed to describe each step, making comparisons to Figs. 3.3 and 3.4.
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(a) In (a) of the figure, the base of the g-dome has been oriented horizon-
tally, and the correspondence between the cube labels and the labels
used in the proof of Theorem 3.2 are shown. The top-canopy of G1

is v1v2, with v1 of degree-5 and v2 of degree-3. Eventually v1 will be
removed and the degree of v2 increased by 1, as in Fig. 3.3.

(b) The first step is to slice off a pyramid apexed at v1 by the plane x1x2v2.
Due to the coplanar triangles, this has the effect of “erasing” the diag-
onal x1v1, as would have occurred if that diagonal had a dihedral angle
different from π.

(c) Next, the slice x2x3v2 cuts off a pyramid P1 apexed at v1, a pyramid
we will analyze in Section 4.4.1, leaving the shape in (d).

(d) A new vertex a3 is created by the slice in (c), with degree-4. This is
the “replacement” for v1 but of smaller degree. This corresponds to a3

in Fig. 3.4(a), although here there are no further vertices a4, . . . along
an a-chain.

(e) We again slice with x2x3v2, which reduces the degree of a3 to 3. This
a3 corresponds to b4 in Fig. 3.4(f).

(f) A final slice by x3x4v2 removes a3, leaving the pyramid P2 shown. This
completes the removal of v1 in (a), increasing the degree of v2 from 3
to 4. Because what remains is a pyramid, the processing stops.

So G1 is partitioned into two pyramids, P1 and P2, apexed at p2 and p6

respectively.
We perform a similar analysis for the simpler G2, shown in Fig. 3.6, again

reoriented so that its base p8p1p3 is horizontal and relabeled x1x2x3. Here
the top-canopy is v1v2, and the first slice x1x2v2 reduces G2 to a pyramid P2.
So G2 is also partitioned into two pyramids, P3 and P4, apexed at p5 and p7

respectively. Together G1 and G2 are partitioned into four pyramids.
We will complete this example by tailoring the four pyramids in the next

chapter.



3.3. PROOF: G-DOME → PYRAMIDS 31

Figure 3.5: (a) g-dome G1. (b) After slicing by x1x2v2. (c,d) Slicing by
x2x3v2. (e,f) Two further slices remove a3.
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Figure 3.6: (a) G2 with corresponding cube labels. (b) After slicing with
x1x2v2.



Chapter 4

Tailoring via Sculpting

In this chapter we complete the proof that one slice of P by plane Π can
be tailored to the face of Q lying in Π, following the sequence slice → g-
domes → pyramids → tailoring. The previous chapter established the g-
domes → pyramids link. Here we first prove the relatively straightforward
slice → g-domes process, and then concentrate on the more complex pyra-
mid → tailoring step.

4.1 Slice → G-domes

Lemma 4.1. With Q ⊂ P and Π a plane slicing P and containing a face
F of Q, the sliced-off portion P ′ can be partitioned into a fan of O(n) g-
domes G1, G2, . . ., a fan in the sense that the bases of the g-domes all share
a common edge of F .

Proof. Assume Π is horizontal, with Q the portion below Π and P ′ the
portion above. Denote by xi the vertices of Q in Π, i = 1, . . . ,m; call the
top face of Q with these vertices F . Let e be any edge of F , say e = x1x2,
and let F ′ be the face of Q sharing e with F . Call the plane lying on F ′ Π0.

Now imagine rotating Π0 about e toward P ′, noting as it passes through
each vertex v1, v2, . . . in that order. For perhaps several consecutive vertices,
the portion of P ′ between the previous and the current plane is a g-dome,
but rotating further takes it beyond a g-dome. More precisely, let Π1 through
vj1 be the plane such that, in the sequence

v1, v2, . . . , vj1 , vj1+1, . . . , vj2 , vj2+1 . . . ,

33
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Figure 4.1: Dodecahedron sliced by Π. The polyhedron between each pair
Πi,Πi+1 is a g-dome.

the portion G1 of P ′ between Π0 and Π1, including the vertices v1, v2, . . . , vj1 ,
is a g-dome based on Π1, but the portion rotating further to include one more
vertex, vj1+1, is not a g-dome. Π2 through vj2 is defined similarly: the portion
G2 between Π1 and Π2 including vj1+1, . . . , vj2 is a g-dome based on Π2, but
including vj2+1 it ceases to be a g-dome. Here for each Πi,Πi+1 pair, the base
X of the g-dome lies in Πi+1.

Fig. 4.1 illustrates the process. Here Π1 is through v1 = vj1 , and the last
g-dome lies between Π3 and Π.

So we have now partitioned P ′ into g-domes G1, G2, . . ..

We will invoke Lemma 4.4 (ahead) to reduce each g-dome to its base by
tailoring, in the order G1, G2, . . .. This will reduce P ′ to just the top face F
of Q.

Having established the claim of the lemma for one slice, it immediately
follows that it holds for an arbitrary number of slices. This was already
illustrated in the cube/tetrahedron example in Chapter 3, and we will use it
again in Theorem 4.6.

We should note that it is at least conceivable that only a single g-dome
is needed above. See Open Problem 18.2.
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4.2 Pyramid → Tailoring

The goal of this section is to prove that removal of a pyramid, i.e., a vertex
truncation, can be achieved by (digon-)tailoring. We reach this in Lemma 4.4:
a degree-k pyramid P can be removed by k − 1 tailoring steps, each step
excising one vertex by removal of and then sealing a digon. The first k−2 of
these digons each have one endpoint a vertex, and so leave the total number
of vertices of P at k + 1. The (k − 1)-st digon has both endpoints vertices,
and so its removal reduces the number of vertices to the k base vertices.

We start with Lemma 4.2 which claims the result but only under the
assumption that the slice plane is close to the removed vertex. Although
this lemma is eventually superseded, it establishes the notation and the main
idea. Following that, Lemma 4.3 removes the “sufficiently small” assumption
of Lemma 4.2, but in the special case of P a pyramid. Finally we reach the
main claim in Lemma 4.4, which shows this special case encompasses the
general case.

In the following, we use ∂S to indicate the 1-dimensional boundary of a
2-dimensional surface patch S.

4.2.1 Notation

To help keep track of the notation throughout this critical section, we list
the main symbols below.

• Initially P and Q are polyhedra with Q ⊂ P , with P sliced by plane Π
to truncate vertex v of degree k.

• Later we specialize P to be the pyramid sliced off.

• X = Π ∩ P is the base of the pyramid, with vertices ∂X = x1x2 . . . xk.

• The lateral faces of P are denoted by L, so P = X ∪ L.

• D(xi, yi) is a digon with endpoints xi ∈ ∂X and yi.

• Pj is the modified pyramid after j digon removals.

• C(xi, Pj) is the cut locus C(xi) on Pj.

• The first ramification point of C(xi, Pj) beyond yi is ai.

Notation will be repeated and supplemented within each proof.
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Figure 4.2: P is a prism whose top face is an isosceles right triangle. The
truncated vertex v has degree k=3. x3 is the midpoint of e3. Digon D1 ⊃ {v}
is shown red; D2 ⊃ {y1} is purple. D1 is sutured closed before D2 is excised.
The last replacement vertex yk−1 must be identical to xk.

4.3 Small volume slices

Lemma 4.2. Let P be a convex polyhedron, and Q the result obtained by
slicing P with a plane Π at sufficiently small distance to a vertex v of P ,
and removing precisely that vertex. Then Q can be obtained from P by k− 1
tailoring steps.

Proof. Let the vertex v to be removed have degree k in the 1-skeleton of P .
Let ei, i = 1, . . . , k, be the edges incident to v, and xi the intersection of the
slicing plane Π with those edges: {xi} = Π ∩ ei.

We will illustrate the argument with the right triangular prism shown in
Fig. 4.2, where k = 3 and Π = x1x2x3. Note that we do not exclude the case
when some (or all) of the xi are vertices of P .

Denote by ωP (xi) i = 1, . . . , k the curvatures of P at xi, and by ωQ(xi)
the corresponding curvatures of Q. The curvature ωP (v) will be distributed
to the xi.

In the figure, ωP (v) = 90◦, the curvatures of the three xi are 135◦, 135◦, 0◦

in P , and approximately 156◦, 156◦, 48◦ in Q. Indeed the increases sum to
90◦: 21◦ + 21◦ + 48◦.
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The goal now is to excise k − 1 digons with one end at x1, x2, . . . , xk−1,
removing precisely the surface angle needed to increase ωP (xi) to ωQ(xi).
After digon removals at x1, . . . , xi, we call the resulting polyhedron Pi.

Let a digon with endpoints xi and yi be denoted Di = (xi, yi). Cut out
from P the digon D1 = (x1, y1) containing only the vertex v in its interior,
of angle at x1 equal to ωQ(x1) − ωP (x1). By the assumption that the slice
plane Π is sufficiently close to v, the curvature difference is small enough
so that D1 includes only v. Again by the sufficiently-close assumption, we
may assume the digon endpoint y1 lies on the edge of C(x1) incident to v,
prior to the first ramification point of C(x1). After suturing closed the digon
geodesics, y1 becomes a vertex of curvature ωP (v) − (ωQ(x1) − ωP (x1)). In
the figure, y1 has curvature 90◦ − 21◦ ≈ 69◦. In a sense, y1 “replaces” v.

Next cut out a digon D2 = (x2, y2) containing only the vertex y1 in its
interior, of angle at x2 equal to ωQ(x2)− ωP (x2). The newly created vertex
y2 “replaces” y1. Continue cutting out digons Di = (xi, yi) up to i = k − 1,
each Di surrounding yi−1, and replacing yi−1 with yi.

Because these tailorings have sharpened the curvatures ωP (xi) to match
the after-slice curvatures ωQ(xi), it must be that the curvature at the last
replacement vertex yi−1 is the same as the curvature at xk: ωP (yk−1) =
ωQ(xk) (to satisfy Gauss-Bonnet). So now the tailored Pk−1 matches Q in
both the positions of the vertices xi, i = 1, . . . , k − 1, and their curvatures;
the only possible difference is the location of yi−1 compared to xk. But the
rigidity result, Theorem 2.9, implies that yk−1 = xk, and Pk−1 and Q are now
congruent.

The “sufficiently-small” assumption in the preceding proof allowed us to
assume that the digon Di = (x1, y1) endpoint y1 lay on the segment of C(xi)
incident to v prior to the first ramification point a1 of C(x1). Recall that
ω(x1) +ω(yi) = ω(v), and the further along the segment va1 that y1 lies, the
larger the digon angle at x1 is. The procedure would be problematic if the
digon angle at x1 were not large enough even with y1 at that ramification
point a1. The next lemma removes the sufficiently-small assumption in the
special case when P is itself a pyramid, and the vertex truncation reduces P
its base, doubly-covered. Following this, we will show that the case when P
is a pyramid is the “worst case,” and so the general case follows.
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4.3.1 Pyramid case

Lemma 4.3. Let P be a pyramid over base X. Then one can tailor P to
reduce it to X doubly-covered, using k − 1 digon removal steps.

Proof. We continue to use the notation in the previous lemma, and introduce
further notation needed here. Let L = P \ X be the lateral sides of the
pyramid P ; so P = L ∪ X. After each digon Di = (xi, yi) is removed and
sutured closed, the convex polyhedron guaranteed by Alexandrov’s Gluing
Theorem will be denoted by Pi. We continue to view Pi as Pi = Li∪Xi, even
though already P1, is in general no longer a pyramid. We will see that all
the digon excisions occur on Li, while Xi remains isometric to the original
base X, but no longer (in general) planar.

We will use C(xi, Pj) to mean the cut locus of xi on Pj. Regardless of
which Pj is under consideration, we will denote by ai the first ramification
point of C(xi) immediately beyond the vertex yi−1 surrounded by the digon
Di = (xi, yi).

We need to establish two claims:

Claim (1): The cut locus C(xi+1, Pi) is wholly contained in Li.

Claim (2): The digon angle αi+1 at xi+1 to ai+1 is large enough to reduce
the L-angle at xi+1 to its X-angle on the base.

Before addressing the general case of these claims, we illustrate the situ-
ation for x1, referencing Fig. 4.3. The digon D1(x1, y1) surrounding v places
y1 on the va1 segment of C(x1, P ) = C(x1). If one imagines y1 sliding along
va1 from v to a1, the digon angle at x1, call it δ1, increases. To show that
y1 can be placed so that δ1 is large enough to reduce the angle at x1 to its
angle in X will require a1 to lie in L (rather than in X).

It turns out that C(x1) ⊂ L follows from a lemma in [AAOS97].1 How-
ever, after removing D1 and invoking Alexandrov’s Gluing Theorem, we can
no longer apply this lemma. With this background, we now proceed to the
general case.

Claim (1): C(xi+1, Pi) ⊂ L. Assume we have removed digons at x1, . . . , xi,
so that Pi = Xi ∪ Li, and Li contains one vertex yi, the endpoint of the last

1Lem. 3.3: the cut locus is contained in the “kernel” of the star-unfolding which in our
case is a subset of L.
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Figure 4.3: (a) A pyramid with pentagonal base X. Shortest paths from x1

to all vertices are marked green. (b) The star-unfolding with respect to x1.
The triangles from X are blue; those from L are green. C(x1) ⊂ L is red.
The digon D1 = (x1, y1) is shaded.

digon Di removed, and Xi contains no vertices. Assume to the contrary of
Claim (1) that C(xi+1, Pi) = C(xi+1) includes a point z strictly interior to
Xi. Because z ∈ C(xi+1), there are two geodesic segments from xi+1 to z,
call them γz1 and γz2 . Because Xi contains no vertices, it cannot be that both
γz1 and γz2 are in Xi. Say that γz1 crosses Li. Let p ∈ ∂X be the first point
at which γz1 enters Xi, and let γ1 ⊂ γz1 be the portion from xi+1 to p. See
Fig. 4.4.

The geodesic segment γ1 divides Li into two parts; let L′i be the part that
does not contain the vertex yi. Join xi+1 to p with a geodesic γ2 lying in Xi.
γ2 was a shortest path to p in X, but may no longer be shortest in Xi. γ2

also divides Xi into two parts; let X ′i be the part sharing a portion of ∂X
with L′i.

Now we will argue that `(γ1) ≥ `(γ2), where `(γ) is the length of γ. This
will yield a contradiction, for the following reasons. γ1 is a shortest geodesic
to p, because it extends to γz1 , which is a shortest geodesic to z. So γ2 cannot
be strictly shorter than γ1. Therefore we must have `(γ1) = `(γ2), which
implies that p ∈ C(xi+1). But then γ1 cannot continue to γz1 beyond p, as p
is a cut point.

To reach `(γ1) ≥ `(γ2), we will use the extension of Cauchy’s Arm Lemma
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Figure 4.4: Xi is flipped above Li in this abstract illustration. Cauchy’s Arm
Lemma ultimately shows that `(γ1) ≥ `(γ2).
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described in Chapter 2. Let θXj be the angle at xj in Xi, and θLj be the angle
at xj in Li. For j > i + 1, we know that θLj > θXj because P is a pyramid
(see Lemma 2.8) and digon removal has not yet reached xj. We also know
that θXj ≤ π because X is convex. However, θLj could be nearly as large as
2π − θXj if the pyramid P ’s apex v projects outside the base X.

Let cX be the planar convex chain in ∂X that corresponds to X ′i; assume
cX is xi+1, xi+2, . . . , xj, . . . , p with angles θXj . (The case where cX is includes
the other part of ∂X, xi+1, xi, . . . , p can be treated analoguously.) Then `(γ2)
is the length of the chord between cX ’s endpoints. In order to apply Cauchy’s
lemma, we rephrase the angles at xj as turn angles τj = π−θXj . The extension
of Cauchy’s lemma guarantees that, if the chain angles are modified so that
the turn angles lie within [−τj, τj], then the endpoints chord length cannot
decrease. Roughly, opening (straightening) the angles stretches the chord.

Define cL as the planar (possibly nonconvex) chain composed of the same
vertices xj that define cX , but with angles θLj . Because θLj ≤ 2π − θXj , the
turn angles π − θLj in cL satisfy

π − θLj ≥ π − (2π − θXj ) = −(π − θXj ) = −τj .

Also, because θLj > θXj ,

π − θLj ≤ π − θXj = τj .

So the cL turn angles are in [−τj, τj], and we can conclude from Theorem 2.7
that the cL endpoints chord length `(γ1) is at least `(γ2), the cX endpoints
chord length.

We have now reached `(γ1) ≥ `(γ2), whose contradiction described earlier
shows that indeed C(xi+1) ⊂ Li.

Claim (2): αi+1 ≥ θLi+1 − θXi+1. Recall that αi+1 is the angle at xi+1 of
the digon from xi+1 to ai+1, the first ramification point of C(xi+1) beyond
the vertex yi. The claim is that αi+1 is large enough to reduce θLi+1 to θXi+1.
We establish this by removing a path from C(xi+1) and tracking angles, as
follows.

From Claim (1), C(xi+1) ⊂ Li. Let ρi,i+2 be the path in the tree C(xi+1)
from xi to xi+2. See Fig. 4.5. Removal of ρi,i+2 from C(xi+1) disconnects
C(xi+1) into the edge yiai+1, and a series of subtrees Tj. Each Tj shares a
point zj with C(xi+1). Let Dj be the digon from xi+1 to zj, and let δj be the
angle of Dj at xi+1. Finally, let ∆j =

∑
j δj.
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Figure 4.5: Star-unfolding of a pyramid with respect to xi+1. The triangles
from Xi are blue; those from Li are green. Red points are images of xi+1.
Digons are shaded. ρi,i+2 is purple; remainder of C(xi+1) is red.
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Note that all the δj angles are in Xi. In contrast, the angle at xi+1 in
the digon Di+1 = D(xi+1, ai+1) is in Li, as illustrated in Fig. 4.5. We defer
justifying this claim to later.

Cut off all Dj, and also cut off Di+1. Suture the surface closed; call it
P ∗ = X∗∪L∗. By Lemma 2.6, the cut locus C(xi+1, P

∗) is precisely the path
ρi,i+2. Therefore, by Lemma 2.2, P ∗ is a doubly-covered convex polygon,
so all angles at xj are equal above in L∗ and below in X∗. In particular,
θX
∗

i+1 = θL
∗

i+1. Now, because ∆ angle was removed from θXi+1, θX
∗

i+1 = θXi+1 −∆.
Because αi+1 was removed from θLi+1, θL

∗
i+1 = θLi+1 − αi+1. Therefore,

θLi+1 − αi+1 = θXi+1 −∆ ≤ θXi+1 (4.1)

αi+1 ≥ θLi+1 − θXi+1 (4.2)

which is Claim (2).
It remains to show that Di+1 is in Li rather than in Xi. Suppose to the

contrary that all the angle removal was in Xi. Then θLi+1 = θXi+1 −∆− αi+1.
So θLi+1 < θXi+1, which is not possible for P a pyramid. This completes the
proof of Claim (2) and the lemma.

4.3.2 General case

Lemma 4.3 is special in that P sits over a base X. In the general situation,
X is the intersection of Q with the truncating slice plane Π, but X is not a
face of Q. Rather in general, X is inside Q, the “top” of the portion Q′ of Q
below Π.

Lemma 4.4. Let Q be obtained from P by truncating vertex v. Then, if v
has degree-k, Q may be obtained from P by k − 1 tailoring steps, each the
excision of a digon surrounding one vertex.

Proof. Here we argue that the general case is in some sense no different than
the special case of P a pyramid just established in Lemma 4.3. In fact, the
exact same digon excisions suffice to tailor P to Q.

First we establish additional notation. Let Π be the plane slicing off v
above Π, and let X = Π ∩ P . Let the “bottom” part of P be Q′, with the
final polyhedron Q = Q′ ∪X. We continue to use L to denote the portion of
P above Π, so P = Q′ ∪L. After removal of digons at x1, x2, . . . , xi, we have
Pi = Q′i ∪ Li.
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Below it will be important to distinguish between the three-dimensional
extrinsic shape ofQ′i and its intrinsic structure determined by the gluings that
satisfy Alexandrov’s Gluing Theorem. We will use Q̄′i for the embedding in
R3 and Q′i for the intrinsic surface, and we will similarly distinguish between
X̄i and Xi. Note that we can no longer assume that C(xi+1, Pi) ⊂ Li, for
the cut locus could extend into Q′ (whereas it could not extend into X in
Lemma 4.3).

It suffices to show by induction that, on Pi, the following statements hold:
(a) The shortest path γi+1 joining xi+1 to yi is included in Li.
(b) The ramification point ai+1 is still on Li.
(c) The xi+1 angle αi+1 of the digon Di+1 = D(xi+1, ai+1) is larger than or
equal to ωQ(xi+1) − ωP (xi+1) (and so sufficient to reduce the curvature to
ωQ(xi+1)).

To see (a), assume, on the contrary, that γi+1 intersects Q′i. Assume, for
the simplicity of the exposition, that γi+1 enters Q′i only once, at xi+1, and
exits Q′i at p ∈ ∂X. Let γ′i+1 denote the part of γi+1 between xi+1 and p.

We now check (a) for i = 0. Q = Q′ ∪X and X is planar, hence, because
the orthogonal projection of any rectifiable curve onto a plane shortens or
leaves its length the same, γ′1 is longer than or has the same length as its
projection γ′′1 onto X. So p is a cut point of x1 along γ1, contradicting the
extension of γ1 as a geodesic segment beyond p.

By the induction assumption, all the digon excisions occur on Li; Q
′
i is

unchanged. Nevertheless, as part of Pi, neither Q̄′i nor X̄i is (in general) con-
gruent to the original Q̄ and X̄. However, if we consider Q′i and Xi separate
from Pi, we can reshape them so that Q̄′i = Q̄ and X̄i = X̄, precisely because
they have not changed. Then X̄ is planar and the projection argument used
for i = 0 works for all i.

Next we check (b) and (c) for i = 0. Consider, as in Lemma 4.3, the digon
D1 = (x1, y1) with y1 ∈ C(x1), with again a1 the first ramification point of
C(x1) beyond v. The direction at v of the edge va1 is only determined by
the geodesic segment from x1 to v, and hence is not influenced at all by Q′,
because, by i = 0 in (a), that segment lies in L.

The ramification point a1 is joined to x1 by three geodesic segments, two
of them—say γ1 and γ2—included in L. The third geodesic γ3 starts from
x1 towards Q′ and finally enters L to connect to a1. See Fig. 4.6. Because
these three geodesics have the same length, the longer γ3 is, the longer are
γ1 and γ2, and therefore more distant is a1 to v. So a1 is closest to v, and
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Figure 4.6: Three geodesics to ramification point a1 on C(x1). Dashed γ3

partially in Q′. The same situation holds under the changes: x1 → xi+1,
a1 → ai+1, v → yi, Q

′ → Q′i, L→ Li.

the segment va1 shortest, when Q′ = X and P is a pyramid. It is when va1

is shortest that there is the least “room” for y1 on va1 to achieve the needed
digon angle at x1, for that angle is largest when y1 approaches a1. Therefore,
the case when Q′ = X and P is a pyramid is the worst case, already settled
in Lemma 4.3.

Now we treat the general case for (b) and (c). Again by the induction
assumption, all changes to Pi were made on its “upper part” Li.

Because we ultimately need to reduce L to X, the angle ωQ(xi+1) −
ωP (xi+1) necessary to be excised at xi+1, does not depend on Q′i, only on Li.
Thus the argument used for i = 0 carries through. The situation depicted
in Fig. 4.6 remains the same, with x1 replaced by xi+1, v replaced by yi,
and a1 replaced by ai+1. The ramification point ai+1 is closest to yi, and the
segment yiai+1 shortest, when Q′ = X and P is a pyramid. It is when yiai+1

is shortest that there is the least “room” for yi+1 on yiai+1 to achieve the
needed angle excision at xi+1, for that angle is largest when yi+1 approaches
ai+1. Therefore, the case when Q′ = X and P is a pyramid is the worst case,
already settled in Lemma 4.3.

Note that, in the end, the digon removals in Lemma 4.2, and then in Lemma 4.3,
also work in the general case, Lemma 4.4.



46 CHAPTER 4. TAILORING VIA SCULPTING

4.4 Cube/Tetrahedron: Completion

4.4.1 Pyramid Removals

We now return to the cube/tetrahedron example started in Chapter 3. We
had reduced the sliced-off portion of the original cube P to four pyramids
P1, P2, P3, P4. Now each of these pyramids needs to be “tailored away” to
leave the goal tetrahedron Q. Fig. 4.7 shows that when processed in order,
their removal reduces the portion of P “above” Q, leaving the goal tetrahe-
dron Q.

4.4.2 Pyramid Reductions by Tailoring

Now we follow Lemma 4.4 to reduce each of the four pyramids to their bases.
We only illustrate this for the first pyramid removed, P1, with apex p2 and
base X = p1p3p6. See Fig. 4.8(a). The base is an equilateral triangle, with
edge lengths

√
2, with the apex is connected to the base vertices by unit-

length edges. Because the apex p2 is a cube corner, it has three incident
90◦ angles, so ω(p2) = 90◦. The three faces incident to p2 are 45◦−45◦−90◦

triangles. The base angles in X are 60◦. So each digon must reduce the
incident 90◦ angles by 30◦ to match 60◦. Starting with p1, the digon geodesics
are ±15◦ around the p1p2 edge.

The geometry is clearest if we unfold P1’s lateral faces into the plane,
as shown Fig. 4.8(b). Excising the first digon and sealing the cut results
in a new polyhedron, with the apex p2 replaced by a new vertex, call it y,
of curvature ω(y) = 60◦ (because the two digon angles must sum to the
90◦ curvature at p2). Unfortunately, we cannot display this new polyhedron
because of the difficulty of constructing what AGT guarantees exists.

Lemma 4.4 says that just one more digon needs removal (because p2 has
degree k = 3), again ±15◦ this time around the p3y edge. This removal
reduces P1 to its equilateral triangle base, and, despite the nonconstructive
nature of AGT, we know that the full polyhedron is exactly what we illus-
trated earlier in Fig. 4.7(b).

One further remark on the shape of P1 after excision of the first digon.
If we imagine P1 standing alone on its base X as illustrated in Fig. 4.8(a),
rather than as part of the full cube polyhedron, then it is not difficult to
reconstruct the shape of P ′1. It is a flat doubly-covered quadrilateral, with
the triangle p3yp6 flipped over and joined to the p3p6 edge of the equilateral
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Figure 4.7: Pyramid removals. The apex of the pyramid to be next removed
is highlighted. From (a) to (b), the pyramid P1 with apex p2 and base p1p3p6

is removed. Then P2 apexed at p6 is removed, producing (c), then removing
P3 apexed at p5 leads to (d). The final removal of P4 apexed at p7, leaves
the tetrahedron Q = p1p3p4p8 previously illustrated in Fig. 3.2(a).
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Figure 4.8: (a) Pyramid P1: apex p2, base p1p3p6. (b) Excision of two digons.
Each is bound by geodesics ±15◦ about the edge to p2. After removing p2, a
new vertex y is created. The removal of y in the second excision flattens the
pyramid to its base.



4.4. CUBE/TETRAHEDRON: COMPLETION 49

triangle base X. However, with this P ′1 piece joined to the full cube, it seems
much less straightforward to determine the shape of the full polyhedron.

Each pyramid reduction proceeds in the same manner: k − 1 digons are
excised if the apex has degree-k, and the lateral faces are reduced to the
base. So P2 has apex p6 and base p1p3p5p7. After removal of three digons,
the result is as illustrated in Fig. 4.7(c). P3’s apex p5 has degree-3, so two
digon removals lead to (d). The last pyramid removed, P4, reduces to the
face p1p3p8 of Q, completing the tailoring of the cube P to tetrahedron Q.

4.4.3 Seals

After removal of the two digons illustrated in Fig. 4.8(b), P1 has been reduced
to its equilateral triangle base X. Sealing the first digon produces a seal σ1,
which is then clipped to a segment s1 by the second digon removal, which
produces σ2 along the boundary of X. The seal segments then are as shown in
Fig. 4.9(a). Fig. 4.9(b) shows the three seal segments that result by reducing

Figure 4.9: (a) Base of P1. (b) Base of P2. Seal segments: red.

P2 to its base. These depictions of the seal graph Σ will be explored in some
detail in Chapter 5.

There is an aspect of the seals we are not tracking: As can be seen in
Fig. 4.7(b,c), one of the faces of P2 is the equilateral triangle base of P1. Since
that base is already crossed by seal segment s1 when P2 is undergoing digon
removal, that segment s1 will be reflected as a cut in the reduced base of P2,
not depicted in Fig. 4.9(b). We have not attempted to track this complex
overlaying of seal cuts in the surface of P . However, we explore seals for one
pyramid tailoring in some detail in Chapter 5.
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Figure 4.10: Pyramid with regular hexagon baseX; all lateral faces congruent
triangles.

4.5 Hexagonal Pyramid Example

We now detail a more complex example following Lemma 4.3 to tailor a
pyramid P to its base X. We continue to employ the notation used in the
lemmas above. The example is shown in Fig. 4.10. X is a regular hexagon,
and L consists of k = 6 congruent, 70◦−70◦−40◦ isosceles triangles. The
curvature at the apex v is 360◦ − 6 · 40 = 120◦. The angle at each xi in X
is 120◦ whereas the angle in L is 140◦. So each digon excision must remove
20◦ from xi. As in the lemmas, we excise the digons in circular order around
∂X.

We display the progress of the excisions on the layout of L in Fig. 4.11(a).
Let v = y0 for ease of notation. D1 = (x1, y1) includes the geodesic γ1

from x1 to y0, and locates y1 on the cut locus segment as described in the
lemmas. The digon boundary geodesics each remove 10◦ from the left and
right neighborhood of x1, and meet at y1 at an angle of 100◦, which is then
the curvature at the new vertex: ω(y1) = 100◦. Notice that the digon angles
20◦+100◦ match the curvature ω(v) = 120◦ removed, as they must to satisfy
Gauss-Bonnet.

One should imagine that D1 is sutured closed in Fig. 4.11(a), producing
L1, before constructing D2(x2, y2). Let σi be the geodesic on Li that results
from sealing Di closed; σi is like a “scar” from the excision. Notice that one
of the geodesics bounding D2 crosses σ1.

This pattern continues as all k−1 = 5 digons are removed, each time
replacing vertex yi−1 with yi, flattening the curvature ω(yi) = ω(yi−1)− 20◦.
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Figure 4.11: (a) Cone L flattened; ω(v) = 120◦. Digons Di = (xi, yi−1)
shaded. Dashed lines are geodesics γi from xi to the vertex yi−1 (with y0 = v).
(b) After excising all digons D1, . . . , D5, L5 is isometric to X. Seals σ̃i are
marked.

Finally, after D5(x5, y5) is removed, y5 is coincident with x6. No further digon
removal is needed, because D5 removed 20◦ from x6. So now each angle in
Lk = L5 at all k=6 vertices is 120◦, and L5 is isometric to a flat regular
hexagon, i.e., to X.

This final hexagon is shown in Fig. 4.11(b). The images σ̃i of the seals are
in general clipped versions of σi on Li, clipped by subsequent digon removals.
The particular circular order of digon removal followed in this example and
the lemmas result in a spiral pattern formed by σ̃i. Other excision orderings,
which ultimately would result in the same flat Lk−1 (effectively proved in
Lemmas 4.2–4.4) would create different seal patterns. As mentioned earlier,
we study seals in detail in Chapter 5.

4.6 Tailoring is finer than sculpting

In this section we reach one of our main results, Theorem 4.6, which says,
roughly, that any polyhedron Q that can be obtained by sculpting P can be
obtained by tailoring P . Moreover, Lemma 4.5 shows that polyhedra can be
obtained by tailoring that cannot be obtained by sculpting. So, in a sense,
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tailoring is finer than sculpting.

Lemma 4.5. There are shapes P and sequences of tailorings of P that result
in polyhedra not achievable by sculpting.

Proof. We first tailor a regular tetrahedron T as in Example 1.1, resulting
in the kite K in Fig. 1.2(b). We now show that K cannot fit inside T ,
so it couldn’t have been sculpted from T . Assume T has edge-length 1.
Then its extrinsic diameter is 1 and its intrinsic diameter is 2/

√
3 (see, e.g.,

Theorem 3.1 in [Rou03]). Moreover, the extrinsic diameter of K is precisely
the intrinsic diameter of T , and so it cannot fit inside T .

Next we construct a non-degenerate example, a modification of the pre-
vious one. Consider a non-degenerate pentahedron F close enough to K =
oacdb in Fig. 1.2(b). For example, it could have two vertices close to the
vertex a of K. Insert into F the removed digon from T ; this is not affected
by the new vertex, because it does not interfere with the geodesic segment
from cd to o. We arrive at some surface P close enough to the original tetra-
hedron T . Therefore, the intrinsic and extrinsic diameters of P and F are
close enough to those of K and T , respectively, and the above inequality
between the extrinsic diameters of P and F still holds, because of the “close
enough” assumption.

Theorem 4.6. Let P be a convex polyhedron, and Q ⊂ P a convex polyhe-
dron resulting from repeated slicing of P with planes. Then Q can also be
obtained from P by tailoring. Consequently, for any given convex polyhedra
P and Q, one can tailor P “via sculpting” to obtain any homothetic copy of
Q inside P .

Proof. Lemma 4.1 established that one slice leads to domes, Theorem 3.2
showed that each dome leads to pyramids, and Lemma 4.4 showed that each
pyramid can be reduced to its base by tailoring. Since this holds for one
slice, it immediately follows that it holds for arbitrary slicing.

Concerning the domes → pyramids step, we note that the property that
each pyramid Pi has a common edge with X, established in Theorem 3.2,
allows reduction of the pyramids in the order that they are obtained in that
theorem. After each reduction, the result is still a g-dome, allowing iteration
until the original g-dome is reduced to its base.

For the homothet-copy claim of the lemma, shrink Q by a dilation until
it fits inside P , and then apply the reductions.
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As we mentioned in the Preface, an informal consequence of this theorem
is that P can be “whittled” to e.g., a sphere S:

Corollary 4.7. For any convex polyhedron P and any convex surface S, one
can tailor P to approximate a homothetic copy of S.

Proof. Bring a homothetic copy of S inside P . Perform a series of slicings
of P with planes tangent to S. Any degree of approximation desired can be
achieved by increasing the number of plane splicings. Call the result of these
slicings Q. Now apply Theorem 4.6.

Despite this corollary, it does not seem possible to accomplish the reverse:
to start with a strictly convex surface and tailor it to a polyhedron. However,
one can of course sculpt a surface to a polyhedron.
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Chapter 5

Pyramid Seal Graph

5.1 Pyramid Digon Removal

As we have seen in Theorem 4.6, tailoring by tracking sculpting ultimately
relies on digon removal reducing pyramids to their bases. We have illustrated
such reductions for a few low-degree pyramids in Figs. 4.2, 4.8, and 4.11. In
the latter two figures, we displayed the seals σ̃i on the base X after reduction.
It however remains difficult to grasp in detail the digon-removal process for
a pyramid P , for at least three reasons:

1. After removing the first digon D1, P1 is (in general) no longer a pyra-
mid. The difficulty of computationally realizing the subsequent inter-
mediate shapes Pi, guaranteed by AGT, makes it hard to envision the
process.

2. The seals σi that result from closing digonDi cross and clip one another.

3. The process depends on the order in which the digons are removed.

We will continue to circumvent this last difficulty by only studying the natural
order of digon removal, anchored at x1, x2, x3, . . . in counterclockwise order
around ∂X. In this section, we introduce a different way to view digon
removal that in some sense skirts the first two difficulties.

The process is complex enough to require somewhat extensive notation,
which we list in two parts before turning to examples.

55
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5.1.1 Notation I

• P : a pyramid, n vertices around base X.

• Base vertices x1, x2, . . . , xn, in counterclockwise order around ∂X.

• Apex y0 of degree-n.

• yi: apex after removing digon Di.

• Di: digon from xi to yi, surrounding yi−1.

• Li: (the remaining of the) lateral faces after removing digon Di. L0:
initial faces before any removals. The apex of Li is yi.

• Pi: The polyhedron Li∪X, guaranteed by AGT. P = P0 is the original,
before any digon removal.

We should emphasize that although Pi = Li ∪ X, in general X will not
be planar in Pi as it is in P0, and so Pi is not a pyramid, as previously
mentioned.

5.2 Cone Viewpoint

Although we do not know the structure of Pi, except at the beginning (i = 0)
and end (i = n−1), when it is P and doubly-covered X respectively, we do
know that the lateral faces Li contain only one vertex, yi, hence they form a
subset of a cone apexed at yi. Any cone can be cut open along a generator
(a ray on the cone from the apex) and laid flat in the plane. Such a layout
will have an angle gap of ω(yi) at the apex. It is especially useful to cut
along xiyi−1 before removing digon Di. We will provide several examples,
after presenting more notation. We emphasize the indices i−1, i, and i+1 in
the following, in an attempt to avoid confusion.

5.2.1 Notation II

• L̄i−1: Unfolding of Li−1 cut open along xiyi−1. So after removing and
sealing digon Di−1, but not yet Di.
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• L̄i: Unfolding of Li cut open along xi+1yi. So after removing and sealing
digon Di, but not yet Di+1. So L̄0 is L0 cut open along x1y0, and L̄1 is
L1 cut open along x2y1.

• σi = xiyi is the i-th seal after suturing closed the digon Di. We view
the seals as directed from xi to yi, so that they have distinguished left
and right sides. This direction is only used in the proofs; the seals
are illustrated as undirected segments in several figures. When the
direction plays a role, we use boldface: σi.

• Σi: the seal graph after removing digon Di. Σ0 = ∅, and Σ1 = x1y1.

• sj ⊆ σj, 1 ≤ j ≤ i, is the possibly truncated seal segment in Σi, on
the surface Pj. So, after possibly other truncations, we reach σ̃j, hence
the informal inclusion σ̃i ⊆ sj ⊆ σj; “informal” because those geodesic
segments live in different spaces.

• Si is the subset of Li bounded by x1yi and xiyi, the sealed region which
we will later prove contains Σi.

5.3 Examples

We start with P1, previously displayed in Fig. 4.8. X is an equilateral tri-
angle, with the apex centered above its centroid. Fig. 5.1 shows the removal
of n−1 = 2 digons D1, D2 that reduce L0 to the equilateral triangle base X.
Images are repeated so that in one row the transition from Li−1 to Li by
removal of Di is evident.

Next is the more complicated P2 in Fig. 5.2. Here X is a rectangle,
and three digons are removed, D1, D2, D3, before reaching X. We should
emphasize that any one of these figures could be cut out and closed to a
cone. This cone would not be rigid, and its boundary ∂X would not (in
general) be planar, as we mentioned earlier.

As a last example, we extract one row illustrating removal of D5 from a
pyramid of degree-12 in Fig. 5.3. We will refer to this figure subsequently.



58 CHAPTER 5. PYRAMID SEAL GRAPH

Figure 5.1: P1. X is an equilateral triangle. Cf. Fig. 4.9(a).
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Figure 5.2: P2. X is a rectangle. Cf. Fig. 4.9(b).
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Figure 5.3: Pyramid of n=12 base vertices xi. (a) L̄4. S4 (blue). (b) Digon
D5 (yellow). (c) L̄5. Σi in red.

5.4 Preliminary Lemmas

The viewpoint just described is simple enough to be implemented, and to
allow us to construct the seal graph Σ for any pyramid P . See ahead to
Fig. 5.8 for examples. This leads to Theorem 5.3: Σ is a tree. The proof of
this claim is somewhat intricate, and presented in Section 5.5. That proof
requires two lemmas, both involving the structure of the cut locus, which we
present first. The reader might skip these proofs until later.

Lemma 5.1. After removing digons D1, . . . , Di and closing seals σ1, . . . , σi,
C(xi+1, Pi) includes the path x1, . . . , xi, with each node in that path of degree-
2.

For example, in Fig. 5.3, i = 4 and C(x5, P4) includes x1, x2, x3, x4.

Proof. We start with the leaf xi ∈ C(xi+1), and argue that (xi, xi−1, . . . , x1) is
a path ρ in C(xi+1), i.e., that every point along ρ is of degree ≤ 2. The proof
uses techniques detailed in the proof of Lemma 4.3. In particular, Fig. 5.4
below depicts the situation abstractly, similar to Fig. 4.4 in Lemma 4.3.

First, xi is of degree-1 in C(xi+1): The pyramid edge xi+1xi is the shortest
geodesic, unaffected by the digon removals up to Di. An edge ei of C(xi+1)
starts at xi, and because of the equal angles above on Li and below on X at
xi, and because ei is bisecting, initially it starts along the geodesic xixi−1. It
then either continues to xi−1, or reaches a ramification point.
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Suppose the path continues xi, xi−1, . . . , xj, but then reaches a ramifica-
tion point r on xjxj−1. Let ρj denote this path up to r. We now analyze this
situation and show it is contradictory. Consult Fig. 5.4 throughout.

Figure 5.4: Abstract depiction of xi, xi−1, . . . , x1 path in C(xi+1) (red). X is
flipped below; Li above.

The possible geodesics from xi+1 to r are: γX on X below, γ1 and γ2 on
Li above, and possibly γ3 both above and below. Note that there can only
be the two γ1 and γ2 because there is just one vertex yi on Li.

First consider γ1, which, together with γX , encloses ρj. The planar convex
chain along ρj, xi, xi−1, . . . , xj, r is congruent above and below, because the
angles above and below are equal after digon removals. Thus the chords
connecting the endpoints of the chains are equal, and so |γ1| = |γX |.

Next consider γ2, which, together with γX , encloses xi+2, . . . , xn, x1, . . . , xj−1.
We again compare the planar convex chain with angles below on X to the
chain with angles above on Li. Because some of the angles above are strictly
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larger than their counterparts below, we can apply Cauchy’s Arm Lemma just
as we did in the proof of Lemma 4.3(Claim (1)) to conclude that |γ2| > |γX |.
Therefore γ2 cannot add to the degree of r in C(xi+1).

Finally, a geodesic γ3 that lies on both Li and X must have a portion com-
pletely above on Li, to which we may apply the same arm-lemma argument
to conclude that |γ3| > |γX |.

Therefore, r is in fact of degree 2, it is not a ramification point, and ρ
extends from xi to x1 as claimed.

Lemma 5.2. Assume the digons D1, . . . , Di have been removed and Si−1 is
the sealed region containing σ1, . . . , σi−1 (this inclusion will be proven later).
Let ai be the first ramification point of C(xi, Pi−1), on the segment yi−1ai.
Then ai 6∈ Si−1.

First we illustrate the claim of the lemma with the example from Fig. 5.3(b),
repeated as Fig. 5.5(a). In order for the lemma to be false, the situation
instead must appear as in (b) of the figure, with a5 ∈ S4.

Proof. For the purposes of contradiction, consider the situation depicted ab-
stractly in Fig. 5.5(c), with ai ∈ Si−1. By Lemma 5.1, x1, . . . , xi−1 is a path
of degree-2 nodes in C(xi, Pi−1) = C(xi). The edge yi−1ai of C(xi) bisects
the angle formed by the two images of xi. From ai, C(xi) must contain a
path ρ that connects to xi. Because ai ∈ Si−1, ρ must start with an edge to
the right of the line containing yi−1ai.

Note that yi−1 is the only vertex on Li−1, so ai is not a vertex, and there-
fore has a total surface angle θai = 2π. Lemma 2.3 requires a strictly leftward
branch at ai, left of the line containing yi−1ai. Call the path continuing this
left branch λ. This path λ is “trapped”: It cannot terminate in the inte-
rior of Si−1 because there are no vertices in that region. It cannot connect
to any one of x1, . . . , xi−1 because those nodes are degree-2. If λ crossed ρ
it would form a cycle. Therefore we have reached a contradiction, and so
ai 6∈ Si−1.

5.5 Pyramid Seal Graph is a Tree

Roughly, we prove in this section that the complete seal graph Σ = Σn, and
intermediate seal graphs Σi, have the structure of a spiraling tree. Spiral
trees—slit trees rather than seal trees—will play a significant role in Part II.
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Figure 5.5: (a) Fig. 5.3(b). (b) How a counterexample might appear. (c) Ab-
stract counterexample. Portions of C(xi) purple.
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We repeat some notation here for convenience. The sealed region Si is
bounded by the segments x1yi, xiyi, and the portion of ∂X from x1 to xi.
Also recall that each seal σj = (xj, yj) is directed from xj to yj. The seal
graph Σi is composed of segments sj, each a subsegment of σj.

Theorem 5.3. The seal graph Σi, after removal of digons D1, . . . , Di in
counterclockwise order, has the following properties:

(1) Σi ⊂ Si.

(2) Σi is a directed tree with root yi.

(3) Each segment sj of Σi is a (possibly truncated) seal σj = xjyj that
remains anchored on its xj endpoint; i.e., the truncation is on the yi-
end.

(4) Each leaf xj is the start of a directed, convex path πj to the root yi.

(5) The edges of πj are portions of seal segments of increasing indices.

(6) Along πj, lower-indexed edges terminate from the left on higher-indexed
edges.

(7) The last seal, σi = xiyi, the root segment of Σi, has no segments of Σi

incident to its right side.

The last segment of the complete seal graph Σ = Σn coincides with the edge
xn−1xn of ∂X.

We again refer to Fig. 5.3(ab). When i = 4, Σ4 satisfies the properties,
and we seek to re-establish the properties for Σ5 in (c) of the figure. We
enlarge (b) of that figure in Fig. 5.6 to track in this proof. It may also help
to consult the complete seal graphs in Fig. 5.8.

Proof. Induction Basis. These claims are trivially true for i = 0 because
Σ0 = ∅. So assume i = 1. L1 has just had the digon D1 = x1y1 excised
around y0. L̄1 is then cut open along x2y1. Σ1 is the single segment σ1 = x1y1,
and all properties are easily verified.

Induction Hypothesis. Assume that all properties hold for Σi. The
removal of digon Di+1 = xi+1yi+1 leads to Σi+1. Now we establish the prop-
erties for Σi+1.

(1) Σi+1 ⊂ Si+1. Si+1 grows on both sides: by the triangle x1yiyi+1 (clock-
wise in Fig. 5.6), and to xi+1yi+1 (counterclockwise in the figure). By
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Figure 5.6: i = 4, before removal of digon Di+1 = D5. Detail from Fig. 5.3(b).

Lemma 5.2, we know that ai+1 6∈ Si, and because yi+1 is on the yiai+1

segment of C(xi+1), we know that yi+1 6∈ Si. Therefore the triangle
x1yiyi+1 does in fact grow Si on the x1-end. On the xi+1-end, the new
seal σi+1 = xi+1yi+1 is incorporated, and all seal segments right of
σi+1 are clipped by the removal of digon Di+1. Therefore indeed Si+1

expands to include all of Σi+1.

(2) Σi+1 is a directed tree with root yi+1. We know that Σi is a directed tree
with root yi. We first argue that the seal σi+1 intersects the segments
of Σi from right-to-left, re-establishing property (7). Let γ1 and γ2 be
the left and right geodesics of digon Di+1 = xi+1yi+1. γ1 starts within
the triangle 4 = xixi+1yi, at an angle (αi+1 + βi+1)/2 left of the xi+1yi
edge of 4. Therefore γ1 cuts into Si through the xiyi edge of 4. The
segments of Σi crossed and clipped by γ1 are crossed from right-to-left.
And since i + 1 is the highest indexed seal, the segments of Σi that
meet σi+1 satisfy property (7): lower-indexed segments terminate on
the left of σi+1.1 Henceforth, we use σi+1 as determined by γ1.

By property (8), σi = xiyi is the root segment of Σi, which we now

1We should mention that this property, that σi+1 crosses segments right-to-left, is
dependent on the counterclockwise ordering of digon removal. If after removing digon Di,
we next removed some Dj with j > i+ 1, it could be that it is γ2 rather than γ1 that clips
Σi. This would result in seal graphs with a different structure.
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know is crossed by σi+1 right-to-left, say crossing at point p. Because
yi+1 6∈ Si by Lemma 5.2, σi+1 has the root yi of Σi to its right, and all
the leaves xj of Σi to its left.

Now suppose Σi+1 has an undirected cycle Φ; see Fig. 5.7. Because
Σi has no cycle, any cycle in Σi+1 must have one edge a subsegment
of σi+1. Because all of Σi right of σi+1 is removed, the cycle Φ must
“rest on” the left side of σi+1. It is clear Φ cannot rest on the xi+1p
portion of σi+1. So Φ must rest on the portion of σi+1 left of σi, as
illustrated. But then, imagining removing σi+1, Φ must have formed a
cycle Φ′ ⊃ Φ in Σi, a contradiction. Therefore Σi+1 is indeed a tree.

The remaining properties are now easily established.

(3) Because σi+1 clips segments of Σi to its right, each segment sj ∈ Σi

remains anchored on xj. And the new segment σi+1 is anchored on
xi+1.

(4) The directed, convex path πj remains, but now may by shortened where
it joins with σi+1.

(5) The segments along πj have increasing indices, possibly now including
i+ 1.

(6) We earlier established that lower-indexed segments of Σi+1 terminate
from the left on higher-indexed segments, possibly now including σi+1.

(7) The last and new seal σi+1 = xi+1yi+1 becomes the root segment inci-
dent to the root yi+1, and has no segments incident to its right side.

Finally, it is a consequence of Lemma 4.2 and the rigidity Theorem 2.9 that
yn−1 = xn so that the (n−1)-st seal coincides with the edge xn−1xn.

5.5.1 Other Digon Orderings

The proof of Theorem 5.3 depends on removing the digons in the order
x1, x2, . . . , xn−1 around ∂X. This affects Lemma 5.1’s conclusion that x1, . . . , xi
is a path in the cut locus, which then affects Lemma 5.2’s conclusion that
the ramification point ai+1 is outside the sealed region Si. In addition, which
side of the removal of digon Di+1 clips Σi is affected by knowing that xi+1

is adjacent to xi on ∂X. All of these consideration affect the structure of
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Figure 5.7: Cycle Φ is not possible: removing σi+1 extends Φ to Φ′.

the seal graph. We leave the question of whether the seal graph is a tree for
other orderings of digon removals to Open Problem 18.3.

Toward this open problem, we only show here, with the next result, what
a degree-4 vertex in Σ must look like.

In the proof below, we simplify the notation of σ̃i on the base to just σi,
keeping in mind that σi and σj formally live in different spaces,.

Lemma 5.4. If a seal graph Σ for a pyramid L has a degree-4 vertex z, then
there exist i < j < k such that σi and σj end at z, and σk passes beyond z.
Moreover, the digon excision order is Dk immediately after Dj immediately
after Di.

Proof. Consider a common point z of σi and σj, with i < j. We may assume
j > i+ 1 , since otherwise deg z = 3 in Σ.

Assume first that no other σk passes through z. Assume that deg z = 4 in
Σ. This implies that the digon Dj crosses σi and, since σi remains a geodesic
after the excision of Dj, σi must be orthogonal to both geodesics bounding
Dj. Therefore, σi creates with those two geodesics two geodesic triangles,
both of positive curvature. So each such triangle contains a vertex inside,
contradicting that Dj itself contains only one vertex.
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Figure 5.8: Four complete seal graphs.
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Assume now that σi ends at z, as does σk for some k 6∈ {i, j}. Notice that
we cannot have four σs ending at z, because for the last one arriving—say
σk—σk would create a vertex at z, which will be excised by the digon Dk+1,
breaking that degree-4 configuration at z.

So we may assume that z belongs only to σi, σj, and σk. We may further
assume, without loss of generality, that i < j < k.

Notice that both σi and σj end at z and σk does not, because otherwise
σk would create a vertex on σi (or on σj) which would be excised by the
digon Dk+1, breaking that degree-4 configuration at z.

The digon excision order follows: onlyDj could surround yi, so its excision
was just after Di, and similarly for Dj.

For a particular digon-removal ordering, consider the inverse image of Σ
on L, and denote it by χ. χ is a simple geodesic polygon surrounding v. In
Fig. 4.11(a), χ is the boundary of the gray region, effectively the union of the
digons (but recall that the digons Di live on different surfaces Pi−1; hence
“effectively”). Clearly, excising the surface bounded by χ from L all at once
achieves the same effect as excising the digons Di one-by-one.

The region of L bound by a geodesic polygon χ is a particular instances
of what we call a crest : a subset of L enclosing v whose removal and suitable
suturing via AGT will reduce L to X. Note that we allow the boundary of a
crest to include portions of ∂L, e.g., χ in Fig. 4.11(a) includes the xi as well
as the edge x5x6. In Chapter 7 we will show that it is possible to construct
crests directly on L without deriving them from digon removals.
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Chapter 6

Algorithm for Tailoring via
Sculpting

In this research we have also concentrated on achieving constructive proofs
of the theorems, constructive in the sense of leading to finite algorithms. In
this chapter we follow Theorem 4.6 to yield an algorithm for achieving the
tailoring of P to Q. Throughout we measure computational complexity in
terms of n, where n = max{|P |, |Q|} is the number of vertices of the larger
of P or Q; so |P |, |Q| = O(n).1 Our goal for all the algorithms is to achieve
polynomial-time complexity, O(nk), but we have not worked hard to lower
k, through, e.g., exploitation of efficient data structures. Instead we are
content to leave improvements for future work. We will see that k = 4 seems
to suffice.

Euler’s V−E+F theorem implies that the number of edges and faces of a
polyhedron are linearly related to the number of vertices, so all components
of P and Q are O(n). Thus for tailoring via slicing, the number of slices of
P is O(n): one slice per face of Q. Each slice leads to g-domes, each g-dome
to pyramids, and each pyramid is reduced to its base by a series of tailoring
steps: digon excisions and suturings.

We analyze the complexity in four parts, the 0-th just the conceptual
slicing of P by planes on each face of Q:

• Algorithm 0: Slice P to Q: O(n).

1A finer analysis would treat the number of vertices of Q and P independently, say, Q
with m vertices. The algorithm steps would be the same, but the complexities would be
apportioned differently.
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• Algorithm 1: slice → g-domes, following Lemma 4.1.

• Algorithm 2: g-dome → pyramids, following Theorem 3.2.

• Algorithm 3: pyramid → digons, following Lemma 4.4.

Algorithms 0, 1, 2 operate on the extrinsic 3-dimensional structure of the
polyhedra. Algorithm 3 instead processes its calculations on the intrinsic
structure of the surface.

6.1 Algorithm 1: slice → g-domes

Algorithm 1: From one slice, O(n) g-domes.

Input : One slice plane Π
Output: O(n) g-domes, a total of at most O(n) vertices.

// Consult Fig. 4.1.

Let F be the face of Q lying in Π, and e be an edge of F .
Sort vertices angularly about e. // O(n log n)
for i = 0, 1, 2, . . . , k do

Rotate Πi about e until the portion swept is not a g-dome.
// Following Lemma 4.1.

Add to g-domes list.
end
Result: List of O(n) g-domes.

Algorithm 1 follows the proof of Lemma 4.1, which clearly results in at
most O(n) g-domes, with the sum of the complexities of the g-domes for any
one slice O(n). It can be implemented to run in O(n log n) time. Therefore,
over O(n) slices, each resulting in O(n) g-dome vertices, we have at most
O(n2 log n) total g-dome complexity: O(n log n) sorting repeated O(n) times.

However, it could be that a clever choice of ordering of the slices always
results in a smaller total complexity, perhaps O(n log n). Using Ω to indicate
a lower bound,2 the question is: Might each of the Ω(n) slices from Algo-
rithm 0 lead to g-domes with a total complexity of Ω(n2), independent of the
order of slicing? Although resolving this question has only a small effect on

2For example, a constant fraction of n is Ω(n).
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Figure 6.1: Q ⊂ P . The shared base is a regular polygon of n=48 sides.
(a) One slice-plane Π0 lying on a face of Q. (b) After slicing by Π0. (c) A
second, opposite slice Πn/2.

the overall time-complexity of the tailoring algorithm, we take a detour to
explore this issue via an example in the next subsection.

6.1.1 Complexity of sculpting

Example 6.1. Consider Fig. 6.1, two nested pyramids Q ⊂ P sharing a
common regular polygon base. The combinatorial complexity of slicing P
with face planes of Q is order-sensitive: from Ω(n2) to Ω(n log n).

Proof. Let the faces ofQ ordered in sequence around the base be F0, F1, . . . , Fn−1,
each Fi determining a plane Πi. Let Pi be the polyhedron after slicing P with
planes Π0,Π1, . . . ,Πi. Π0 cuts n − 2 edges of P , as shown in Fig. 6.1(a,b),
and effectively removes half the edges of P from later slices. If P is sliced
in the order i = 1, 2, . . . , n − 2, following adjacent faces around the base,
each plane cuts a diminishing number of the remaining edges. An explicit
calculation shows that plane Πi cuts bn+1−i

2
c edges of Pi−1. And because

n−2∑
i=1

⌊
n+ 1− i

2

⌋
= Ω(n2) ,

with this plane-slice ordering, Ω(n) slices each have Ω(n) vertices, for a total
quadratic complexity, Ω(n2).
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However, if one instead orders the slices in a binary-search pattern, then
the total complexity is Ω(n log n), as we now show. Let n = 2m be a power
of 2 without loss of generality. The pattern is slicing with planes lying on
faces Fi with indices in the order

s =

(
0,
n

2
,
n

4
,
3n

4
,
n

8
,
3n

8
,
5n

8
,
7n

8
, . . .

)
.

We partition this sequence s of indices into subsequences, s = (0, s1, s2, . . . , sm),
as follows:

s1 =
(n

2

)
s2 =

(
n

22
,
3n

22

)
s3 =

(
n

23
,
3n

23
,
5n

23
,
7n

23

)
· · ·

sk =

(
j n

2k

)
, where j = 1, 3, 5, . . . , 2k−1 .

Notice that the number of indices in sequence sk, |sk| = 2k−1. As a check,
the total number of indices in s is

1 +
m∑
k=1

|sk| = 1 +
m∑
k=1

2k−1 = 2m = n .

One can calculate that the slice at i =
j n

2k
only cuts

n

2k
edges of Pi−1.

Only
n

2k−1
edges are “exposed” to Πi: for example, for k = 2 and i = 1/4,

n/2 edges are possibly available for cutting by Πi, as can be seen in Fig. 6.1(c).
However, because of the slant of Πi, only half of those, n/4, are in fact cut
by Πi.

Now we compute the total number of edges sliced by the planes following

the sequence s. Because |sk| = 2k−1, and each slice in sk cuts
n

2k
edges, the

total number of cuts over all k is

m∑
k=1

2k−1 n

2k
= n

m∑
k=1

1

2
= n

m

2
.
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And since m = log n, the total complexity is Ω(n log n), or an average of
Ω(log n) for each of Ω(n) slices.

In the absence of a resolution to this complexity question, we will assume
that Algorithm 0 and Algoirthm 1 together result in O(n) g-domes each of
O(n) vertices, produced in time O(n2).

6.2 Algorithm 2: g-dome → pyramids

Algorithm 2: Partition one g-dome to O(n) pyramids.

Input : One g-dome G of O(n) vertices
Output: O(n) pyramids, each of size O(n); and O(n2) pyramids,

size O(1).

// Following Theorem 3.2.

for each of k = O(n) vertex-degree reductions do
As in Theorem 3.2, slice with plane: O(k).
Remove pyramid P of O(k) vertices.
“Clean-up” by removing k pyramids each of size O(1).

end
Result: List of pyramids.

We follow Theorem 3.2 for partitioning each g-dome G into pyramids.
Each vertex vi of the top-canopy of G is removed, as in Fig. 3.3, until only
one remains. Removal of each vi follows the degree-removal steps illustrated
in Fig. 3.4.

Because the sum of the vertex degrees of a g-dome is 2E = O(n), the
asymptotic complexity of processing a g-dome with many vertices in its top-
canopy is no different than it is for just two vertices as in Fig. 3.3. Moreover,
we can assume that v2 has degree-3 while v1 has degree-k, with k = O(n).

First a plane slice results in a pyramid of k vertices with apex v1, which
is removed (and reduced by Algorithm 3). Next follows a “clean-up” phase
that removes O(k) pyramids each of 4 or 5 vertices, so of constant size, O(1).

This is then repeated for the new apex of degree k − 1: removal of a
pyramid of k− 1 vertices, and cleanup of O(k− 1) pyramids of constant size.
After iterating through k, k− 1, k− 2, . . ., the algorithm has sliced off O(k2)
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pyramids of constant size, and O(k) pyramids of size O(k). In the worst case
k = O(n), for a total complexity of O(n2).

6.3 Algorithm 3: pyramid → digons

Algorithm 3: Tailor one pyramid P to its base X.

Input : A pyramid P of O(n) vertices
Output: O(n) digons whose removal flattens P to X.

// Following Lemma 4.4.

// Assume apex degree-k, with k = O(n).
for each of xi, i = 1, 2, . . . , k do

Construct digon Di(xi, yi): Locate yi.
Locate yi by tracing geodesics: O(k).

end
Result: List of O(n) digons

Lastly we concentrate on the cost of removing one pyramid P of O(n)
vertices. Following Lemma 4.4, this requires O(n) digon removals. For each
digon Di(xi, yi), we need to calculate the location of yi on C(xi); then yi
becomes a vertex for the removal of the next digon Di+1. Fortunately, there
is no need to compute the cut locus C(xi).

Let us focus on locating yi, after the removal of Di−1(xi−1, yi−1) the pre-
vious iteration. Recall that yi is the only vertex on Li, so it is immediate to
find the shortest path γ from xi to yi. We know the angle θ = ωQ(xi)−ωP (xi)
needed to be removed by Di, so we know that geodesics γ1 and γ2 at angles
θ/2 left and right of γ = xiyi will meet at yi. Tracing γ1 and γ2 over the sur-
face might cross sealed digons D1, . . . , Di−1, the blueseals σi in Fig. 4.11(b).
So the cost of computing γ1 ∩ γ2 = yi is O(n).

Thus the complexity of tailoring one pyramid of O(n) vertices is O(n2).

Note that we do not need the extrinsic 3-dimensional structure of the
intermediate polyhedra guaranteed by AGT to perform the calculations, as
is evident in the example described in Fig. 4.11.
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6.4 Overall Tailoring Algorithm

Putting the three algorithm complexities together, and for succinctness ab-
breviating O(n) with n and “time-complexity” with “complexity,” we have:

(1) n slices → n g-domes, each of size n: complexity n2 log n.

(2) 1 g-dome of size n →

(a) n pyramids, each of size n: complexity n2.

(b) + n2 constant-size pyramids: complexity n2.

(3) 1 pyramid of size n → n2 to reduce to base: complexity n2.

(1) and (2) together have complexity n3, iterating over each of the n domes.
(The n log n sorting need not be repeated after the g-domes are identified.)
(3) repeats n2 over (potentially) n2 pyramids: n g-domes resulting in n pyra-
mids each. Thus the total complexity is n4. We summarize in a theorem:

Theorem 6.2. Given convex polyhedra P and Q of at most n vertices each,
and Q ⊂ P , P can be tailored to Q, tracking a sculpting of Q from P as in
Theorem 4.6, in time O(n4).
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Chapter 7

Crests

In this chapter we revisit the suggestion made at the end of Chapter 5 that
the digons to reduce one pyramid to its base could be cut out all at once. As
before, let P = L ∪X be a pyramid with base X and lateral sides L. Recall
that a crest is a subset of L enclosing v whose removal and suitable suturing
via AGT will reduce L to X.

We derive a method for identifying a crest that does not rely on digon
removals, but rather works directly on a pyramid. This allows us to achieve in
Theorem 7.5 reshaping of P to Q by the removal of crests to flatten pyramids.
We call this process crest-tailoring, in contrast to the digon-tailoring explored
in Chapter 4. It represents a tradeoff between the simplicity of digons and
the number of excisions: for digon-tailoring, O(n) per pyramid, for crests,
one per pyramid. We first illustrate the process of identifying a crest on two
example pyramids before proving that it always works.

7.1 Examples

Let P = L ∪ X with ∂X = ∂L = (x1, x2, . . . , xk) having vertices xi. The
apex is v, which projects orthogonally to v̄. We will describe the procedure
for identifying a crest first for v̄ ∈ X and then for v̄ 6∈ X. Although the cases
initially feel different, the proofs will show that they are nearly the same.

Fig. 7.1 illustrates the case v̄ ∈ X. Let Ti = xixi+1v and T̄i = xixi+1v̄.
We proved in Lemma 2.8 that the angle θ̄i at xi in X is strictly smaller than
than the angle θi on L, the sum of the angles in Ti−1 and Ti incident to xi
(as long as |vv̄| > 0).
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Figure 7.1: (a) Pyramid. (b) X with projected triangles T̄i = xixi+1v̄.
(c) Flattening of L to L̄, in this case by cutting the edge x5v. The lifted
triangles TLi are shown yellow. The crest χ is blue.
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A key definition is the lift of T̄i onto L. Let ᾱi and β̄i be the base angles
of T̄i, at xi and xi+1 respectively. On L, extend geodesic γi from xi at angle
ᾱi, and extend geodesic γi+1 from xi+1 at angle β̄i. Let vi be the point on L
at which these geodesics meet; vi is the image of v̄. (We will not establish
that indeed these geodesics meet on L until Lemma 7.3.) Then lift(T̄i) = TLi
is a geodesic triangle on L isometric to T̄i. Another way to view the lift of T̄i
is to imagine T̄i rotating about xixi+1 by the dihedral angle there and pasting
it on the inside of L.

Yet another way to view the lift is as follows. L is isometric to a cone and
can be flattened by cutting along a generator, i.e., a segment from v to ∂L.
Let L̄ be a particular flattening, with the cut generator not “near” xi just
for simplicity. Then place a copy of T̄i on L̄ matching xixi+1. Then refold L̄
to L. We will continue to reason with a flattened L̄ but remembering that L̄
is a representation of L, and so the cut edge is not relevant.

This last layout-viewpoint yields a method to construct a full crest, call
it χ. The base X, partitioned into T̄i, can be modified by opening the angle
at xi from θ̄i to θi. After opening at all xi, this figure can be superimposed
on the flattened L̄, matching the boundaries x1, . . . , xk. This is illustrated in
Fig. 7.1(c). The crest is then the portions of L not covered by the lifted T̄i.
It should be clear that cutting out χ and suturing closed the matching edges
will reduce L to X, for the T̄i remaining after removing χ exactly partition
X.

We next illustrate the case when v̄ 6∈ X; see Fig. 7.2. We perform the
exact same process of lifting triangles T̄i to L, but we clip those triangles to
X—i.e., form the polygon T̄i ∩ X—as indicated in (c) of the figure. Notice
that two triangles, T̄3 and T̄4, are removed by the clipping intersection. Again
it should be clear that cutting out χ and suturing closed will reduce L to X.

7.2 Proofs

We will need several geometric properties.
Let θ̄i be the angle at xi in X, and θi the angle at xi on L, the sum of

two triangle angles incident to xi. Then, by Lemma 2.8, θi > θ̄i.

Lemma 7.1. Let T = abc be a triangle in R3, with ab on plane Π and c
above that plane. Let c̄ be the orthogonal projection of c onto Π, and T̄ = abc̄
the projected triangle. Finally, let T r = abcr be the triangle T flattened to Π
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Figure 7.2: Following the same conventions as in Fig. 7.1: (a) Pyramid.
(b) X; v̄ 6∈ X. (c) L̄, yellow clipped lifted triangles TLi , and blue crest χ.
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Figure 7.3: Rotated apex cr and projected apex c̄ lie on same altitude.

by rotating about ab. Then cr and c̄ lie on the altitude line perpendicular to
the line containing ab.

Proof. See Fig. 7.3. The claim follows from the Theorem of the Three Per-
pendiculars. Note that T r is congruent to T .

The consequence of Lemma 7.1 is that, superimposing a lifted triangle
T̄L on a planar layout L̄ of L, the images of v in L̄ and v̄ of T̄ , lie along the
altitude of T .

The following lemma assumes that v̄ ∈ X. The case when v̄ 6∈ X will be
treated separately. Let L̄ be a planar layout of L, say, cut open at edge x1v.
Let τi = π− (βi−1 +αi) = π− θi be the turn angle at vertex xi in the layout.
Because v̄ ∈ X, τi > 0, i.e., the planar image of ∂L in L̄ is a convex chain,
and also convex wrapping around the cut edge x1v.

Let ai be the segment altitude of triangle Ti = xivxi+1 in the layout L̄.
Let ν = 2π − ω(v) be the surface angle of P incident to v.

Lemma 7.2. When v̄ ∈ X and consequentially L̄ is a convex chain x1, . . . , xk,
the following hold (with k + 1 ≡ 1 mod k):

(a) The sum of the turn angles,
∑

i τi = ν, the surface angle incident to v.

(b) The angle between ai and ai+1 at v on L is exactly equal to the turn
angle τi at vertex xi.

(c) The altitudes occur in order around v, in the sense that ai+1 is coun-
terclockwise of ai around v.
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Figure 7.4: Triangles avb and bvc turn τ at b of the convex chain abc. τ is
equal to the altitude turn α; angles of similar right triangles marked.

Proof. (a) Viewing the entire layout L̄ as a simple polygon,
∑

i τi = 2π.
But we need to distinguish between τ1 at the edge x1v cut to flatten L,
and τ ′1, the turns at the two images of x1 in L̄:

τ ′1 = 2π − (α1 + βk) = π + τ1 .

The second anomalous turn in L̄ is π − ν at v. So we have

τ ′1 +
k∑
i=2

τi + (π − ν) = 2π ,

k∑
i=1

τi = ν .

(b) This can be seen by extending Ti = xivxi+1 to a right triangle, with
right angle at the foot of altitude ai. See Fig. 7.4.

(c) This follows directly from (b). Note that here we rely on the turns τi
being positive, i.e., convex. See Fig. 7.5.

The consequence of Lemma 7.2 is that the surface angle ν around v is
partitioned by the altitudes ai in order, because

∑
i τi = ν, and the angle

between ai and ai+1 is τi. Moreover, Lemma 7.1 shows that the apexes of
each lifted triangle T̄Li lie on those altitudes, at some positive distance from
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Figure 7.5: A convex chain x1, . . . , x7 and the corresponding altitudes
a1, . . . , a7.

v. Consequently, we can connect those apexes to form a simple geodesic
polygon enclosing v on L. Because every turn angle τi is strictly less than
π, connecting two adjacent apexes along ai and ai+1 will keep v to the same
(counterclockwise) side. Call this polygon the moat M of P .1 Fig. 7.6 illus-
trates the moat for the example in Fig. 7.1(c).

Lemma 7.3. For the case v̄ ∈ X, the lifting of all triangles T̄i to T̄Li onto
L has the following properties, (where we shorten “geodesic triangle” to “tri-
angle”):

(a) Each lifted triangle T̄Li fits on L: T̄Li ⊂ L.

(b) v does not lie in any triangle T̄Li .

(c) No lifted triangle self-overlaps, and no pair of triangles overlap.

Proof. (a) Because the apex of the lifted T̄Li is on the moat M which
surrounds v, T̄Li remains on the portion of L outside the moat.

1We do not know whether M is always convex, but we only need it to be simple.
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Figure 7.6: The layout from Fig. 7.1(c) shown with moat M and altitudes ai
identified.
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(b) Therefore no T̄Li includes v.

(c) If we view the overlay of L̄ with the opening of ∂X by the angle θi−θ̄i at
each xi image, as in Fig. 7.1(c), then Cauchy’s Arm Lemma shows that
two lifted triangles cannot overlap. Suppose T̄Li and T̄Lj overlap, i < j.
Then we can identify two points pi ∈ T̄Li and pj ∈ T̄Ly that coincide in
the layout. But in X, pi and pj were separated by a positive distance
d = |pipj|. In X, draw a convex chain from pi to ∂X, around that
boundary, to pj. The layout opens this chain by the positive angles
θi − θ̄i, and so in the layout, pi and pj must be separated further than
d, a contradiction.

Lemma 7.3 shows that χ, the region of L not covered by the lifted triangles,
is indeed a crest.

We now turn to the case v̄ 6∈ X. The difficulty here is that ∂L in a layout
L̄ of L may not be a convex chain, and Lemma 7.2 relies on convexity for
the altitudes to connect to v in the same order as the vertices around X.
Indeed if v were closer the plane of X in the example in Fig. 7.2(a), then the
angle at x3 would be reflex. In general, a contiguous portion of ∂L could be
reflex. Lifting triangles incident to that reflex chain could lead to overlap,
violating (c) of Lemma 7.3.

However, as described earlier in Fig. 7.2(c), the crest is formed by clipping
the triangles T̄i to X. Triangles T̄3 = x3v̄x4 and T̄4 = x4v̄x5 in Fig. 7.2(b)
fall entirely outside X, and so play no role. The convex portion of ∂L still
satisfies Lemma 7.2, so the corresponding altitudes are incident to v in the
same order as the vertices along the convex chain. This allows us to define a
partial moat M , and then close it off to a simple polygon by a geodesic path
surrounding v. This is illustrated in Fig. 7.7.

This renders Lemma 7.3 true for the lifted triangles along the convex chain
of ∂L, which are the only ones not clipped entirely away. We summarize in
a theorem:

Theorem 7.4. A crest χ can be constructed as the portion of L not covered
by lifted triangles in the case of v̄ ∈ X, and clipped lifted triangles in the case
v̄ 6∈ X, as described above.

We remark that the same procedure will work for other points w ∈ X within
some neighborhood of v̄ ∈ X, resulting in different crests. However, a simple
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Figure 7.7: The layout from Fig. 7.2(c) shown with moat M and altitudes ai
marked. Note a3 and a4 are missing because T3 and T4 are clipped as outside
X. The green edges mark the closing of the partial moat around v.
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example shows that not every point w ∈ X will produce a crest. Consider
X = x1x2x3 an equilateral triangle of center o, and v close to o, with vo
orthogonal to X. Take w ∈ ox3 close to x3. Then the isosceles triangle
wx1x2 is larger than the isosceles triangle vx1x2, so no congruent copy of the
former can fit inside L without encompassing v and so self-overlapping.

We have this as a counterpart to Theorem 4.6:

Theorem 7.5. For any convex polyhedra P and Q, one can crest-tailor P to
any homothetic copy of Q inside P , in time O(n4), where n = max{|P |, |Q|}.

Proof. The lemmas leading to Theorem 4.6 established that ultimately we
need to tailor single vertex truncations, i.e., tailor pyramids. So the claim
follows from Theorem 7.4.

7.3 Algorithm 4: pyramid → crest

Algorithm 4: Construct a crest χ that reduces a pyramid P .

Input : A pyramid P = L ∪X of O(n) vertices
Output: Crest χ whose removal flattens P to X.

// Assume apex v degree-k, with k = O(n).
// See Figs. 7.1 and 7.2.

for each of T̄i, i = 1, 2, . . . , k do
Compute where T̄i edges (geodesics) cross xjv. // O(n).
Clip T̄i to X. // O(n).

end
Result: Crest χ.

The total cost of computing one crest χ is O(n2), and we believe there
are examples with total combinatorial complexity (number of geodesic/edge
intersections) of Ω(n2). Because this is the same complexity for reducing P
to X via digon-tailoring described in Chapter 6, the total time complexity is
the same as in Theorem 6.2.

We are assuming that the combinatorial complexity of the crest χ on L
determines the time complexity of computing the crest. However, a crest flat-
tened to the plane, not overlaid on L̄, has combinatorial complexity O(n)—
just k = O(n) (possibly clipped) triangles—and can be constructed in O(n)
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time. Perhaps an implicit representation of shortest paths could suffice for
subsequent calculations, as they do in the optimal algorithm for shortest
paths on a convex polyhedron [SS08]. Thus it may be that constructing an
implicit representation of χ could lead to a lower time-complexity, a question
we leave for future work.



Chapter 8

Tailoring via Flattening

In this chapter, we prove a completely different method for tailoring P to
Q. The method mixes digon-tailoring steps with vertex-merge steps (Sec-
tion 2.4). The result is slightly weaker than either tailoring via sculpting
(Theorem 4.6) or crest tailoring (Theorem 7.5), weaker in the sense that the
homothet of Q obtained could be arbitrarily small. Nevertheless, the proof
and algorithm have the advantage of operating entirely intrinsically: the 3D
structure of P and Q is never invoked.

The proof depends on the observation that if both P and Q are doubly-
covered polygons, it is easy to tailor one to the other: Scale Q to fit in P ,
and then cut the outline of Q from P . This can be accomplished by a series
of digon-tailorings, with each digon bounded by congruent segments on both
sides, or by truncations of several vertices at once.

At a high level, Q is reduced to a flat polygon Qflat, P is reduced to a flat
polygon Pflat and tailored to match Qflat. Finally, the steps used to reduce Q
are reversed and applied to the flat remnant of P .

In more detail, the proof (and algorithm that follows the proof) can be
summarized in these steps:

(1) Reduce P to Pflat by a series of digon tailorings.

(2) Reduce Q to Qflat by a series of vertex-mergings. Qflat is then composed
of all of Q’s surface, plus surface-inserts from the merges.

(3) Scale Qflat to Qs
flat so that Qs

flat fits inside Pflat.

(4) Trim Pflat to match Qs
flat via digon-tailoring. Call the result P s

flat.
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(5) Reverse the vertex-merging steps that reduced Q to Qflat, but now
applied to P s

flat. Each reversal step removes a surface-insert via digon-
tailoring.

The end result, call it Qt, is a polyhedron homothetic to Q, but composed
entirely of P -surface.

We now prove these steps, tracking an example that reduces a cube P to
the 5-vertex polyhedron Q in Fig. 2.6(a), repeated in Fig. 8.2(a).

8.1 Proofs

We follow the numbered outline above.

8.1.1 Digon-tailor P → Pflat

Recall that Lemma 2.2 showed that, if the cut locus C(x) is a path, then
the polyhedron is a doubly-covered convex polygon. We use this lemma to
reduce P to Pflat.

We will use the cube example from Fig. 2.2 to illustrate the steps. Assume
P is non-degenerate, i.e., not flat. Let x ∈ P be a point joined by unique
geodesic segments to all vertices of P , and let ρ be the unique path in C(x)
joining a pair of leaves of C(x), i.e., joining the vertices vi and vj of P .

Then C(x)\ρ is a finite set of trees Tk. Cut off from P each Tk by excising
digons with one endpoint at x, and the other endpoint where Tk joins ρ. In
Fig. 8.1(a), ρ connects v5 and v7, and separates four trees Ti. After sealing
each digon closed, we are left with a polyhedron Pflat whose cut locus from
the point corresponding to x is precisely ρ (by Lemma 2.2).

If the path ρ in the above proof is chosen to be as long as possible, then
Pflat has larger surface area than if ρ is short.

8.1.2 Vertex-merge Q→ Qflat

Recall from Section 2.4 that vertex-merging is in a sense the inverse of digon-
tailoring. Two vertices are merged along a geodesic γ and additional surface
in the form of two congruent triangles is sutured-in along γ. Lemma 2.11
showed that every convex polyhedron Q has at least one pair of vertices
that can be merged, unless Q is an isosceles tetrahedron or a doubly-covered
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Figure 8.1: Star unfolding of the cube in Fig. 2.2. (a) The path ρ from v5 to
v7 leaves four trees when removed from C(x). Excising four (white) digons
leaves a surface (blue), which when zipped closed folds to a doubly-covered
7-gon, both sides of which are shown in (b).

triangle. So repeatedly vertex-merge Q until it becomes flat, or is reduced
to an isosceles tetrahedron.

In our example, Fig. 8.2(a) shows Q, the same polyhedron in Fig. 2.6(a).
The first vertex-merge leads to a regular tetrahedron, (c) in the figure. As we
discussed in Example 1.3 and illustrated in Fig. 1.4, an isosceles tetrahedron
can be reduced to a doubly-covered rectangle by cutting an edge and regluing
that edge differently. Here we cut the edge cd of the tetrahedron and reglue
it by creasing at the midpoints y1, y2 of the cd slit, leading to the rectangle
shown in (d).

8.1.3 Scale Qflat → Qs
flat

The flattening of P has reduced it in size in the sense that a portion of P ’s
surface area has been excised, while the flattening of Q has augmented it
by surface insertions and so has increased Q’s surface area. We next select
a scale factor s > 0 so that Qs

flat can fit inside Pflat. Clearly this is always
possible. In our example, the scaling might result in Fig. 8.3(a). Note that
we should view the top side of Qs

flat on the top side of Pflat, and similarly for
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Figure 8.2: (a,b) Vertex-merge of xy. (Repeat of Fig. 2.6.) Green indicates
surface-inserts. (c) After first vertex-merge. (d) After second special-case
vertex-merge: doubly-covered square. (Images not to same scale.)
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the bottom sides.

Figure 8.3: (a) Q scaled to Qs
flat to fit in Pflat. (b) Trimming digon excisions

by extending the edges of Pflat in the order indicated.

8.1.4 Trim Pflat → P s
flat

As mentioned earlier, it is easy to tailor a doubly-covered convex polygon
Pflat to match a doubly-covered polygon Qs

flat that fits inside Pflat. This is in
some sense similar to sculpting Pflat → P s

flat. The differences are that (1) here
we only work in two dimensions, and (2) this 2D sculpting is an intrinsic
operation as well. Fig. 8.3(b) shows one possible sequence of digon tailorings
for our example. We extend edge e of P s

flat to a line le which intersects Pflat,
thus separating out a doubly-covered convex polygon, and repeat this for all
edges e. Then each of those convex polygons is tailored one vertex at a time,
say tracking a triangulation.

8.1.5 Reverse P s
flat → Qt

Finally we reverse the vertex-merge steps that produced Qflat, but applied
to P s

flat. In our example, the last vertex-merge was the special-case step that
produced the rectangle in Fig. 8.2(d). The reverse step cuts the top edge
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y1y2 between the two images of y, and re-joins y1 to y2, leading to the regular
tetrahedron in (c) of the figure. Reversing the first vertex-merge applied to
Q excises the inserted surface, green in (c), resulting in Qt, a polyhedron
homothetic to Q (Fig. 8.2(a) and 2.6) but composed entirely of P -surface.

8.1.6 Theorem: Tailoring via Flattening

We have established this theorem:

Theorem 8.1. For any given convex polyhedra P and Q, one can tailor P
“via flattening” so that it becomes homothetic to Q.

Remark 8.2. The result Qt obtained by Theorem 8.1 may be arbitrarily small
compared to Q.

1. The example of a regular pyramid shows that the area of Pflat may be
as small as 2/n of the original area of P .

2. The ratio between the area of Qflat and the area of Q can be arbitrarily
large.

See Fig. 8.4.

To see this, consider an isosceles trapezoid Z of base lengths 1 and
1 + 2ε, and height h. Its area is (1 + ε)h. Also consider the isosceles
triangle T obtained from Z by extending its non-parallel sides until
intersecting. An elementary geometry argument provides the height of
T , (1 + 2ε)h(2ε)−1, and the area of T , (1 + 2ε)2h(4ε)−1.

The ratio between the area of the doubles Qflat of T , and Q of Z, is
therefore

(1 + 2ε)2

4ε(1 + ε)
= 1 +

1

4ε(1 + ε)

and can be arbitrarily large for ε arbitrarily small.

The combination of Pflat small and Qflat large leads to the arbitrarily-small
claim for Qt with respect to Q.
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Algorithm 5: Tailor P to Q via Flattening.

Input : Convex polyhedra P and target Q
Output: A tailored version of P homothetic to Q

// (1) Reduce P to Pflat.

Find generic point x. // O(n4)
Compute cut locus C(x). Select path ρ. Digon removals of trees
until Pflat attained.

// (2) Vertex merge on Q repeatedly.

while Q 6= Tisos and |Q| > 3 do
Identify two vertices vi and vj such that ωi + ωj < 2π. // O(n2)
Vertex merge vi and vj, reducing Q by one vertex to Q′.
Q← Q′.

end

if Q = Tisos then // Q isosceles tetrahedron
Special tailor Q to flat rectangle Qflat.

end

// (3) Scale Qflat to Qs
flat.

Find largest inscribed and smallest circumscribed circles. // O(n).
Scale Qflat by radii ratio.

// (4) Trim Pflat to P s
flat.

Extend edges of P s
flat, triangulate each cut-off piece. // O(n2).

// (5) Reverse steps to reduce Q, each applied to P s
flat

foreach vertex-merging step applied to Q do
Reverse the step by cutting off the merge vertex.

end

Result: A 3D polyhedron Qt homothetic to Q.
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Figure 8.4: The ratio of the areas of T and Z is arbitrarily large.

8.2 Algorithm for Tailoring via Flattening

In this section, we follow the proof of Theorem 8.1 and convert it to a
polynomial-time algorithm.

As usual, let n = max{|P |, |Q|} be the combinatorial size of the poly-
hedra. We now establish an upper bound of O(n4) on the complexity of
implementing the algorithm.

Step (1) is to tailor P to Pflat using the cut locus C(x) from a “generic
point” x, i.e., one with a unique shortest path to each vertex of P . Although
it is possible the need for uniqueness could be avoided, we leave that future
work. We know of no way to find a generic x short of computing all the
“ridge-free” regions on P , which takes O(n4) time [AAOS97]. Independent
of our work here, it is a interesting question if a generic x can be computed
more quickly. We will see this O(n4) dominates the complexity of the other
calculations.

The star-unfolding SP (x) can be computed in O(n log n) time using the
complex Schreiber-Sharir algorithm [SS08], or in O(n2) time with the Chen-
Han algorithm [CH90, CH96]. SP (x) only needs to be computed once. With
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SP (x) computed, the cut locus C(x) can be found from the Voronoi diagram
of the images of x.

Step (2) is to repeatedly apply vertex-merging to Q until it is reduced
to Qflat, when |Qflat| ∈ {3, 4}. Identifying two vertices vi and vj such that
ωi+ωj < 2π can be achieved in O(n log n) time just by sorting the curvatures
ωi and selecting the two smallest. From the initial sorting onward, only
O(log n) would be needed to update the list, but we’ll see this efficiency is
not necessary.

With vi and vj selected, the shortest path γ between them needs to be
computed. Although there is a complicated optimal O(n log n) algorithm
for computing shortest paths on a convex polyhedron [SS08], that algorithm
exploits the three-dimensional structure of the polyhedron, which will not be
available to us after the first vertex-merge. As mentioned earlier, there is no
effective procedure known to construct the polyhedron guaranteed by AGT.
However, we know the intrinsic structure of the polyhedron: its vertices, their
curvatures, a triangulation. The algorithm of Chen and Han [CH90, CH96]
can compute shortest paths from this intrinsic data in O(n2) time. Repeating
this n times to reach Qflat then can be achieved in O(n3) time.

The scaling step (3) can be accomplished in linear time, O(n), as follows.
The largest circle inscribed in Pflat is computed by the linear-time medial axis
algorithm [CSW99]; say its radius is rP . The smallest circle circumscribing
Qflat is found in linear-time via Megiddo’s algorithm [Meg83]; say its radius
is rQ. Then scale Qflat by s = rP/rQ.

Trimming Pflat to P s
flat, step (4), can be accomplished in many ways. The

method we described in Section 8.1.4 can easily be implemented in O(n2)
time by ray-shooting the edge extensions, and then triangulating each convex
polygon in linear time. Likely the ray-shooting could be reduced to O(n log n)
time.

Reversing the Q vertex-merging steps, step (5), amounts to digon tailor-
ings cutting of the merged vertices on P . This can easily be accomplished
in O(n log n) time. Keeping track of the considered vertices and employed
digons gives in the end a correspondence between Qt and Q, and thus the
3D structure of Qt.

So the whole algorithm time-complexity is dominated by the O(n4) cost
of finding a guaranteed generic x.

Because the ridge-free regions are determined by overlaying n cut loci,
the regions are delimited by a one-dimensional network of segments. Thus
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choosing a random point x on P is generic with probability 1. That still
leaves the algorithm requiring O(n3) time. We believe this time complexity
could be improved, perhaps to O(n2). See Open Problem 18.1.

We repeat Theorem 8.1 with the complexity bound included:

Theorem 8.3. For any given convex polyhedra P and Q, one can tailor P
until it becomes homothetic to Q in time O(n4), where n = max{|P |, |Q|}.

Finally, we note that our model of reshaping in all cases excises just a
single vertex via a tailoring step, or inserts a single vertex via a vertex-merge
step. A rather different model, but related to the flattening algorithm above,
unfolds P and Q each to nets (non-overlapping planar polygons), and places
the unfolded Q inside the unfolded P . For example, Jin-ichi Itoh made the
following interesting suggestion:1 first star-unfold P to SP and Q to SQ,
shrink SQ to fit inside SP , then cut out SQ from SP , and refold to obtain a
homothet of Q from P .

1Personal communication, 2019.



Chapter 9

Enlarging and P -Unfoldings

In this chapter we show how to enlarge a convex polyhedron Q to some
P ⊃ Q, via tailoring. Based on this operation, we introduce the notion of a
P -unfolding and propose a few methods to accomplish it.

9.1 Enlarging and Reshaping

Previous chapters have established three methods of tailoring P to Q:

• Theorem 4.6: For Q ⊂ P , digon-tailor following a sculpting of P to Q.

• Theorem 7.5: For Q ⊂ P , crest-tailor following a sculpting of P to Q.

• Theorem 8.1: via flattening, digon-tailor P to a (possibly small) homo-
thet of Q.

If we do not have Q ⊂ P , then shrinking Q until it can fit in P leads to
a homothet of Q. All three approaches result in the homothet of Q being
composed entirely of P -surface. In the tailoring-via-flattening algorithm, Q
is enlarged with vertex-merging inserts, but the last steps remove all inserts.

In this short chapter, we explore some results that can be achieved through
a mix of vertex-merge enlarging, and tailoring. Part II will explore vertex-
merging more thoroughly.

Suppose Q ⊂ P . Then we can enlarge Q to P using any one of the three
tailoring algorithms, as follows. We first tailor P to Q, tracking the cuts and
digons removed. For crest-tailoring, we cut the boundary of crests. Then,
starting with Q, we cut each sealed geodesic or crest-boundary and insert
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the earlier removed corresponding digon or crest surface, in reverse order.
The result is that Q is enlarged by the surface insertions (of P -surface) in
the reversing process until it matches P .

If Q 6⊂ P , so P and Q are of arbitrary relative sizes, we can reshape P to
Q by first enlarging P to some P ′ ⊃ Q large enough to enclose Q, and then
tailor P ′ to Q. Here P ′ is an arbitrary polyhedron midway in the process
P → P ′ → Q; it only needs to be large enough.

These enlargings can be accomplished within the same O(n4) time com-
plexity of the tailoring algorithms. And in analogy with Corollary 4.7, en-
largings of Q can approximate any target surface S.

We summarize the above discussion in a theorem:

Theorem 9.1. Let P and Q be convex polyhedra. If Q ⊂ P , Q may be
enlarged with surface insertions to P . If Q 6⊂ P , P can be reshaped to Q
with a combination of surface insertions and excisions. Either process can
be accomplished in time O(n4), and can approximate non-polyhedral convex
surfaces.

9.2 P -unfoldings

For Q ⊂ P , we can view the enlarging of Q to P just described as “unfolding”
Q onto P . We call this a P -unfolding of Q. To our knowledge, this notion
has never been considered before. We explore it briefly here, and in more
detail in Part II.

9.2.1 P -unfoldings and Reshaping

Unfoldings of convex polyhedra to a plane have been studied extensively; see,
e.g., [DO07]. Particular attention has been paid to unfolding to few pieces, to
connected unfoldings, and to non-overlapping unfoldings. Often the goal is
to achieve a net, an unfolding to a single, simply connected, non-overlapping
polygon in the plane.

Instead of unfolding a convex polyhedron Q ⊂ P to a plane, consider the
question: Can one cut-up the surface Q so that the pieces may be pasted
onto P , non-overlapping, and so form an isometric subset of P? This is a P -
unfolding of Q, or an unfolding of Q onto P . It can be achieved via enlarging:
just enlarge Q to P , and then remove all inserted digons or crests. The result
is a subset of P isometric to the cut-up Q. Note that all three enlarging
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methods retain the entire surface of Q—the enlarging is accomplished by
insertions of surface not part of Q.

This viewpoint incidentally yields a different proof of this known result:

Corollary 9.2. Given convex polyhedra P and Q ⊂ P , the area of Q is
smaller than the area of P .

To justify the use of the term “unfolding,” we describe an example of a
simply connected P -unfolding embedding that does not achieve a net when
unfolded to a plane. Let Q be the classical thin, nearly flat tetrahedron with
an overlapping edge-unfolding. See, e.g., [DO07, Fig. 22.8, p. 314]. Take P
to be a slightly larger homothet of Q. Then the same edge-cuts that result
in overlap in the plane embed Q onto P without overlap. In a sense, it can
be easier in some cases to unfold to P than to unfold to a plane.

One focus of interest in the unfolding literature is the “fewest nets” prob-
lem [DO07, Prob. 22.1, p. 308]: edge-unfold a polyhedron into the fewest
number of nets. Of course one net would be ideal, but it is a long-standing
open problem to determine if every convex polyhedron can be edge-unfolded
to a net—Dürer’s problem [O’R13]. This suggests it could be of interest to
minimize the number of disconnected pieces of a P -unfolding of Q, a goal we
pursue in Part II. See also Open Problem 18.4.

Example: Hexagon inscribed in a triangle. Let P be a doubly-covered
triangle abc, and Q a doubly-covered hexagon inscribed in P , as in Fig. 9.1.
Digon-tailoring P to Q is achieved by excising the vertices a, b, c by cutting
digons bounded by the hexagon edges e1, e2, e3 respectively, and then sealing
the cuts closed. To enlarge Q to P by reversing the process, each of those
three edges is slit open and the pair of triangles earlier removed is sutured
back along the slit edges. To obtain a P -unfolding, we simply skip inserting
the pair of triangles. The result is a “pasting” of the two hexagons inside the
two triangular faces of P .

Note that, to reverse a sealed digon, the resulting geodesic γ is slit, but
the cut does not delete the endpoints x1, x2 of γ, as depicted in Fig. 9.2. In
other words, γ \ {x1, x2} is doubled to reproduce the digon boundary, but
there remains one copy each of the x1, x2 endpoints.

Notice that each split ei is —bluea non-contractible closed curve inside
the image of Q, so the embedding of Q onto P in this case is not simply
connected: it has three holes.
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Figure 9.1: Doubly-covered hexagon Q inscribed inside / enlarged to a
doubly-covered triangle P .

Figure 9.2: Digon x1x2 closes to geodesic γ.
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The previous example shows that the P -unfolding of Q produced by en-
larging is not necessarily simply connected.1 However, in general, that is
indeed the case, as shown by the following result. We next explain the
meaning of “in general.”

Consider the space S of all convex surfaces, endowed with the topology
induced by the usual Pompeiu-Hausdorff metric. Fix some P ∈ S. Consider
in S the subset P = PnP of all polyhedra Q ⊂ P with precisely n vertices,
with the induced topology. Two polyhedra in P are then close to each other
if and only if they have close corresponding vertices. “General” refers to
polyhedra Q in an open and dense subset of P .

Theorem 9.3. For any convex polyhedron P and any n ∈ N, there exists a
subset Q = QnP open and dense in P, such that the P -unfolding QP of each
Q ∈ Q is flat (i.e., contains no internal vertices), and is simply connected.

Proof. Assume we have some convex polyhedron Q ⊂ P such that QP con-
tains an internal vertex v, and so the curvatures of P and Q at v are equal:
ωQ(v) = ωP (v). Slightly alter the position of the vertices of Q, to get
ωQ(w) 6= ωP (u), for any vertices w ∈ Q and u ∈ P . Of course, this re-
mains valid in a small neighborhood of the new Q.

Assume now we have some convex polyhedron Q ⊂ P such that QP is not
simply connected, i.e., QP contains a noncontractible curve σ ⊂ P ∩QP . The
Gauss-Bonnet Theorem shows that the total curvature ΩQ(σ) of QP inside
σ equals the total curvature ΩP (σ) of P inside σ: ΩQ(σ) = ΩP (σ). We next
show that every such Q that violates the theorem can be approximated with
polyhedra that do satisfy the theorem.

Slightly alter the position of the vertices of Q, to get a new polyhedron
Q′ on which the following property (V) is verified. (V): any partial sum of
vertex curvatures is different from any partial sum of vertex curvatures in
P . This implies that, for any simple closed curve τ on Q′, ΩQ′(τ) cannot be
written as the sum of vertex curvatures of P . Therefore, Q′P has no curve in
common with P , noncontractible in Q′P . And so Q′ does satisfy the theorem.

Since the property (V) is valid on a neighborhood N of Q′, it follows that
all polyhedra in N do satisfy the theorem.

1Notice that we do not require path-connectivity for the definition of simple connec-
tivity.
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9.2.2 P -unfoldings and the WBG Theorem

In this section we show that the P -unfolding question can also be answered by
applying the powerful hinged variant of Wallace-Bolyai-Gerwien dissection
theorem. However, this will result in a “pseudopolynomial number of pieces”
and pseudopolynomial running time [AAC+12].2

The Wallace-Bolyai-Gerwien (WBG) Theorem states that any two sim-
ple polygons with equal area can be dissected into finitely many simple con-
gruent polygons. It was strengthened in the paper, “Hinged Dissections
Exist” [AAC+12], where it is shown that the pieces can be chosen in an
arcwise-connected chain, i.e., the dissection can be hinged at vertices along
that chain.

Theorem 9.4. Given convex polyhedra P and Q of at most n vertices each,
and Q ⊂ P , a connected P -unfolding of Q can be determined in pseudopoly-
nomial number of pieces and pseudopolynomial running time, following the
WBG theorem and the hinge-dissection.

Proof. We start with a quote from [AAC+12]:

“One interesting consequence of [our] theorem is that any finite
set of polyhedral surfaces of equal surface area have a common
hinged dissection: It is known that every polyhedral surface can
be triangulated and then vertex-unfolded into a hinged chain of
triangles [DEE+03]. Our results (specifically Theorem 6) show
how to construct a single hinged chain that can fold into any
finite set of such chains, which can then be folded (and glued)
into the polyhedral surfaces.”

A vertex-unfolding of a triangulated polyhedron is a chain of triangle con-
nected at vertices. A vertex-unfolding of a triangulated cube is shown in
Fig. 9.3.

Let AQ and AP be the areas of Q and P . Triangulate and vertex-unfold
both P and Q. The plan is to show that AQ can “fit” exactly within a
sequence of P ’s triangles, with at most one of P ’s triangles partitioned into
two triangles.

2They define pseudopolynomial as follows: “pseudopolynomial means polynomial in the
combinatorial complexity (n) and the dimensions of an integer grid on which the input is
drawn.”
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Denote by T1, ..., Tm the triangles in the chain corresponding to P , and by
aj denote the area of the Tj, j = 1, ...,m. So we have AQ < AP =

∑m
j=1 aj.

Then there exists 1 ≤ h ≤ m such that a1 + ... + ah−1 ≤ AQ < a1 + ... +
ah. Triangle Th is then the transitional triangle with respect to area in the
sequence of triangles.

Figure 9.3: Area AQ (shaded) in vertex-unfolding of a triangulated cube.
Th = xyz. Based on Fig.2(a) in [DEE+03].

Now we further dissect the triangle Th into two parts, one of which has
area c = AQ− (a1 + ...+ ah−1). Specifically, let Th = xyz and choose a point
w ∈ yz such that |w − y|/|z − y| = c/ah. Then the area A′ of the triangle
xyw is equal to c/ah of the area of Th (because both triangles have the same
altitude through x).

Therefore, in the chain of triangles obtained from P , we can find an
arcwise-connected subchain of total area equal to AQ, possibly after parti-
tioning one triangle.

Then Theorem 6 in [AAC+12] constructs a single hinged dissection chain
of the triangles forming Q into the triangles up to Th of P . Then the Q-chain
triangles can be placed inside the P -chain triangles, achieving a connected
P -unfolding of Q.

The “pseudopolynomial number of pieces” and pseudopolynomial running
time follows from [AAC+12].

Note that although the P -unfolding constructed in this theorem’s proof is
connected, its interior is not connected.
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Chapter 10

Introduction to Part II

In the second part of our monograph we focus on the operation of vertex-
merging on a convex polyhedron P . Used before as a proof technique by
several authors, starting with A.D. Alexandrov, this operation has never
before been considered, to our knowledge, as a main object of study. The
operation is defined in Chapter 2, Section 2.4, and we employed it in Part I,
in Chapters 8 and 9. We explained in Chapter 8 how vertex-merging is in
some sense the inverse of digon-tailoring: instead of cutting off a vertex v
by excising a digon, vertex-merging slits a geodesic segment connecting two
vertices v1 and v2, and inserts a pair of triangles that flatten v1 and v2 and
introduce a new vertex v with curvature ω(v) = ω(v1) + ω(v2).

We called the geodesic segment that results from suturing-closed the digon
boundary a seal. We will call the vertex-merge geodesic segment a slit.

A polyhedral surface S that admits no vertex-merging is irreducible. By
Lemma 2.11, the irreducible polyhedra are isosceles tetrahedra and doubly-
covered triangles.

Vertex-merging reductions—the processes of repeatedly reducing the num-
ber of vertices via merging, from P to an irreducible polyhedron—are studied
in Chapter 11 together with their induced slit graphs. This can be seen as
a theoretical exploration as well as a refinement of a proof idea employed in
Chapter 8.

Particularly interesting are the cases when slit graphs are forests of trees,
because then the unfolding (i.e., the image) PS of P onto the irreducible
surface S has connected interior. Even in this case, obtaining a net from PS
is not always obvious, as shown in Section 11.7. The overall goal, and the
guiding thread, of this Part II, is to identify slit graphs that are forests of
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trees.
Our basic algorithmic idea for finding such forests is a certain type of

spiraling slit tree. We present this first in the planar limit case in Chapter 12.
The analysis is based on planar convex hulls of finitely many points, viewed
as vertices of zero curvature. The boundary of such a hull is equivalently
obtained as the minimal length enclosing polygon of the given set of points.

Next, we aim to extend to convex polyhedra this idea of spiraling slit
trees. Toward this goal, we partition the surface into two half-surfaces, shar-
ing a simple closed quasigeodesic Q as a common boundary. Every convex
polyhedron has at least three such quasigeodesics [Pog49][Pog73].

So we are led first to consider, on convex polyhedra, the notions of con-
vexity and convex hull (in Chapter 13) and then the notion of a minimal
length enclosing geodesic polygon (in Chapter 14). Although identical in
two dimensions, these notions are not equivalent in our framework. As far
as we know, they have not been investigated in detail on convex polyhedra.
Given their importance in the plane, we believe they have a certain interest
in their own right.

In Chapter 15 we show that the extension to half-surfaces (bounded by
Q) of the planar spiraling algorithm works well for both the convex hull and
the minimal length enclosing geodesic polygon, of all vertices inside a simple
closed quasigeodesic.

The next step, in Chapter 16, is to join the two slit trees, previously
obtained for half-surfaces. Thus we obtain unfoldings of the starting poly-
hedron P onto the union of two cones, or onto to a cylinder. The last case
appears if Q contains at most two vertices, when rolling the cylinder on a
plane leads to a net of P .

In the penultimate Chapter 17, we prove the existence of a non-empty
and open set Q≤2 of convex polyhedra R, each polyhedron R ∈ Q≤2 having
a simple closed quasigeodesic with at most two vertices. We also conjecture
that such a quasigeodesic exists on all P , which would lead to a net of P by
rolling.

We end with a list of open problems from both Part I and II in Chapter 18.



Chapter 11

Vertex-Merging Reductions
and Slit Graphs

In this chapter we initiate the systematic study of consecutive operations of
vertex-merging, already used in Chapter 8. We introduce vertex-merging re-
ductions and their associated slit graphs, and derive their basic properties for
later use. Several examples and open problems are discussed. Our main goal,
carried out over several chapters and topics, is to relate vertex-mergings to
unfoldings and nets. First steps toward this goal are reached in Theorem 11.5
and the discussion that follows in Section 11.6.

11.1 Slit Graphs for Vertex Mergings

Recall from Section 2.4 and the Introduction to Part II that merging of
vertices v1 and v2 is only possible (by Lemma 2.11) when their curvatures
ω1, ω2 satisfy ω1 +ω2 < 2π. The vertex-merging irreducible surfaces (in short,
vm-irreducible) are doubly-covered triangles and isosceles tetrahedra.

A vertex-merging reduction1 (in short, a vm-reduction) of a convex poly-
hedron P is a maximal sequence of consecutive vertex-merging steps starting
from P ; maximal, in the sense that it reduces P to a vm-irreducible surface
S.

Explicitly, during a reduction process we obtain a sequence of convex
polyhedral surfaces P = P0, P1, . . . , Pk = S, with S vm-irreducible, and

1The term “reduction” refers to the number of vertices. The surface area increases at
each step.
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piecewise isometries ιj : Pj → Pj+1. Of course, each ιj is a polyhedral-
unfolding of Pj onto Pj+1, as is ι = ιk−1 ◦ ιk−2 ◦ . . . ι0 : P → S, where ◦ is the
composition of functions. Put PS = ι(P ) ⊂ S.

With some abuse, in the following we shall sometimes consider all isome-
tries above as identities, thus identifying Pj and ιj(Pj) ⊂ Pj+1, for j =
0, . . . , k − 1.

The slit graph for a vertex-merging reduction ι = ι : P → S is the trace on
P of all geodesic segments used during the reduction, called slits. Explicitly,
at each reduction step we use a geodesic segment γj on Pj along which we
merge two vertices of Pj. Notice that ῑj = ιj−1 ◦ . . . ◦ ι0 : P → Pj, hence the
inverse (ῑj)

−1 : Pj → P maps Pj to P . The slit graph Λ is the union for all
j = 0, . . . , k − 1 of the slits λj = ῑ−1

j (ῑj(P ) ∩ γj). Note that only portions of
a slit γj on Pj might lie on P and so be part of Λ ⊂ P .

The importance of studying slit graphs will become apparent later; see
Section 11.6 and Chapter 16.

Consider now the vm-reduction ι : P → S and its inverse process, from
the irreducible surface S to P . Explicitly, at each step of this reverse pro-
cess, we tailor a digon (the one inserted for vertex-merging). Then the slit
graph Λ of P , for the vm-reduction ι, is precisely the seal graph Σ for the
corresponding tailoring of S to P , studied in Chapter 5.

The next result shows that the slit graph is composed of as many geodesic
segments as steps in the reduction process.

Lemma 11.1. For any vertex-merging reduction of any convex polyhedron,
all slits are non-degenerate geodesic segments.

Proof. Vertex merging is an intrinsic process. The proof idea below is based
on a convenient way of viewing it.

Assume we executed j steps from a reduction process, starting from P and
reaching Pj. Consider a geodesic segment γ between vertices v1, v2 ∈ Pj with
ω1 + ω2 < 2π. Also consider geodesics γ1, γ2 starting at v1 and v2 such that,
together with γ, they bisect the complete angles at v1 and v2, respectively.2

Also consider a neighborhood N of the polygonal path composed by γ1, γ
and γ2, containing no vertex of P excepting v1, v2. See Fig. 11.1(a). Then,

2If γ is the unique geodesic segment joining v1, v2 then γ1 contains a geodesic segment
included in C(v2), and similarly for γ2.
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Figure 11.1: (a) Neighborhood N of geodesic γ connecting v1 to v2. (b) N
folded to a doubly covered domain D.

after merging v1 and v2, N is isometric to a doubly covered planar domain
D, as in (b) of the figure.

Retain the same notation for D. Merging the vertices v1 and v2 can thus
be represented in the plane, by the use of D. There, it means extending the
edges edges γ1, γ2 beyond v1, v2, until their intersection at v12. So each newly
created edge (say v1v12) is the extension of an edge of D, which derives from
a geodesic on Pj (γ1 in this case). That is, v1v12 is included in a geodesic
which cannot be new from one end to the other.

Applying the previous reasoning to γ, which is already maximal with
respect to inclusion, shows that it contains a geodesic subsegment already
existing on Pj−1 and, inductively, we find a (possibly smaller) geodesic sub-
segment of γ existing on P .

A nearly immediate consequence of the preceding lemma is this:

Corollary 11.2. For a polyhedron P of n vertices, the collection of slits (the
slit graph) cuts P into at most O(n2) pieces.

Proof. Because each slit is a geodesic segment, each pair of slits cross at
most once. So the slits are pseudo-segments, subsegments of pseudo-lines.
(Pseudo-lines are curves each pair of which intersects at most once, where
they properly cross.) With O(n) slits, the arrangement of pseudo-segments
on the planar surface of P has combinatorial complexity O(n2), and in par-
ticular, has at most O(n2) cells [AS05].

Despite the possibly quadratic complexity of the complement of the slit
graph, in the end the slit graph has only 3 or 4 components, as established
in the following lemma.
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Lemma 11.3. The slit graph of any vm-reduction process ι : P → S has at
most nS ∈ {3, 4} components, where nS is number of vertices of S.

Proof. Every slit λ ∈ Λ is included in a geodesic γ whose isometric image
γj ⊂ Pj creates a merge-vertex outside of P . With some abuse, say λ = γj∩P .
By Lemma 11.1, λ is a non-degenerate geodesic segment, hence it is included
in ∂PS. But S has at most nS vertices, and each component of S \PS has at
least one vertex, hence S \PS has at most nS components. The boundary of
each component is a geodesic polygon Γ (see Figure 11.2(a)), so its inverse
image ι−1(Γ) is a connected subgraph of Λ containing λ. Therefore, Λ has at
most nS components.

11.2 Example: Reductions of Flat Hexagon

Consider a doubly-covered regular hexagon H = x1x2 . . . x6. The curvature
at each vertex is 4π/6 = 2π/3. We describe two different merge sequences.

Assume first that we vertex-merge vertices two-by-two in increasing order
of indices, so we flatten the six original vertices and create three new vertices
x12, x34, x56, each of curvature ω12 = ω1 + ω2 = 4π/3. The resulting surface
is a doubly covered equilateral triangle of area 1.5 times larger than the area
of H. See Fig. 11.2(a,b). The slit graph in this case is a forest composed of
three single-edge trees, every other edge of H. This shows that the slit graph
for a vertex-merging reduction is not necessarily connected.

Note that for this example, digon-tailoring the equilateral triangle in (b)
to H via sculpting produces the same seals as the digon-tailoring via vertex-
merging produces slits.

Notice that we cannot vertex-merge x12 with xj, 3 ≤ j ≤ 6, because
the resulting curvature would be exactly 2π, violating the necessary merge
condition. Therefore, no matter in which order we vertex-merge the vertices
x3, . . . , x6 in pairs, the resulting slit graph will be a forest of three single-edge
trees. Similar reasoning shows that the slit graph for any vertex-merging
reduction of H is never connected.

On the other hand, for the example presented earlier in Fig. 2.6, the slit
graph is a single-edge tree, hence connected. Moreover, each vm-reduction
sequence of a non-isosceles tetrahedron consists of a single vertex-merging
operation, yielding a doubly covered triangle. So for these surfaces, the slit
graph for a vertex-merging reduction is always connected.
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Figure 11.2: (a) Doubly-covered hexagon H with slits marked (red). (b) The
result after three merges. (c) Same H but different merge sequence. (d) Fi-
nal equilateral triangle after vertex-merging (not to same scale as (c)). Blue
indicates front surface of the original H, tan back surface, and yellow in-
sertions. The back face is symmetric to the front face. The images of the
vertices x1 and x6 are on the back face, opposite to v3 and v4, respectively.
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This leads us to consider the following question, a partial answer of which
will be given in the following sections.

For which convex polyhedra does there exist a vm-reduction whose slit
graph is connected?

Next we examine a different vertex-merge ordering: merging x1 and x3

on the front of H, x2 and x5 on the back, and x4 and x6 on the front. This
produces another doubly covered equilateral triangle, say T ,3 of area 2.5
times larger than the area of H. See Fig. 11.2(c,d).

In particular, the P -unfolding (in the sense of Chapter 9) HT of H onto
T is not simply connected, as for example, the boundary of the v1v3 slit is
a non-contractible cycle; see Fig. 11.2(d). However, H itself has not been
disconnected by the vertex-merging slits.

Clearly for any given P , different vertex-merging reductions of P lead
to different surface areas of S. We leave to Open Problem 18.7 exploring
bounds on, or how to achieve, the min or max surface area.

11.3 Example: Reductions of Cube

In this section we present two vm-reduction processes for the cube.

The first reduction, illustrated in Fig. 11.3, reduces the cube to a dou-
bly covered square, which is a degenerate isosceles tetrahedron and so vm-
irreducible. In any order, slit the top front and back edges, and the bottom
front and back edges, and vertex-merge their endpoints. The curvature at
each cube corner is π/2, so the triangle inserts are each isosceles right trian-
gles, a pair of which flatten the vertices to which they are incident. The slit
graph is a forest of four single-edge trees.

The second merge example is more intricate; it is illustrated in Fig. 11.4,
and will be revisited in Chapter 16. It reduces the cube to a doubly covered
triangle, (b) of the figure. We now describe the reduction.

First v7, v8 are merged to produce v78, just as in the previous example
(although in (a) of the figure the triangle inserts are shown coplanar with
the top T of the cube). Next v78 is merged with v5, creating v578. Note
that the slit geodesic v5v78 crosses the slit v7v8, and so the inserted triangle

3The intermediate shapes guaranteed by AGT are, however, not flat as they were in
the previous example, but rather have positive volume. Only the final shape is flat.
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Figure 11.3: (a) A cube and its vm-reduction. (b) The corresponding vm-
irreducible surface. The pattern on the back side is similar, except with
R→ L. Inserted triangles in yellow.

pair separates the top 4v7v8v78 (but not its mate underneath). It is not
straightforward to track the consequence of each insertion.

The same two merges are mirrored on the cube bottom face B: v1 and
v2, and v3 with v12. Finally, v4 and v6 are merged. So the five merges have
reduced the eight cube vertices to just three: a doubly-covered triangle. It is
shown unfolded in Fig. 11.4(b). Note that the three vertices of this triangle,
v578, v123, v46, are each surrounded by a polygonal domain of triangle inserts.
This follows because all the cube vertices have been flattened.

The slit graph in this example has three components, satisfying Lemma 11.3.

11.4 Example: Icosahedron

We next detail using vertex-merges to reduce an icosahedron to a doubly
covered triangle, without disconnecting the icosahedron surface. We will
revisit and modify this example in Chapter 16, where further details will be
provided.

We label the 12 vertices of P as shown in Fig. 11.5. We will merge in
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Figure 11.4: (a) Slits in red. Vertex merging: 1 + 2 → 12. 7 + 8 → 78.
5 + 78 → 578. 3 + 12 → 123. 4 + 6 → 46. (b) The doubly covered triangle
has vertices at 578, 123, 46. The triangle is a right isosceles triangle. Cube
surface in blue. Image of the slit graph in red.
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sequence five vertices, v1, v2, v3, v4, v6, a merge affecting three of the triangles
incident to the top vertex v6. Symmetrically, we merge five bottom vertices,
v11, v10, v9, v8, v12. Each of these sequential merges results in a merge vertex
of curvature 5

3
π, the sum of five 1

3
π curvatures. Finally, we merge v5 and

v7, cutting across the middle band of triangles, creating a merge vertex of
curvature 2

3
π. (So the total curvature is (5

3
+ 5

3
+ 2

3
)π = 4π, satisfying the

Gauss-Bonnet theorem.) The resulting doubly covered triangle abc has angles
30◦, 30◦, 120◦.

Figure 11.5: Labels i for vertices vi.

We now detail the top sequential merge of five vertices. Each of the four
merges i is accomplished by inserting two copies of a triangle Ti, whose apex
is the merge vertex mi.

v1 + v2 → m1 , T1

m1 + v3 → m2 , T2

m2 + v4 → m3 , T3

m3 + v6 → m4 , T4 .

(Here we are using ‘+’ and ‘→’ informally to mean ‘merge’ and ‘creating’
respectively.) The merge of mi to the next vertex vi+2 slits a geodesic γi+1

from mi, down one copy of Ti, onto P at the point we call m′i. This geodesic
crosses the previous geodesic cut γi from mi−1 to vi+1 at m′i. So m′i is a point
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Figure 11.6: Four geodesic slits on P , each entering P at m′i. v6 is the top
vertex of P .
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on P , whereas mi is not on P , but rather on Pi, the intermediate polyhedron
after the i-th merge. In Fig. 11.6 illustrates the four merge cuts on P , with
just T1 shown to illustrate γ2 crossing from T1 onto P at m′1.

Returning to Fig. 11.5, we merge five vertices on the top side of P , and
symmetrically five on the bottom side, and two connecting across the “equi-
torial” band of triangles. These merges reduce the original 12 vertices to 3,
so the result is a doubly covered triangle. The slit graph is a forest of three
trees.

The resulting doubly covered triangle abc is shown in Fig. 11.7, cut open
so that both sides can be seen. It may not be obvious, but the white regions in
Fig. 11.7 form a non-overlapping net of the icosahedron, when, for example,
the doubly-covered triangle is cut along edges ac and bc as illustrated.

Figure 11.7: Icosahedron surface is white, triangle inserts (merge domains)
colored. 4abc′ is the back side of 4abc, with c = c′ identified.
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11.5 Example: Hexagonal Shape with Cycle

The next example shows that the slit graph could have a cycle. P is the
convex hull of two similar hexagons in parallel planes, separated by a distance
h. Label the top hexagon with vertices v1, . . . , v6, and the larger base hexagon
x1, . . . , x6. See Fig. 11.8. Note that as h→ 0, the curvature ω(vi)→ 0. Let

Figure 11.8: Three vertex-merge slits (red) will form a cycle abc.

h = ε be a small positive height, so ω = ω(vi) is small.
Now we are going to merge v1 +v4, then v2 +v5, and finally v3 +v6, where

again + means “merge.” The merge of v1 and v4 is accomplished by a pair
of triangles with angles ω/2, ω/2, π − ω. With ω small, the inserted digon
D(v1, v4) is very narrow, akin to a “fat” edge with endpoints v1 and v4. Then
the geodesic between v2 and v5 crosses near c over D(v1, v4), but because
that is narrow, the geodesic does not look too different from the v2v5 edge
illustrated in the figure—the geodesic “jags” slightly as it crosses D(v1, v4).
Again the digon D(v2, v5) is narrow, and so does not greatly deviate the
geodesic from v3 to v4, which now crosses both previously inserted digons,
near b and a.

After these three vertex-merges, P3 is a 9-vertex polyhedron. It should
be clear that the roughly triangular region abc in the figure is disconnected
by the three slits, which form a cycle in Λ3. Further slits cannot “repair” the
disconnecting cycle, so the final Λ will have at least one cycle.
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This leads us to consider the following question: For which convex polyhe-
dra do there exist vm-reductions whose slit graphs have no cycle? Although
we pursue this question in subsequent chapters, it remains unresolved. See
Open Problem 18.8.

11.6 Vertex Merging and Unfoldings

The goal of this section if to relate vm-reductions and their slit graphs to
unfoldings.

An unfolding of a convex polyhedron P cuts the surface along a spanning
tree of the vertices, producing a polygon UP when developed in the plane.
See, e.g., [O’R13]. When that polygon is simple—non-self-intersecting, i.e.,
non-overlapping—then UP is called a net for P , i.e., an injective embedding
of P into the plane.

Consider a reduction process ι : P → S of P onto the vm-irreducible
surface S. Then PS = ι(P ) ⊂ S is an unfolding of P onto S in the sense of
Chapter 9. Further unfolding S to the plane (there are in general many ways
to do this) provides an unfolding UP of P in the plane.

We recall here some definitions for subsets related to convex polyhedra.

• A simple closed curve is a closed curve without self-intersections (i.e.,
homeomorphic to a circle).

• A (geodesic) polygon is a simple closed curve composed of (geodesic)
segments.

• A domain is a connected open set.

• A polygonal domain is a the closure of a domain whose boundary is a
finite union of polygons.

• A simple polygonal domain is a polygonal domain with one boundary
component.

• By a simply connected set we understand a set each path-connected
component of which is contractible; so the set itself is not required to
be connected.
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Lemma 11.4. Consider a partial vm-reduction ιj : P → Pj, for some 1 ≤
j ≤ k, and identify, for simplicity, P = ιj(P ) ⊂ Pj. Every component
of Pj \ P is a simple polygonal domain containing precisely one vertex. In
particular, the conclusion holds for S \PS, where S is the vm-irreducible end
result of the reduction process.

We have seen this lemma verified for S \ PS in the series of examples
above: Figs. 11.2(b,d), 11.3(b), 11.4(b), and 11.7.

Proof. The proof is a simple induction on the step m of the vm-reduction
sequence.

At step m = 1, we merge the first two vertices of P , and P1 \ P consists
of precisely the pair of inserted triangles, with one vertex, the shared apex
of those triangles, outside P .

Notice that each (partial) vm-reduction ιj yields a forest F of binary
rooted trees, every node of which is a vertex in some Pl, with 1 ≤ l ≤ j.
(These vertex trees are not to be confused with slit trees.) After a complete
reduction, the 3 or 4 vertices of S are the roots of the 3 or 4 vertex-trees
that were merged to produce those root vertices. Precisely, the leaves of F
are the vertices of P , and two nodes in F have a common parent if and only
if they are merged at some step l. If a vertex v ∈ P has not been merged, it
is an isolated node of F . If v has been merged, then it has been flattened:
ω(v) = 0.

Assume now that the conclusion holds for the first m− 1 steps. At step
m we merge, say, the nodes n1 and n2 of F , along the geodesic segment γ in
Pm−1. Note ni could be a vertex of P , or a vertex in a domain of Pm−1 \ P
resulting from a merge. If ni is a vertex of P , then it is not surrounded by a
polygonal domain; for simplicity, we assume in this case that the polygonal
domain is {ni} itself. Cutting along γ and inserting the curvature triangles
merges the simple polygonal domains around n1 and n2 into a larger simple
polygonal domain, containing precisely the resulting node n12.

For example, in Fig. 11.4, when n1 = v5 and n2 = v78, the domain around v78

(yellow in (b) of the figure) is merged with the new curvature triangles (tan)
to form one simple polygonal domain containing n12 = v578. In Fig. 11.7,
the domains around triangle vertices a and b are the result of four merges,
colored in the figure.

Theorem 11.5. Consider a reduction process ι : P → PS ⊂ S of P onto the
vm-irreducible surface S, resulting in slit graph Λ.
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• If Λ is a forest of trees then PS is a polygonal domain in S.

• If Λ is connected then PS is simply connected.

• If Λ is a tree then PS is a simple polygonal domain in S.

Proof. Each slit in Λ appears twice in the boundary of PS, once for each
bank. Since P has no boundary, the whole boundary of PS is produced in
this way, hence it is a finite union of segments.

It also follows that each tree component of Λ yields a boundary component
of PS, which is a polygon. Therefore, if Λ is a tree then PS is a simple
polygonal domain in S. And if Λ is a forest of trees then PS is a polygonal
domain.

If a connected component of PS ⊂ S is not simply connected then it has
several boundary components, impossible if Λ is connected.

Next we offer a topological viewpoint. View P as a topological sphere
with conical-point vertices. A vertex-merge of v1 and v2 is a topological-circle
hole cut in P , passing through v1, v2, which is then filled with a topological
disk—the two back-to-back triangles with a new vertex v inside the disk.
Two connected vm-slits on P correspond topologically to merging two holes
to one hole. A tree of vm-slits is then topologically a single hole, filled with
doubly-covered triangles. Thus a forest of trees is topologically a collection
of disjoint holes on P . As all holes are bounded by geometric segments, the
result is a polygonal domain with polygonal holes.

Assume now that Λ is a tree, so PS is a simple polygonal domain in S by
Theorem 11.5, where S a doubly-covered triangle or an isosceles tetrahedron.
With an appropriate unfolding of S, PS remains connected and thus becomes
an unfolding of P in the plane. However, the unfolding may overlap, and so
not constitute a net. This is explained in the next section.

11.7 Unfolding Irreducible Surfaces

Assume we have a vm-reduction ι : P → PS ⊂ S resulting in a tree slit graph
Λ so that PS is a simple polygonal domain of S, by Theorem 11.5. We explore
next the question of unfolding S to the plane, preserving connectedness of
PS. We start with S a doubly-covered triangle.
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11.7.1 S: Doubly-covered Triangle

Let u1, u2, u3 be the three vertices of S. Each is surrounded by polygonal
domains M1,M2,M3 created by repeated triangle inserts. Two examples of
these domains are the cube vm-reduction in Fig. 11.4(b) and the icosahedron
vm-reduction in Fig. 11.7. Both are displayed with their triangles cut open.

Now we argue that S can be cut open via a spanning tree without dis-
connecting P . So this provides an unfolding of S that preserves P as a
single piece, as in those two figures. Although we can guarantee a single
piece, we have not established this piece is a net, avoiding overlap. See Open
Problem 18.9.

Topologically, S is a sphere with three conical points / vertices ui, each
surrounded by a merge-domain Mi, with the remainder of S the original
P : in loose notation, P = S \ (∪iMi). Each Mi is topologically a disk, as
depicted in Fig. 11.9(a).

There are only two combinatorially distinct spanning slit trees for un-
folding S: a path u1, u2, u3 (and its index permutations), or a Y-tree: some
point x in P with slits from x to each ui. (In both Figs. 11.4(b) and 11.7,
the slit tree is a path.) For either spanning tree, a slit path ρ must enter Mi

to reach ui, and in the path case, the slit path must also exit Mi.

Figure 11.9: (a) Topology of S. (b,c) Slit path ρ to ui. In (c), the marked
region is disconnected from P .

Because each Mi is a disk, there is a ρ that crosses ∂Mi just once on
entrance, and in the path case, once again on exit. Fig. 11.9(b) illustrates
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such a one-cross ρ. Fig. 11.9(c) shows that, if ρ crossed ∂Mi at more than
one point, then a piece of P is disconnected. But because the spanning slit
tree can be chosen to avoid the (c) situation, we are guaranteed that we can
unfold S to the plane so that P ⊂ S remains a simply connected polygonal
domain in the plane.

11.7.2 Net and Overlap

Let us temporarily ignore the structure of S = P ∪ (∪iMi), and just view
S as a doubly covered triangle 4. If, for every spanning slit tree T , the
unfolding of 4 avoids overlap, then we immediately have that the unfolding
of P avoids overlap, and so we have found a net for P .

Alas, this is not true for every T , as the example in Fig. 11.10 shows.
In (a) the u2, u3 slit path spirals around u3 from the back to the front. The

Figure 11.10: (a) Front: blue; back: yellow. Slit path T : (u1, u2, u3). (b) Un-
folding after cutting T . Blue segments remain uncut.

unfolding is shown in (b), with the uncut segments highlighted, showing clear
overlap.

Although this may seem a contrived example, the merge regions Mi might
be created from spiraling slit trees, as we will discuss in the the following
chapters, and could be quite complex, as the icosahedron example (Fig. 11.7)
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suggests. A natural slit path follows the merge vertices into each Mi region:
µ = (m0,m1,m2, . . . ,mi), where m0 = u1. However, we leave it as an open
question (Open Problem 18.9) of whether forming a slit tree by following µ
for each Mi—or any other slit tree—unfolds P to a net.

11.7.3 S: Isosceles Tetrahedron

Vertex-merging could result in an isosceles tetrahedron S (rather than a
doubly covered triangle). This occurred in the first cube reduction, illustrated
in Fig. 11.3(b). This does not change the topological picture Fig. 11.9(a)
significantly: just a fourth merge-domain disk M4 is added, and there are
two more possible spanning tree structures. Therefore, by similar reasoning,
we can ensure a single-piece unfolding of P to the plane. But again, we
leave open the question of whether there is always a slit tree that leads to a
nonoverlapping single piece, a net for P .
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Planar Spiral Slit Tree

The previous chapter showed that if the slit graph Λ of a vm-reduction is a
tree, then we can unfold P to the plane, and possibly to a non-overlapping
net. So we have made a goal of finding a vm-reduction ordering that results
in Λ a tree. Our overall plan is to partition P into two “halves” via a
simple closed quasigeodesic Q, and then to vm-reduce the vertices in each
half separately. (As mentioned in Chapter 10, such quasigeodesics always
exist.) Let V be the set of vertices inside Q. We will eventually show (in
Chapter 15) how to vertex-merge all of V so that the slit graph of that half
is a tree. In this chapter we illustrate the main idea by assuming V lies in a
plane.

12.1 Sequential Spiral Merge

Let V = {v1, v2, v3, . . . , vn} be the vertices in the above-half P+ of polyhedron
P . Define a sequential merge as a series of vertex-merges where at each step,
the previous merge vertex is connected to a vertex of V . Thus the merge
region—the union of all the triangle inserts—grows a single connected domain
enclosing, in the end, one vertex by Lemma 11.4.

There are many possible sequential merge orders. We choose one that we
call a spiral merge. See ahead to Fig. 12.5 for why “spiral” is an appropriate
term. In the planar situation, we view vertices as having zero curvature,
so that P+ becomes planar. In this context, a slit is a line segment s,
wholly in P . Each triangle insert degenerates to just s, and creates a merge
vertex somewhere along s. We will show in Theorem 12.1 that a spiral merge
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algorithm in two dimensions results in Λ a slit tree.

12.2 Notation

Figure 12.1: v1 is merged with v2 to produce m1. H1 = conv(V1) where
V1 = V0 \ {v1, v2} ∪m1.

The detailed argument needs considerable notation beyond that intro-
duced earlier, which we gather below for reference.

• V = V0 = {v1, v2, v3, . . . , vn}: Vertices in the plane. (Later (in Chap-
ter 15) these will be vertices on the surface of the polyhedron P .)

• mi: merge vertex, the vertex created by merging mi−1 with vi+1 with
m0 = v1. We sometimes abbreviate this as mi−1 + vi+1 → mi.

• si = mi−1vi+1. The i-th slit/merge segment. The new merge vertex mi

lies on si.

• So each slit segment has three labeled points: mi−1,mi, vi+1.

• v1 is also given the label m0, so s1 = v1v2 = m0v2.
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• mi can lie anywhere along si. In Figs. 12.1-12.5, mi was chosen at a
random point on si.

• Λi = ∪isi is the slit graph after the i-th merge. Λ is the full slit graph.

• vi is called flattened if it has already been merged. (In Chapter 15,
when vi is a vertex of positive curvature, the merge will reduce vi’s
curvature to zero.)

• Vi is the set of not-flattened vertices remaining after the i-th merge
si = mi−1vi+1. mi ∈ Vi. |Vi| is the number of vertices in Vi.

• Hi is the convex hull of Vi. We view Hi as a closed region of the plane
and ∂Hi its boundary, a convex polygon. H0 is the convex hull of
V = V0.

Figure 12.2: General step: i-th merge. (a) si−1 = mi−2vi. si−1∩Hi−1 = mi−1.
(b) si = mi−1vi+1. si ∩Hi = mi. si−1 ∩ si = mi−1.

12.3 Algorithm Description

First merge. The algorithm starts by selecting any edge of the convex hull
H0 of V = V0, say v1 and v2, and merging them via the merge segment
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s1 = v1v2. In the plane, this amounts to replacing v1 = m0 and v2 with
with a new vertex m0 +v2 → m1 on the segment s1. The merge flattens
v1 and v2, which is why they are removed. V1 = V \ {v1, v2} ∪m1, and
H1 = conv(V1). See Fig. 12.1.

Second merge. Next, m1 is merged with the first vertex beyond m1 on H1.
Call this vertex v3. Note that v3 might not be the next vertex after
v2 on H0, because V1 6= V0 and so H1 6= H0. The merge of m1 and v3

introduces a new merge vertex m2 on s2 = m1v3, and both m1 and v3

are flattened and removed from V1, while m2 is added, to produce V2.

General step. The i-th merge connects mi−1 to vi+1, where vi+1 is the
next vertex on Hi−1 beyond mi−1. See Fig. 12.2. Then mi lies on
si = mi−1vi+1, the vertex set is updated as Vi = Vi−1\{mi−1, vi+1}∪mi,
and Hi = conv(Vi). Note that |Vi| = |Vi−1|−1, because two vertices are
removed (flattened) and one added. But ∂Hi does not bear a similar
relation to ∂Hi−1 because the new hull may wrap around vertices that
were strictly interior to Hi−1 (green in the figures).

Completion. The process continues until all the original vi vertices are
merged, leaving just one vertex Vn−1 = {mn−1}. A full trace is illus-
trated in Fig. 12.3. (The reason there are n− 1 merges rather than n
is that the first merge flattens two vertices of V , while all subsequent
merges flatten two vertices but only one is from V .)

12.4 Planar Proof

We first assume that all points—both vertices in V and merge points mi—are
in general position in the sense that no three are collinear. Later we will see
that allowing collinearities does not change the main claim that Λ = ∪isi is
a tree.

The induction hypothesis consists of several claims:

(1) Hi is nested inside Hi−1: Hi−1 ⊃ Hi. See Fig. 12.4.

(2) si only intersects Hi in one point, the merge vertex: si ∩ Hi = {mi}.
See Fig. 12.2(b).
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Figure 12.3: Trace of example with |V | = 20, from which Figs. 12.1 and 12.2
are details.
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Figure 12.4: Nested Hi for all i, from Fig. 12.3, alternately colored blue and
brown.

(3) Consecutive slit segments share just one point, an endpoint of the later
segment: si−1 ∩ si = {mi−1}. See Fig. 12.2.

(4) The set of vertices reduces by one each iteration: |Vi| = |Vi−1| − 1, for
i > 1.

(5) Λi is a tree.

Basis. These claims are easy to see for i = 1, 2, just by construction ac-
cording to the algorithm. Neverthless, just for completeness, we run through
the basis. Refer to Fig. 12.1.

(1) H0 ⊃ H1 because the edge v1v2 is replaced by a point m1 on that edge.

(2) s1 ∩H1 = {m1} by construction.

(3) For i = 1, there is just one segment s1. s2 starts at m1 ∈ s1, so indeed
s1 ∩ s2 = {m1}.

(4) V1 has one fewer vertex than does V = V0 because two (v1 and v2) are
removed and one (m1) is added.



12.4. PLANAR PROOF 137

Figure 12.5: Λ for a set of |V | = 50 vertices. Only slit segments are shown.

(5) Λ1 = s1 is a single-edge tree.

General Step. Assume the induction hypotheses are satisfied up to i− 1,
and consider the i-th merge. It will help to consult Fig. 12.2, where (a) is
established by the induction hypothesis, and (b) reflects the situation to be
proved. The algorithm chooses vi+1 as the next vertex on Hi−1, so si =
mi−1vi+1 is an edge e of ∂Hi−1.

(1) Hi−1 ⊃ Hi because the edge e is replaced by the merge vertex mi.

(2) si ∩Hi = {mi} by construction.

(3) si−1 ∩ si = {mi−1} by construction.

(4) |Vi| = |Vi−1| − 1, again because Vi = Vi−1 \ {mi−1, vi+1} ∪ {mi}.

(5) Λi is a tree. By (3) above, si has an endpoint mi−1 on si−1, and other-
wise does not intersect si−1. It remains to prove that the interaction of
si with the earlier segments in Λi maintains the tree property. In fact,
we show that si ∩ sj = ∅ for j < i− 1.
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As we’ve seen, si is an edge e of ∂Hi−1, and from (1) we know that
Hj ⊃ Hi−1 for j < i − 1. From (2), each sj intersects Hj in just one
point mj, which is removed from Vj in the next step. So sj is disjoint
from Hj+1 = conv(Vj). And so sj cannot intersect si, which is an edge
of ∂Hi−1.

Therefore, we have shown that si just intersects Λi−1 at the one point
mi−1, and so maintains the tree structure for Λi.

The tree structure is illustrated in Fig. 12.5. It is in a sense a geometric
directed binary tree, spiraling from the boundary of H0 into the center.

Collinearities. If there are collinearities, then several consecutive seg-
ments can collinearly overlap. So it could be, for example, that si−1 = mi−2vi
overlaps with si = mi−1vi+1 in the portion from mi−1 to vi. Thus several slit
segments could collinearly overlap with an edge of Hi. If we union each
group of collinearly overlapping segments to one segment, then all the prop-
erties claimed in the induction hypothesis continue to hold, although differ-
ent notation would be required to capture the unioning of several collinearly
overlapping segments into one.

Theorem 12.1. For any set V of vertices in the plane, the sequential merging
algorithm detailed in Section 12.3 results in a slit graph Λ that is a tree (see
Fig. 12.5).

As the figures suggest, we have implemented this algorithm.

Convexity and, in particular, the convex hull, plays an essential role in
this algorithm. Before we can apply the same overall idea to a set V on
a three-dimensional P+ in Chapter 15, we need to explore convexity and
convex hulls on P . This is the topic of the next chapter.



Chapter 13

Convexity on Convex
Polyhedra

We’ve set as our goal proving that there is a vm-reduction ordering of the
vertices V inside a quasigeodesic Q that results in a slit tree Λ, a goal achieved
in Chapter 15. Before we reach that point, we need to develop a clear notion
of what constitutes the convex hull of V . This in turn requires a clear notion
of convexity on polyhedral convex surfaces, which is our focus in this chapter.

Our investigation into convexity on convex polyhedra is, to our knowl-
edge, the first in this direction, and seems to have a rich potential. We
barely touch on some classical convexity results (such as Helly’s and Radon’s
theorems: Examples 13.13 and 13.22), and do not attempt to provide their
adaptations in this new theory of convex sets. Instead we focus on devel-
oping basic facts that ultimately lead to a characterization of the “relative
convex hull” of a set of vertices inside a simple closed quasigeodesic Q (Sec-
tion 13.10).

We first argue that, for our purposes, the proper notion of a convex set S
is one that includes every geodesic segment between points in S, in contrast
to, say, including at least one geodesic segment. Defining the convex hull of a
set of vertices V as the smallest convex set including V (Section 13.6) leads to
some surprising and perhaps undesirable properties. For example, the convex
hull of a set inside Q does not always remain inside Q (Example 13.30). These
properties lead us to develop a notion of “relative” convexity, and the relative
convex hull in Section 13.9. Among our main results is Theorem 13.40, which
characterizes the relative convex hull of vertices inside a quasigeodesic Q.
This characterization is then employed in Chapter 15.
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Because of the many lemmas and details in this long chapter, we offer a
concise summary of 38 individual results in Section 13.10.

Throughout, for a set S, we use ∂S for its boundary, and S̊ and S̄ for the
interior and closure of S respectively.

13.1 Convex Curves

Let C be a simple, closed, curve on the surface of a convex polyhedron P .
We will assume C is polygonal, turning at corners which in general may or
may not be vertices of P (although we’ll continue to use labels vi). View
C as directed counterclockwise from above. At each corner vi of C, let αi
be the surface angle to the left, and βi the angle to the right. C is called a
convex curve if αi ≤ π; all such angles are convex angles. Angles βi strictly
greater than π are called reflex.

If C also satisfies αi ≤ βi, we call it an αβ-convex curve. If αi < βi for
all (non-zero curvature) corners, it is a strictly αβ-convex curve.

A simple, closed quasigeodesic Q is a curve C that is convex to both
sides: αi ≤ π and βi ≤ π. By a theorem of Pogorelov [Pog49], every convex
polyhedron has at least three such quasigeodesics.1

In general, quasigeodesics are not αβ-convex to either side. The total
curvature of the vertices to either side of Q is ≤ 2π, and only equal to 2π if
Q is a geodesic, passing through no vertices, a fact we use later.

A geodesic polygon is a polygon whose edges are geodesic arcs. A geodesic-
segment polygon is a polygon whose edges are geodesic segments, i.e., shortest
paths. The distinction between these two types of polygons plays a significant
role in this chapter. For brevity, we will frequently abbreviate “geodesic
arc” with “geoarc,” and “geodesic segment” with “geoseg.” Although we are
mainly interested in convex sets contained within polygons, a convex curve
could include smoothly curved arcs.

13.2 Notions of Convexity

Several notions of convexity have been employed so far on surfaces, see for ex-
ample [Ale78], [Ban81], [GM01], [Mit16], [Zam91], and the references therein.

1We point out here that a different notion of “quasi-geodesic” also exists, see e.g.,
[BZ21].
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We have not made a comprehensive accounting of all the different definitions
found in the literature, and instead mention next only three.

A subset S of P is said to be

• geodesically convex if, given any two points in S, there is a unique
geodesic segment joining them in S; [Udr13].

• totally convex if any geodesic which joins two points of S is contained
in S; [Ban81].

• metrically convex if, given any two points in S, there is at least one
geodesic segment joining them in S; [GM01].

We should mention that there is variation in the literature. For example,
[Vis18] uses the term “geodesically convex” to mean what we list above as
“totally convex.”

Geodesic convexity is not suitable for our framework, because an open
geodesically convex set could contain no vertex v—two geodesic segments
would wrap around v. Since our main concern is with geodesic segments
forming a slit graph, total convexity, which focuses on geodesics (not neces-
sarily shortest paths), is also inappropriate.

We will need a notion of a convex hull of a set of points V on P . In
analogy with the Euclidean case, we would like to define the convex hull of
V to be the intersection of all convex sets containing V . We next indicate
why the natural metric convexity, and in particular, its “at least one geodesic
segment” criterion, is not the correct version in our context.

Example 13.1. Let ∆ be a doubly-covered triangle v1v2v3, with V = {v1, v2, v3}.
The front triangle is a metric-convex set containing V , as is the back triangle.
So the metric-convex hull of V consists of the three edges v1v2, v2v3, v3v1.
However, one would expect to obtain ∆ as the convex hull of its vertices, as
we do in Theorem 13.32. Moreover, the situation illustrated by the doubly-
covered triangle could be troublesome in some specific situations as well. We
address these situations in Section 13.6 below.

13.3 Ag-convexity

Define S to be ag-convex—all-geodesics convex—if every geodesic segment
between two points of S is in S. In the following we will focus on ag-convexity,
which we henceforth abbreviate as, simply convexity.
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This same notion of convexity has been used in different contexts, see
for example [AKP19] and [LP21], although we have not seen it applied to
convex polyhedra. Other types of convexity will be specifically identified to
differentiate them from ag-convexity.

Clearly, every convex set is path-connected, but one can say more.

Lemma 13.2 (Classification). Let S be a closed convex set on P . Then S
is either a point, or a geodesic arc, or a simple closed geodesic, or it has
interior points.

Proof. Assume S contains two distinct points, hence it contains a geodesic
segment γ. Assume Γ is the maximal (with respect to inclusion) geodesic in
S including γ; so it could be an arc, or a simple closed curve. If the image
set of Γ is S, we are done. (Here the image set of Γ is the set of points on P
comprising the curve.)

Assume there exists a point x in S but not on Γ. Join it with an interior
point y of Γ, say with the geodesic segment γy. Locally around γy the set S is
flat, so moving y continuously on Γ provides a continuous family of geodesic
segments γy, all included in S. Therefore S has interior points.

Example 13.3. The whole surface P is obviously convex. We also consider
the empty set and the single-point sets to be convex.

Example 13.4. Notice that the closure of a convex set is not necessarily
convex. The interior of a face of a doubly-covered triangle is convex, while
the whole face is not, because two points on different edges of the triangle are
connected by geodesic segments on both sides of the triangle.

We’ll repeatedly use the following simple fact.

Lemma 13.5 (Local behaviour). Let S ⊂ P be a convex set and x ∈ S.
Then there exists a small ball Bx around x such that S ∩ Bx is isometric
either to a planar convex set (if x is not a vertex of P ), or to a convex set
on a cone of apex x.

Proof. Just choose Bx around x to include no vertices of P (other than
possibly x), and notice that S ∩Bx is still convex on Bx.

Recall from Section 13.1 that an αβ-convex curve is a strictly αβ-convex
curve if αi < βi for all (non-zero curvature) corners. The following charac-
terization of αβ-convexity will be frequently invoked subsequently.



13.3. AG-CONVEXITY 143

Lemma 13.6 (αβ-convexity).

(i) Let S 6= P be a closed convex subset of P , S 6= P , having at least two
distinct points. Then ∂S is a convex curve (including the case when S
is a geodesic). If, moreover, ∂S is a geodesic polygon, then it is strictly
αβ-convex.

(ii) Let S be an open convex subset of P , S 6= P , and C a connected
component of ∂S. Then C is either a vertex, or a convex curve. If,
moreover, C is a geodesic polygon, then it is (not necessarily strictly)
αβ-convex.

The conclusion in Lemma 13.6(ii) holds with a similar proof for convex
sets which are neither closed nor open, but have interior points. A surface
containing such a set is given later in Example 13.31.

Proof. (i) The first claim follows from Lemma 13.5. Indeed, each component
of ∂S is a locally-convex curve. If S has interior points then each component
of ∂S is a simple closed curve, hence convex.

For the second claim, let vi be a (non-zero curvature) corner of ∂S at
which αi ≥ βi. If αi = π, then βi = π, and vi has zero curvature. So we may
assume that αi < π.

Let x, y be two points on ∂S close to and on either side of vi. Then,
as shown in Fig. 13.1, the shortest path between x and y inside S is either
longer than, or equal in length to, the shortest path outside S. In either
case, a geodesic segment between points of S is not inside S, contradicting
the fact that S is convex.

(ii) Assume ∂S is not αβ-convex at v, hence α > β. Then there exist
points x, y ∈ ∂S with v between them, and any geoseg γ joining them is
external to S, as in the above argument. There also exist sequences of points
xn, yn ∈ S with xn → x and yn → y. Choose geosegs γn from xn to yn, hence
γn lies in S. It is well known that the limit of geosegs is a geoseg. Possibly
passing to a subsequence, assume γn → γ′, hence γ′ is a geoseg joining x to y
in S̄, which is only possible if α = β at v, contradicting our assumption.

Example 13.7. To complete Example 13.4, notice that the interior of a face
is an open convex set on a doubly covered triangle, but its boundary is not
strictly αβ-convex. It remains, nevertheless, αβ-convex.
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Figure 13.1: (a) α > β. (b) |xy| is shorter through angle β than through α.

An open convex set may have several vertices as boundary components,
as we will see in Example 13.11 below, and at most two convex curves as
boundary components, as will be evident in the next result and its proof.

Lemma 13.8 (Simply-connected or cylinder). Let S 6= P be a closed convex
subset of P . Then either S is simply-connected, or it is isometric to a cylinder
without lids.

Recall from Chapter 9 (Section 9.2.1) that in our usage, simply-connectedness
does not assume path-connectedness. However, all convex sets are path-
connected.

Proof. If S has empty interior, the conclusion follows from Lemma 13.2; so
we may assume in the following that S has interior points.

The convexity of S implies that each component of ∂S is a simple closed
curve, and since it is locally convex by Lemma 13.6, it is a convex curve.

Let C1, C2 be two components of ∂S. There are two possibilities: without
loss of generality, C2 is nested inside C1, or they are not nested. This latter
case violates convexity, because a geodesic segment connecting a point inside
C1 to a point inside C2 would necessarily include points exterior to both. So
let C2 be nested inside C1.

The Gauss-Bonnet Theorem implies that the total curvature inside C1

is ≤ 2π, and similarly for C2. So the total curvature outside C1, and also
outside C2, is ≥ 2π. But the exterior of C2 is strictly inside C1, and the
exterior of C1 is strictly inside C2. Therefore, either the region between C1

and C2 has zero curvature, and therefore it is isometric to a cylinder without
lids, or at least one the above inequalities is strict and we get a contradiction,
establishing the conclusion.
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Lemma 13.9 (Vertex point-hole). Let S ⊂ P be a convex set and v a vertex
in S. Then S \ {v} is convex.

Proof. The case S = {v} is clear, because we consider the empty set to be a
convex set.

Consider distinct points x, y ∈ S, and a geodesic segment γ between
them, hence γ ⊂ S. If v 6∈ {x, y}, γ ⊂ S \ {v}, because no geodesic segment
will pass through a vertex.

Assume now that x = v. Then each point of γ \ {v} is inside a geodesic
subsegment of γ, hence included in S \ {v}.

Example 13.10. An example illustrating the cylinder claim of the Lemma 13.8
is provided by P a tall rectangular block, and S the region between two par-
allel simple closed geodesics close to the middle of the block. Then S is a
closed convex set.

Example 13.11. Lemma 13.8 does not hold for arbitrary convex sets with
interior points. Indeed, the set P \ V is convex (see Lemma 13.9), open, but
not simply-connected.

Example 13.12. More generally, let S be a simply-connected convex set, and
v a vertex interior to S. Then S \ {v} is convex, but not simply-connected.
However, the closure of S \ {v} is convex and simply-connected.

Example 13.13. A particular instance of Helly’s Theorem states the follow-
ing: let S1, ..., Sn be a finite collection of convex subsets of R2, with n > 3.
If the intersection of every h = 3 such sets is nonempty, then the whole
collection has a nonempty intersection.

The simple example of the four faces of a tetrahedron, each face a closed,
convex set, shows that no analogous result holds in our framework.

A more elaborated example places the tetrahedron over a tall right trian-
gular prism. There, the union of the tetrahedron’s lateral faces, minus the
top vertex, is a convex set. That set, together with the lateral faces, provides
another counterexample.

It remains for future work to consider the above Helly-like problem for
h ≥ 4: Open Problem 18.12.

Lemma 13.14 (S ⊇ Q). If the interior of the closed convex set S con-
tains a simple closed quasigeodesic Q, then either ∂S determines with Q a
topologically closed cylinder, or S = P .
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Proof. Assume the simple closed quasigeodesic Q is included in S.
If Q parallels ∂S (in the sense that they bound a cylinder) then ∂S is

itself a simple closed quasigeodesic. Assume this is not the case.
Because Q is interior to S, the sum of curvatures of vertices inside or on

Q is at least 2π. If ∂S 6= ∅ then, since it is convex towards S, the total
curvature of the interior of S is < 2π, by Lemmas 13.8 and 13.6, which
violates the Gauss-Bonnet Theorem.

We don’t know if every closed convex set is either included in a half-surface
bounded by a simple closed quasigeodesic, or is the whole surface. This is not
settled by the previous lemma because there Q is interior to S. This question
is Open Problem 18.10. However, the proof of the previous lemma does show
that no closed convex set can strictly enclose more than 2π curvature. This
picture will be completed by Proposition 13.27 and Theorem 13.32 below.

13.4 Geodesic Segments and Convex Sets

In this section we clarify the behaviour of geosegs between points in, or on
the boundary of, or outside of, a convex set. The first part of the next result
will be particularly useful later.

Lemma 13.15 (Segment vs. convex set). Let S ⊂ P be a convex, S 6= P .
(i) If x, y are interior points of S and γ a geodesic segment joining them,

then γ is interior to S (i.e., it does not intersect ∂S).
In particular, adding a boundary point to an open convex set yields a

convex set.
(ii) If x is an interior point of S and y ∈ ∂S, then all geodesic segments

from x to y are interior to S, possibly excepting at their extremity y.
(iii) If x, y ∈ ∂S then there is a geodesic segment between them included

in the closure S̄ = S ∪ ∂S of S, possibly excepting its extremities x, y. Other
geodesic segments from x to y might not be included in S̄.

In particular, adding two boundary points to an open convex set does not
necessarily yield a convex set.

(iv) If x ∈ ∂S is not by itself a connected component of ∂S, then there
exists a geodesic segment starting at x and exterior to S.

Proof. (i) Let B1, B2 be open intrinsic balls around v1, v2 respectively, with
B1 ∪B2 ⊂ S.
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Let Nγ ⊂ P be a tubular neighborhood of the image set of γ. View Nγ

as created by translations of γ sufficiently small so that Nγ is included in
Bi around vi, i = 1, 2, and so that Nγ is an open set included in S. Nγ is
flat everywhere, except at v1, v2. Because γ is strictly inside Nγ, γ does not
intersect ∂S.

This claim can also be established by assuming that some geodesic seg-
ment between interior points touches ∂S, and applying Lemma 13.5 to obtain
a contradiction.

(ii) Assume there exists a geodesic segment γ from x to y that goes
outside S, so there is a boundary point z ∈ ∂S on γ between x and y.
Assume, moreover, that z is closest to y with these properties.

Notice that such a z exists, i.e., is at positive distance to y. To see this,
consider a small ball By around y which contains no vertex of P . Then S∩By

is a convex set in the plane (if y is not a vertex of P ) or on a cone (if y is
a vertex), by Lemma 13.5. Denote by γz the sub-arc of γ from z to y. The
boundary of this small convex set ∂(S∩By) is a convex curve, and the image
of γz is a segment, with the two intersecting in at most two points (because
a segment can intersect a convex curve at most twice). This shows z exists
as described.

Denote by Az the component of ∂S between z and y such that no point
of S is inside the lune L bounded by Az and γz. L is then bound by a
curve Az concave towards L and a straight segment γz exterior to Az. The
Gauss-Bonnet Theorem implies this is only possible if L contained negative
curvature, a contradiction.

(iii) Because x, y ∈ ∂S, there exist a sequence of points xn, yn ∈ S such
that xn → x, yn → y. Let γn be a geodesic segment joining xn to yn, n ∈ N.
Then there exists a subsequence of {γn}n, which converges to a geodesic
segment γ between x and y. Since all γn are in S, their limit is in S̄.

(iv) This claim can be obtained from Lemma 13.5. An alternative proof
follows.

The space of unit tangent directions Tx at x is a circle, of course of arc-
length ≤ 2π.

Assume, in contradiction to the claim that, for any ν ∈ Tx, the maximal
geodesic segment γν starting at x in direction ν intersects S ∩ Bx, i.e., it
has an initial portion of γν is inside S. Choose three directions νi ∈ Tx,
i = 1, 2, 3, with the angle between adjacent pairs νi, νj less than π. With
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points xi ∈ S on γνi , the three flat triangles xxixj are in S, and their union
forms an open set around x, contradicting x ∈ ∂S.

Example 13.4 can be easily elaborated to illustrate all the claims of the above
lemma.

Corollary 13.16. It follows directly from (i) in Lemma 13.15 that the inte-
rior of a convex set is still convex.

Lemma 13.17 (Supporting angle). Let S 6= P be a closed convex subset of
P with interior points, and x a boundary point of S. There exists tangent
directions µ, ν ∈ Tx at x of angle θ = θ(µ, ν) ≤ π toward S, such that:

(i) the geodesic segments γµ and γν in the directions µ, ν do not intersect
the interior of S, locally; and

(ii) for each τ ∈ Tx inside θ, the geodesic segment γτ in the direction τ
does intersect the interior of S, locally. Here, θ is regarded as a subarc of Tx.

Proof. This can established from Lemma 13.5. An alternative way to prove
the claims follows.

Let Bx be a small ball around x which contains no vertex of P .
Lemma 13.15 shows that there exists a geodesic segment γz connecting x

to a point z ∈ P \S. Because P \S 6= ∅ is an open set, there are other points
in the neighborhood of z similarly connected to x by geodesic segments that
do not intersect the interior of S. Denote by Ax the maximal open subarc of
Tx determined by directions of such geodesic segments γz. Let µ, ν ∈ Tx be
the extremities of Ax.

The convexity of S implies that for all τ ∈ Ax, the geodesic segment γτ

does not intersect S ∩Bx. Moreover, Ax ≥ π. This establishes claim (i).
The convexity also implies that θ = Tx\Ax ≤ π has the opposite property:

for each τ ∈ Tx inside θ, the geodesic segment γτ intersects the interior of
S ∩Bx. This establishes Claim (ii).

13.5 Relative Convexity

For the next result (Lemma 13.18), we need to modify the notion of convexity
to relative convexity, a variation on a notion of relative convexity we employed
in [OV14].
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Let S ⊂ P be a contractible closed convex set with interior points. We
proved in the previous section that S is bounded by a closed convex curve
C = ∂S. We glue to C a tall cylinder L with a base but without a top. This
satisfies AGT, because a point p ∈ C is convex to the S-side and has angle
π on the cylinder rim.

Denote by P# the resulting convex surface. AGT implies that P# is a
polyhedron if and only if ∂S is a geodesic polygon on P . Call S relatively
convex if its image (also denoted by S) is convex on P#.

Note that C is a quasigeodesic on P#.
There are two considerations that lead us to introduce relative convex-

ity in this section, and the relative convex hull rconv(S) in Section 13.6.
First, the failure of vertex-merging to preserve convexity, Example 13.19 be-
low. Second, the failure of the convex hull of points inside a simple closed
quasigeodesic Q to remain inside Q, Example 13.30 below.

In Section 13.9 we shall use a construction similar to the above, but with
respect to simple closed quasigeodesics Q instead of convex curves C. The
purpose there is to construct the relative convex hull, starting from a non-
convex set inside Q. So the term “relative” will refer to either construction,
depending on the context, and without confusion.

Lemma 13.18 (Vertex merging). Let v1, v2 be two vertices interior to the
convex set S ⊂ P . Merging v1 and v2 produces a new polyhedron P ′ and a
set S ′ ⊂ P ′ obtained as the union of S with the two merge triangles T . Then
S ′ is relatively convex on P ′.

Before we prove this lemma, we show that it is false for convexity, without
the “relatively” modifier.

Example 13.19 (doubly-covered quadrilateral). Figure 13.2 shows an ex-
ample S ⊂ P where the insertion of merge triangles causes some geodesic
segments in the new set S ′ to leave S ′, violating convexity. In (a), geodesic
segments from any point x on the front face to its image x′ on the back face
stay within S, whereas after the v1, v2 merge (b), there are points x whose
shortest path to its back-face image x′ crosses ab outside of S ′.

Proof. We know by Lemma 13.15 that the insertion of the triangles T has
not affected the boundary of S ′: ∂S ′ = ∂S = C, where C is a convex curve.
In P ′#, denote by L the sides of the cylinder glued to C. When L is unfolded
flat, it forms a rectangle R.
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Figure 13.2: (a) P is the doubly-covered quadrilateral abv1v2. Convex set
S ⊂ P is the two-sided triangle cv1v2, shaded. (b) Merging v1 and v2 yields
v12 far above P . The resulting set S ′ is cv1v12.

Let x, y ∈ S ′ be two points in S ′, and γ a geodesic segment between them.
We argue that γ cannot cross C. Suppose γ properly enters R at x′ and exits
at y′. Then the segment x′y′ along the top of R is shorter, a contradiction
to the assumption that γ is a geodesic segment.

Therefore, S ′ is convex on P ′#, i.e., S ′ is relatively convex.

13.6 Convex Hull

We mentioned earlier (Section 13.2) that one reason we are not using metrical
convexity is that it leads to an unsatisfactory notion of a convex hull. Here
we explore the convex hull, and conclude that we need a variation for our
purposes in the next chapter.

In analogy with the Euclidean case, define the convex hull conv(S) of an
arbitrary set S ⊆ P as the intersection of all the convex sets that enclose S
on P . So, in a familiar sense, it is the smallest convex set with this property.

In the plane, the convex hull of S can equivalently be defined as the set
enclosed by a minimal length curve enclosing S. However, as we will show in
Section 14.3, the two notions do not coincide in our context. Here we focus
on the intersection definition.
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Example 13.20. The convex hull conv(V ) of the vertices V of a doubly-
covered triangle ∆ is the whole surface ∆. Similarly, the convex hull of all
the vertices of any convex polyhedron P is P itself: conv(V ) = P .

Example 13.21. In contrast to the Euclidean situation, for S = P \ V we
have conv(S) = S, by Lemma 13.9, because P is itself convex, i.e., the vertex
holes are not filled-in by the convex hull operation.

Example 13.22. A particular instance of Radon’s Theorem on (extrinsi-
cally) convex sets states that any set of r = 4 points in R2 can be partitioned
into two sets whose convex hulls intersect.

The simple example of a tetrahedron shows that no analoguos result holds
in our framework. Indeed, the convex hull of any two vertices is the corre-
sponding edge, so any 2 : 2 partion of the vertices provides disjoint convex
hulls. And the convex hull of any three vertices is the corresponding face, so
any 3 : 1 partion of the vertices also provides disjoint convex hulls.

If, as in Example 13.13, we again place the tetrahedron over a tall right
triangular prism, then the convex hull of the tetrahedron base vertices is the
“roof” minus the fourth vertex.

It remains for future work to study the Radon problem for r ≥ 5, possibly
considering closures of convex hulls:

Also worth studying seems to be the existence of a Carathéodory type
theorem in our framework. These questions form Open Problem 18.12.

The following two properties follow immediately from the definition of
conv(S).

Lemma 13.23. For every S ⊂ P , conv(conv(S)) = conv(S).
For every two sets S, S ′ ⊂ P with S ′ ⊂ S, conv(S)′ ⊆ conv(S).

The next result is particularly useful for computing the convex hull of
finite sets.

Lemma 13.24. For every pair of subsets S, T of P with T ⊂ S, the following
holds:

conv(S) = conv ((conv(S \ T )) ∪ T ) .

In words: If S is partitioned into two parts, T and S \ T , then the hull of S
is the hull of the union of T with the hull of S \ T .
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Proof. The set conv ((conv(S \ T )) ∪ T ) is convex and includes S, hence it
also includes conv(S).

On the other hand, the convex set conv(S) includes conv(S \ T ), by
Lemma 13.23, and also includes T . Hence it includes conv ((conv(S \ T )) ∪ T )
as well.

The next simple result follows from Lemma 13.15.

Lemma 13.25. The convex hull of every open set is open.

Example 13.26. Let � be a doubly-covered square with vertices a, b, c, d, and
let S = {a, b, c} ⊂ �. Then S is closed and, as we prove below, conv(S) =
� \ {d}, hence conv(S) is not closed. Refer to Fig. 13.3.

Figure 13.3: conv({a, b, c}) is � \ {d}.

Clearly, conv(S) contains the two triangles abc, hence also the simple
closed quasigeodesic Q determined by the diagonals ac. Let x ∈ Q be a point
close to a on the front side, and x′ its corresponding point on the back side.
Then there are two geodesic segments between x and x′, one “horizontal” and
another one “vertical”—parallel to ab and bc respectively. Therefore, there
are points of conv(S) on the edge ad, close to a. Moving x continuously
towards the center o of �, shows that the half-edge ae is included in conv(S),
where e is the midpoint of ad. Similarly, conv(S) contains the half-edge cf ,
where f is the midpoint of cd. Iterating this process establishes that conv(S)
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contains halves of the segments ed and fd, and so on. Therefore conv(S)
contains the whole edges cd and ad, except missing the corner point d.

The next result will be useful for proving the last statement in Theo-
rem 13.32.

Proposition 13.27 (Dense hull). Let S ⊂ P be a closed convex set with
interior points, enclosing strictly less than 2π curvature. Then the convex
hull of its complement S ′ = P \ S is dense in P , and the convex hull of ∂S
is dense in S.

Proof. By Lemma 13.25, conv(S ′) is open. Then, by Lemma 13.6, the bound-
ary of conv(S ′) may consist of vertices and convex curves, convex towards
conv(S ′). If such a boundary curve existed, it would enclose more than 2π
curvature, contradicting the the Gauss-Bonnet Theorem.

For the second claim, notice that conv(∂S) ⊂ S. Moreover, a continu-
ity argument proves that conv(∂S) has interior points. The remainder is
analogous to Lemma 13.6, and to the above argument.

Example 13.28. Example 13.26 (Fig. 13.3) can be adapted to illustrate
Proposition 13.27. See Fig. 13.4.

Figure 13.4: conv(∂S) is dense in S and conv(P \ S) is dense in P = S ∪ T .

Let T = ghca be an isosceles trapezoid with gh||ac, |g − h| < |a− c|, and
the base angle at g almost π. Construct, outside T , an isosceles right triangle
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S = acd, with |a − d| = |c − d|. Let P denote the doubly-covered pentagon
T ∪ S.

The (two-sided) subset S of P is convex, and ∂S consists of the two
geodesic segments ac. As in the proof of Example 13.26, conv(∂S) = S \ {d}
is dense in S, and therefore conv(P \ S) = P \ {d} is dense in P .

These examples show that the convex hull has some desirable proper-
ties, but, for our purposes, some undesirable properties. The doubly-covered
square (Example 13.26) shows that conv(V ) for V a subset of vertices of P
could be a set with point holes—so the convex hull of a closed set can be
an open set. And in the next section we will show that conv(S) for a set
S is not always the convex hull of the extreme points of S. These consid-
erations lead us to use the notion of relative convexity as first introduced
in Section 13.5 above, and the relative convex hull rconv(S), which will be
developed in Section 13.9 below.

Example 13.29. Let Bh be a rectangular box of height h, and Q a sim-
ple closed geodesic on B parallel to its top and bottom faces, at height h/2.
If h is large enough then Q is itself a convex set, and conv(Q) = Q; see
Lemma 13.37 and its proof for details. However, for small h, Q is not a
convex set, and conv(Q) = B. This shows that the convex hull of a set S is
sensitive to the surface of P outside of S, and justifies the next section.

13.7 Relative Convex Hull

The phenomena illustrated in the previous examples lead us to a new notion.
By “relative convex hull” rconv(S) we mean the intersection of all relative

convex sets containing S, with relative convexity as previously defined in
Section 13.5. We will further explore this notion in Section 13.9 below.

Example 13.30 (Pyramid). Let P be a pyramid, the top of a regular octahe-
dron. In Fig. 13.5(a), both C1 and C2 are αβ-convex curves. The convex hull
of the corners of C1, is the surface above C1, including the apex v5. However,
the convex hull of the corners of C2 = (v1, v2, v3, v4) is not the surface above
C2, but instead all of P . This is because there are geodesic segments that
cross the square base. For example, the shortest path between the midpoints
of consecutive edges of C2 traverse the square base. Fig. 13.5(b) shows the
construction of P# for C2. Then rconv(C2) is the surface above C2, because
no shortest paths will enter the cylinder inserted below C2.
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Figure 13.5: (a) conv(C1) is the pyramid top, but conv(C2) = P . (b) P# for
C2.

Example 13.31. With the following example, we show that:

• neither a digon nor a triangle is necessarily convex;

• Neither conv(V ) nor rconv(V ) is necessarily closed, for V the set of all
vertices inside a simple closed quasigeodesic;

• the exceptional case in Theorem 13.32 below may well appear for the
closure of rconv(V ), which in our case is convex but not the convex hull
of its extreme points.

Start with the double of the quadrilateral D = abcd, where Q = aba is
a simple closed quasigeodesic. See Figure 13.6. We could insert rectangles
below Q, so that everything happens above Q.

The construction of D follows: start with an arbitrary line-segment ab,
and denote by m the mid-point of ab. Consider an isosceles triangle d′ab,
and a point d slightly to the left of d′. Take c on d′b.

Consider, moreover, ae perpendicular to d′b, with e on d′b.
Put V = {a, c, d}. Then rconv(V ) is the half-surface bounded by the two

segments ae, without those segments (but including a). To see this, let x1
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Figure 13.6: V = {a, c, d}, ∂ rconv(V ) = aea, but ae \ {a} 6∈ rconv(V ).

be the intersection point between ac and d′m, and c1 the foot of x1 onto d′b.
Then the geodesic segment from x1 to its “opposite” point goes through c1,
by construction. So c1 belongs to rconv(V ), and therefore ac1 is included in
rconv(V ). (Notice that |x1 − c1| < |x1 − c′1|.)

Now let x2 be the intersection point between ac1 and d′e, and c2 the foot
of x2 onto d′b. Then the geodesic segment from x2 to its “opposite” point
goes through c2, by construction. So c2 belongs to rconv(V ), and therefore
ac2 is included in rconv(V ).

Iterate, and pass to the limit.

It follows (as one can prove by running the above procedure backward)
that all points above ae belong to rconv(V ), but not ae (see Lemma 13.36).

Clearly, the digon aca is not convex. Also, consider that if we “split” the
vertex a into vertices a′, a′′, then neither is the triangle a′a′′c convex.

13.8 Extreme Points

An extreme point of a convex set S ⊆ P is a point in S that is not interior
to any geodesic segment joining two points of S. For example, every vertex
is an extreme point for every convex set containing it.
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Roughly, the Krein–Milman Theorem states that every compact convex
set is the extrinsic convex hull of its extreme points. The closest analogy for
ag-convexity we could prove is the following theorem, which will be invoked
later.

Theorem 13.32. Let S be a closed convex subset of P with ∂S a closed
curve, enclosing strictly less than 2π total curvature. Then either S is the
relative convex hull of its extreme points, or ∂S contains a geodesic arc which
is not a geodesic segment. In the former case, the interior extreme points of
S are all vertices.

We do not know if the above theorem statement is still true without the
“relative” modifier; Open Problem 18.11.

Proof. Case 1. If S ⊂ P has empty interior then the conclusion follows
from Lemma 13.2, which shows that S is either a point, a geodesic arc, or a
simple closed geodesic.

Case 2. Assume S ⊂ P has non-empty interior. The proof proceeds by
induction over the number of vertices of P interior to S.

For the base case, assume S has exactly one interior vertex v. By
Lemma 13.6, ∂S is locally isometric to a planar convex curve. If ∂S con-
tains a geodesic arc which is not a geodesic segment, we have established the
lemma claim.

So assume now that ∂S contains a geodesic segment, maximal with re-
spect to inclusion, between its corners vi, vi+1. Then we get a geodesic-
segment triangle vvivi+1, which is the convex hull of its extreme points. This
is valid for all such geodesic-segment arcs in ∂S.

If ∂S contains an arc A locally isometric to a planar strictly convex curve,
then each point of A is an extreme point, and the conclusion follows.

For the general case, again if ∂S contains a geodesic arc that is not a
geodesic segment, we are finished. So now we prove that S is the relative
convex hull of its extreme points.

Assume that S has at least two interior vertices, say v1 and v2. Because
they are inside Q, ω1 + ω2 < 2π. Let γ be a geodesic segment joining them
in S.

Merge v1 and v2 to v12 along γ to obtain a new surface P ′, hence where P ′

is P cut open along γ and the union T of two twin triangles is inserted. The
set S with T inserted yields S ′, a relatively convex set of P ′ (Lemma 13.18).
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Because ∂S ′ = ∂S by Lemma 13.15, S ′ is closed, because S is closed.
By the induction hypotheses, S ′ is the relative convex hull of its extreme

points E ′ on P ′#. Clearly, the only extreme point of S ′ in T is v12. Put
E ′′ = E ′ \ {v12} and, on P , E = E ′′ ∪ {v1, v2}. It suffices to show that (i) E
is the set of extreme points of S, and (ii) S = conv(E).

(i) Since E ′′ is included in the part of S ′ isometric to S, each point in E ′′

in also extreme for S, as are the vertices v1, v2.
(ii) One can easily see that each convex set on P ′ containing E ′ cor-

responds, via digon-tailoring T , to a convex set on P containing E, and
conversely. So the intersection of all such sets on P ′ corresponds to the
intersection of their correspondents on P , and conversely. Consequently,
S = rconv(E).

The last claim of the theorem—that the interior extreme points of S are
all vertices—follows from Proposition 13.27 and its proof.

Note that throughout the induction, the boundary of all the sets remains
fixed at ∂S.

The next example illustrates the exceptional situation of Theorem 13.32.

Example 13.33 (Extreme Points). Consider a “tall” triangular prism with
top abc and base a′b′c′. Now add a point v on the line containing bb′, above
b, and let P be the boundary of the extrinsic convex hull of {a′, b′, c′, a, c, v}.
See Fig. 13.7. Then Q = abc is a simple closed quasigeodesic and the “roof”
above Q—all the surface of P above Q—is our convex set. (Here we need the
prism to be sufficiently tall, but for clarity the figure is more squat.) Take
points x, y ∈ P with x on ab close to a and y on bc close to c. Then the arc
of Q from x to y through b is not a geodesic segment.

Note that b is not an extreme point of S, because b is interior to geodesic
segments connecting points on ab and bc that are close to b. The only extreme
points of S are a, c and v, and so S is not the convex hull of its extreme
points. This is the exception in Theorem 13.32.

Example 13.34 (Simple closed geodesic). For the simple closed geodesic
Q on Bh, the rectangular box of height h considered in Example 13.29,
conv(Q) = Q holds, and there are no extreme points on Q.

Denote by ext(S) the extreme points of the convex set S.



13.8. EXTREME POINTS 159

Figure 13.7: The region above the simple closed quasigeodesic Q is convex,
but is not the convex hull of its extreme points a, c, v.

Lemma 13.35. For any set S ⊂ P , ext(conv(S)) ⊂ S.

Notice that not all extreme points of the closure of conv(S) are in S, as
Example 13.26 shows.

Proof. Assume there exists a point x in ext(conv(S))\S. Then, since x is not
interior to any geodesic segment joining two points of conv(S) (because it is
extreme), the set conv(S)\{x} is still convex (see the proof of Lemma 13.9).
So we have S ⊂ conv(S) \ {x} ⊂ conv(S) and conv(S) \ {x} 6= conv(S),
contradicting the minimality of conv(S).

Lemma 13.36. For any S ⊂ P , if conv(S) contains a boundary geoarc which
is not a geoseg, then S also contains that arc.

Proof. Assume the contrary be true, and let A ⊂ conv(S) be a maximal
(with respect to inclusion) such geoarc not in S. So A ⊂ ∂(conv(S)) \ S.
Remove A from conv(S), but leave its extremities, and denote by K the
resulting set. It follows, just as in the proof of Lemma 13.9, that K is a
convex set including S and strictly included in conv(S), a contradiction to
the inclusion-minimality of conv(S).
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Example 13.31 also illustrates this result. Indeed, in Fig. 13.6, the arc
aea is a boundary geoarc of rconv({a, c, d}), but not a geoseg. And that arc
is not included in {a, c, d}, hence neither is it included in rconv({a, c, d}).

13.9 Relative Convex Hull of Vertices

We return to the notion of relative convexity and the relative convex hull,
used in the proof of Theorem 13.32. For our purposes we only consider the
relative convex hull of vertices V that fall to one side of (i.e., inside, or above)
a simple closed quasigeodesic Q.

Notation.

(1) Q quasigeodesic. Orient Q counterclockwise (ccw), and let P+ be the
half-surface to the left of (above) Q. P# is P+ union the unbounded
cylinder to the right of (below) Q.

(2) V : Set of (positive curvature) vertices inside or on Q.

(3) For C any simple closed curve in P+, let R(C) be the region of P+

to the left of C. So ∂R(C) = C. This is well-defined because C is a
simple curve. And because it is oriented ccw, R(C) ⊂ P+.

Given Q oriented so that V is to Q’s left, define a polyhedron P#(Q) =
P# as in Section 13.5: Cut P along Q and insert below Q a sufficiently tall
cylinder; for example, a cylinder of height equal to diam(P ). Because Q is
convex to both sides, AGT implies that P# is a convex polyhedron.

Note that Q is strictly αβ-convex on P#, because βi = π at all corners2

of Q, and corners have positive curvature.

Now we define the relative convex hull rconv(V ) = H of V to be the
intersection of all the convex sets that enclose V on P#. This is the same
notion earlier explored in Section 13.7, but here we focus on vertices inside
Q.

Lemma 13.37. Let V be a set of points on P , inside a simple closed quasi-
geodesic Q. The relative convex hull rconv(V ) = H of V can be obtained
from only employing geodesic segments, and consequently convex sets, inside
Q (instead of constructing P#).

2Of course, the vertices of Q with α = π are flattened when passing to P#.



13.9. RELATIVE CONVEX HULL OF VERTICES 161

Proof. Let x, y ∈ H be two points in H, and γ a geodesic segment between
them. We argue that γ cannot cross Q.

When the cylinder attached below P# is unfolded flat, it forms a rectangle
R. Suppose γ properly enters R at x′ and exits at y′. Then the segment x′y′

along the top of R is shorter, a contradiction to our assumption. (Note x′y′

is a portion of Q, and it is possible that H shares that portion of Q.)

A node n of a geodesic polygon N is a point of N interior to no geodesic
subarc of N . Call it a g-node if at least one side of N incident to n is not a
geoseg (instead a geoarc), and a gs-node otherwise.

Recall that Lemma 13.6 showed that, if S is closed and convex, then ∂S
is strictly αβ-convex; and if S has interior points then ∂S is αβ-convex but
not necessarily strictly. We now explore to what extent there is a converse
to this lemma, a result we need to compute rconv(S).

Lemma 13.38 (αβ converse). Let S be a set satisfying these conditions:
(1) S ⊂ R(Q) contains V , (2) ∂S is a geodesic polygon, and (3) any geoarcs
of ∂S which are not geosegs, are not included in S.

Then S is relatively convex if and only if ∂S is strictly αβ-convex at each
gs-node, and αβ-convex at each g-node.

Proof. If S is relatively convex, the statement is covered by the αβ-convexity
Lemma 13.6. The remainder of the proof establishes the converse: That if
∂S is αβ-convex at the gs- and g-nodes as above, then S is relatively convex.

Consider first two boundary points x, y ∈ ∂S (the roles x and y will play,
will be decided later) and let γ′ be a geoseg joining them, with γ′ not included
in S̄ = S ∪ ∂S. We now show that there is a subarc γ of γ′ (possibly γ = γ′)
that lies completely external to the interior S̊ of S.

Notice that γ′ intersects ∂S finitely many times. Otherwise, since ∂S
is formed by geoarcs, hence locally by geosegs, we could find arcs A of ∂S
arbitrarily small, having common extremities with subarcs of γ′. But those
arcs would be ramifying geosegs, impossible.

Therefore, possibly replacing γ′ with a subarc γ, we may assume that γ
lies completely external to the interior S̊ of S.

Let F be the region of P bounded by γ and the arc ∂∗S of ∂S from x to
y, so that F doesn’t include S. Then F̊ contains no vertex, by hypothesis.

Now we are going to identify a geoarc g from x to y inside S̄. The
boundary of S is, in particular, a convex curve, hence we may construct with
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AGT the double S# of S̄. Let g be a geoseg on S# from x to y. It is included
in a half-surface of S#, because geosegs do not branch. So we may assume
that g is in S̄.

We prove next that g is shorter than or equal to γ: `(g) ≤ `(γ). Notice
that the cut locus C(x) of x on S# doesn’t intersect g, which is a geoseg on
S#. On S#, put {c1, . . . , ck} = C(x) ∩ ∂S̄. Each point cj is the extremity
of two digons of S# at x (one on each copy of S̄). Remove all those digons
from S̄ ⊂ S# and zip close the result by AGT. We get a doubly covered flat
surface, by Lemma 2.2. Denote by S∗ the part of it bounded by ∂∗S and g
which doesn’t include ∂S.

We compare now F and S∗, which are both flat (hence planar) polygons.
Clearly, the angles α∗ of ∂∗S towards S∗ are at most π, and they are smaller
or equal to those towards F , denoted by β∗. (For convenience, we suppress
the indices of α∗ and β∗.) By the extension of Cauchy’s Arm Lemma (The-
orem 2.7). we obtain that g is shorter than or equal to γ.

Next we will consider separately the cases of x or y (or both) belongs to
S. That case-distinction and the non-strict inequality will imply convexity,
via strictness or non-strictness of αβ-convexity.

Case 1. x and y in S. The equality case appears if α∗ = β∗ everywhere,
meaning that ∂∗S is outside S. So if x, y ∈ ∂S ∩S the inequality `(g) < `(γ)
is strict because of the strictness of αβ-convexity, hence all geosegs between
them are in S.

Case 2. Consider now two points x′, y′ ∈ S̊. From these two points we
will obtain x and y. Assume γ′ exits S. Because ∂S is a convex curve towards
S, γ′ must intersect it at least two times. Choosing two such points x, y, the
above argument implies the ramification of γ′ assuming |g| = |γ|, hence not
strict αβ-convexity, impossible. So γ′ lies inside S̊.

Case 3. The case x ∈ ∂S and y′ ∈ S̊ can be treated analogously, com-
pleting the proof.

Example 13.39. The statement of Lemma 13.38 is not necessarily true if
S does not include all of V : V \ S 6= ∅.

(a) To see this, take the quadrilateral H = abcd formed by three equilateral
triangles obc, ocd, oda, and let P ′ be the double of H. Let P be obtained
from P ′ by extending it below by long rectangles. See Figure 13.8(a).
Q = aobo′a is a simple closed quasigeodesic on P (with o′ “opposite” to
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o). Let S = R(oco′do) be the closed set constituted by 4ocd and 4o′cd.
Observe that the boundary of S is not strictly αβ-convex: both the an-
gles α and β at c are 120◦ (and similarly at d). Then by Lemma 13.6(i),
which established that closed S are strictly αβ-convex, S is not convex.
Indeed, there is a geoseg outside S from x to x′ on the back, for x on
oc (and similarly for points on od). And for the same reason, there are
geosegs from o to o′ outside S, namely oeo′ and ofo′.

Figure 13.8: S is not convex. (a) Lemma 13.38 doesn’t apply because ∂S is
not strictly αβ-convex at c and d. (b) After insertion of digons, ∂S is strictly
αβ-convex, but Lemma 13.38 does not hold in this case because S doesn’t
include c′ and d′.

(b) Now we show that even altering the example so that every gs-node on ∂S
is strictly αβ-convex, does not always permit the converse conclusion
that S is convex. Modify P by inserting two digon doubled triangles
along oc and od; see Figure 13.8(b). Each triangle has base angles
7.5◦, and so adds 15◦ to c, and d, and adds a total of 30◦ of angle at
o. Cut out 30◦ at o below o, so that o is again flat. Now the Q used
above is no longer a quasigeodesic, but Q′ = aoeo′a is a simple closed
quasigeodesic. The effect of the digons is two-fold. First, c and d now
are both strictly αβ-convex, and ∂S remains strictly αβ-convex at o and
at o′. So S is closed, ∂S is a geoseg polygon, strictly αβ-convex at every
gs-node (and it has no g-nodes). So S satisfies all but one condition
of Lemma 13.38, which would allow concluding that S is convex. The
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missing condition is that V \ S 6= ∅: S does not include the two digon
vertices—call them c′ and d′—which are now part of V . And again the
geosegs oeo′ and ofo′ lie outside of S, showing that indeed S is not
convex.

(c) Next, alter S to include the digon vertices c′ and d′: S ′ = R(oc′co′dd′o).
So now V \ S = ∅. But ∂S is not αβ-convex at c′ and d′: they both
have α = β = 165◦. So again the preconditions for Lemma 13.38 are
not satisfied, and S ′ is not convex.

(d) If S = R(oeo′fo), then o is a g-node of ∂S, which is strictly αβ-convex
at o: α = 150◦, β = 210◦. However, the geoarcs oeo′ and o′fo must not
be included in S for Lemma 13.38 to apply. However, S is nevertheless
relatively convex.

(e) If S = Q = aoeo′a in Figure 13.8(b), then ∂S is not strictly αβ-convex
at o (α = β = 180◦), but again the lemma does not apply because ∂S
contains the geoarc oeo′. Again, S is relatively convex.

The next result gathers the proven facts about rconv(V ).

Theorem 13.40 (rconv(V )). Let V be the set of all (at least three) vertices
of P , inside a simple closed quasigeodesic Q. V might also include some, but
not all, vertices on Q, such that

∑
v∈V ωv < 2π.

Then H = rconv(V ) is simply-connected and its boundary ∂H is a geodesic
polygon, strictly αβ-convex at gs-nodes and αβ-convex at g-nodes, on P#.
Moreover, ext(H) = V .

It will be established in Theorem 14.12 that H = rconv(V ) can be con-
structed in time O(n5 log n) where n = |V |.

Proof. By Lemma 13.35, ext(rconvV ) ⊂ V , and clearly V ⊂ rconvV , hence
ext(H) = V . Therefore, each point in ∂ rconv(V ) \ V is interior to a geoarc,
so ∂rconv(V ) is a geodesic polygon. The αβ-convexity follows now from
Lemma 13.38.

The simply-connectedness follows from the algorithmic construction in
Section 14.4, justified by Lemma 13.38.

Example 13.41. Notice that the claim that ext(H) = V may not hold when
V does not include all vertices of P inside Q. This can be seen by adapting
Example 13.26, Fig. 13.3, as follows.
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Imagine there is another vertex a′ close to a, above a, and almost flat.
(This vertex a′ is added so that |V | ≥ 3.) Then, in the upper-left half-
surface S bounded by the simple closed quasigeodesic Q = aca, take V =
{a, a′, c} (i.e., skip one vertex d inside Q). Then H = conv(V ) = S \ {d},
by Proposition 13.27. Therefore, H is not simply-connected and ∂H is not a
geodesic-segment polygon.

13.10 Summary of Properties

We attempt to succinctly summarize below the facts about convexity estab-
lished in this chapter, either in lemmas and theorems, or via examples. The
goal is to help the reader interested in applications of this theory. Please
note that, unless otherwise specified, “convexity” means “ag-convexity.”

Ag-Convexity

(1) S closed convex =⇒ Either point, arc, geodesic, or has interior points.
Lemma 13.2.

(2) Closure S̄ of convex S 6=⇒ S̄ convex. Example 13.4.

(3) S closed convex =⇒ ∂S a convex curve, and if a geodesic polygon,
then αβ-convex. Lemma 13.6

(4) S closed convex =⇒ S encloses ≤ 2π curvature.

(5) S closed convex =⇒ simply-connected, or cylinder. Lemma 13.8.

(6) S convex and v ∈ S a vertex =⇒ S \ {v} convex. Lemma 13.9.

(7) S convex and not closed 6=⇒ simply-connected. Example 13.12.

(8) No Helly type theorem for h = 3. Example 13.13.

(9) S closed convex and includes Q =⇒ cylinder, or S = P . Lemma 13.14.
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Geodesic Segments and Convex Sets

(10) S convex =⇒ γ connecting interior points x1, x2 does not meet ∂S.
Lemma 13.15.

(11) S convex, x interior to S and y ∈ ∂S =⇒ all geodesic segments
from x to y are interior to S, possibly excepting their extremity y.
Lemma 13.15.

(12) S convex, x, y ∈ ∂S then there is a geodesic segment between them
included in the closure S̄ of S. Lemma 13.15.

(13) S convex; x ∈ ∂S is not itself a component of ∂S then there exists a
geodesic segment starting at x and exterior to S. Lemma 13.15.

(14) S convex =⇒ the interior of S is convex. Corollary 13.16.

(15) S 6= P convex with interior points, x ∈ ∂S =⇒ supporting angle at
x. Lemma 13.17.

Relative Convexity

(16) S convex and v1, v2 merge =⇒ S ′ relatively convex. Lemma 13.18.

(17) S convex and v1, v2 merge 6=⇒ S ′ convex. Example 13.19.

Convex Hull Properties: conv(S)

(18) V vertices of P =⇒ conv(V ) = P . Example 13.20.

(19) conv(P \ V ) = P \ V . Example 13.21.

(20) No Radon type theorem for r = 4. Example 13.22.

(21) For S ′ ⊂ S, conv(S ′) ⊆ conv(S). Lemma 13.23.

(22) For T ⊂ S, conv(S) = conv ((conv(S \ T )) ∪ T ). Lemma 13.24.

(23) S open =⇒ conv(S) open. Lemma 13.25.

(24) S closed 6=⇒ conv(S) closed. Example 13.26.
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(25) S closed, convex, with interior points, enclosing < 2π curvature =⇒
conv(P \ S) dense in P , conv(∂S) dense in S. Proposition 13.27.

(26) For box Bh and Q: conv(Q) = Q or conv(Q) = B, depending on h.
Example 13.29.

Relative Convex Hull: rconv(S)

(27) Convexity and relative convexity can differ. Example 13.30.

(28) Neither a digon nor a triangle is necessarily convex; conv(V ) is not
necessarily closed; the closure of rconv(V ) is not the convex hull of its
extreme points. Example 13.31.

Extreme Points: ext(S)

(29) S closed convex with ∂S enclosing< 2π curvature. Either S = rconv(ext(S)),
or S contains a non-segment geoarc. Theorem 13.32. Exception: Ex-
amples 13.31, 13.33.

(30) S closed, convex and conv(S) 6= conv(ext(S)). Example 13.33.

(31) S closed convex with ext(S) = ∅. Example 13.34.

(32) ext(conv(S)) ⊂ S. Lemma 13.35.

Not all extreme points of the closure of conv(S) are in S. Exam-
ple 13.26.

(33) ∂conv(S) contains a non-segment geoarc only if S does so. Lemma 13.36.

Relative Convex Hull of Vertices

(34) S ⊂ R(Q), points V in S: rconv(S) can be constructed without P#.
Lemma 13.37.

(35) S ⊂ R(Q), V ⊂ S, ∂S αβ-convex =⇒ S relatively convex. Lemma 13.38.

(36) Lemma 13.38 is not true if V \ S 6= ∅. Example 13.39.

(37) V all vertices inside Q, + some on Q =⇒ H = rconv(V ) simply-
connected, ∂H a geodesic polygon, αβ-convex on P#. ext(H) = V .
Theorem 13.40.
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(38) ext(H) 6= V if V does not include all vertices inside Q. Example 13.41.



Chapter 14

Minimal-length Enclosing
Polygon

In this chapter we explore the minimial-perimeter polygon Z enclosing a set
of vertices V in or on a quasigeodesic Q. We derive its key properties, and
provide a polynomial-time algorithm for constructing it (Section 14.2). We
then show that this polygon is not always the same as ∂ rconv(V ) (Exam-
ple 14.10). The algorithm for Z also works to construct ∂ rconv(V ) with
minor modifications (Section 14.4).

In the next chapter we will show that either of these notions can sup-
port an algorithm that ensures that sequential vertex-merging cuts do not
disconnect P+.

14.1 Properties of the Minimal Enclosing Poly-

gon

Notation. We repeat some previous notation and introduce new notation
to be used subsequently. We again use the abbreviation geoseg to mean
“geodesic segment” and geoarc to mean a simple geodesic that may or may
not be a geoseg.

(1) Q quasigeodesic. Orient Q counterclockwise (ccw), and let P+ be the
closed half-surface to the left of (above) Q. P# is P+ union the un-
bounded cylinder to the right of (below) Q.

(2) V : Set of (positive curvature) vertices inside or on Q.

169
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(3) For C any simple closed curve in P+, let R(C) be the closed region of
P+ to the left of C (“R” for region). So ∂R(C) = C. This is well-
defined because C is a simple curve. And because it is oriented ccw,
R(C) ⊂ P+.

(4) For C any curve on P , `(P ) denotes its length.

Definition of min `. For a finite set V of points in the plane, conv(V )
is precisely the set bounded by the minimal length curve enclosing V . We
adapt this property for vertices V ⊂ P+. Toward that end, we define Z =
Z(V ) = min `[V ] to be the minimal-length geodesic polygon enclosing V .
Here enclosing is to the left when Z is oriented ccw. We must also stipulate
that “enclosing” means that the interior of the region between Z and Q is
empty of vertices. Otherwise a clockwise traversal of the boundary of any
triangle 4 ⊂ P+ would enclose V to its left, and in fact would enclose all
of P \ 4. Also, for a simple closed geodesic enclosing V , its position is not
fixed by the above requirements, in the sense that it could be “slid” parallel
to itself while remaining a geodesic of the same length. In such a case, we
define Z to be “lifted” to a position that touches a vertex.

Each edge of the geodesic polygon Z is a geoarc but not necessarily a
geoseg. See, e.g., Fig. 14.2(b). We view polygons, and so Z, as the boundary,
not the region enclosed, which is denoted by R(Z).

Here we concentrate on properties of Z and algorithms to construct Z.
We stress that all the following considerations take place on P# and not
on P . For simplicity, we will omit in the rest of this section the modifier
“relative,” which would refer precisely to P#.

We first establish three basic properties of Z = Z(V ) = min `[V ].

Lemma 14.1 (αβ-convex). Z is strictly αβ-convex.

Proof. At vertices v ∈ Z ∩Q, β = π on P#. On the other hand, at vertices
v ∈ Z \ Q with β < π one could further shorten Z, a contradiction to
minimality.

Since β ≥ π and α + β < 2π at vertices, α < π ≤ β.

Lemma 14.2 (Z simple). Z is simple, i.e., non-self-crossing.

Proof. Suppose Z is not simple. At each self-crossing, clip off the portions of
the geodesics toward the inside. The resulting outermost geodesic polygon
still encloses all of V , and is shorter. See Fig. 14.1.
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Figure 14.1: (a) Non-simple polygon. (b) Outermost arcs.

Lemma 14.3 (Z Unique). Let Z be a shortest geodesic polygon enclosing V .
Z is unique, up to isometry.

Proof. Assume there is another geodesic polygon Z ′ also enclosing all of V
and of the same length: `(Z) = `(Z ′). Then either one is enclosed in the
other, or the two polygons cross at two or more points.

Case 1. Assume Z ′ is nested inside Z.
Case 1a: First assume Z and Z ′ are disjoint. Because all vertices are on

or interior to Z ′, Z must be a simple closed geodesic. Let A be the annulus
between Z and Z ′; A contains no vertices. Intrinsically, A is a subset of
a cylinder with lower circular rim Z, and upper boundary Z ′. Thus we
can project any point p ∈ Z ′ orthogonally onto Z. See Fig. 14.2(a). Thus
`(Z) ≤ `(Z ′), with equality when Z and Z ′ are parallel. In either case, we
can “lift” Z parallel to itself until it touches a vertex in V . As mentioned
earlier, we choose this isometric version of Z as min `[V ].

Case 1b: Assume Z and Z ′ share some portion of their boundaries. Again
because all vertices are on or inside Z ′, this means that there must be a
geodesic arc γ of Z, outside of Z ′, between two shared vertices v1 and v2. See
Fig. 14.2(b). Let B be the region of P bounded by γ and the edges E of Z ′

between v1 and v2. Then (a direct induction shows that) B is isometric to a
plane polygon, with one straight edge γ, and E a polygonal chain. Therefore
E is strictly longer than γ, and so `(Z) < `(Z ′).

Case 2. Neither of Z or Z ′ is inside the other. So they must cross at least
twice, with always the outer arc a geodesic γ, and the inner sequence of edges
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Figure 14.2: Z ′ = avc. (a) Edge av projected onto Z. (b) γ with ab, bc forms
a planar polygon.

possibly containing vertices. Call such a region a lune L. Now the argument
in Case 1b applies: L is isometric to a planar polygon with straight edge γ,
and so the outer arc of L is strictly shorter than the inner arc. Now form
Z ′′ by following all outer arcs, and otherwise the common portions of the
two polygons. Z ′′ still encloses all of V , but it is strictly shorter than Z and
Z ′. This contradiction to the assumption that both Z and Z ′ are shortest
establishes the lemma.

This next lemma is a counterpart to the αβ-converse lemma, Lemma 13.38
in Chapter 13. In the following, a pinned node v of a geoarc polygon G is a
flat point which behaves like a vertex, in the sense that G is not allowed to
be shorten at v towards its interior.

Lemma 14.4. Assume that all nodes of a geodesic polygon G ⊂ R(Q) are
either vertices or pinned, and that V = V (P+) ⊂ R(G). Then G = Z(V ) if
and only if β ≥ π at each node of G.

Proof. That β ≥ π for Z(V ) was established in Lemma 14.1.
In the following we show that G = Z(V ), using reasoning similar to that

used to prove uniqueness in Lemma 14.3.
In Case 1 of that lemma’s proof, one of G or Z is nested inside the other.

Case 1a: Assume the two polygons are disjoint and Z is inside G. Then the
lemma argument leads to `(G) ≤ `(Z), but because Z is shortest, we must
have `(G) = `(Z); and so G = Z. If instead G is inside Z, then recall that
Z must be a simple closed quasigeodesic. If Z and G are not identical, then
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the arc of Z between touching points of G is a short-cut of G, contradicting
the assumption that G has no further short-cuts.

In Case 1b, G and Z share some portion of their boundaries. If Z is
inside G, the lemma argument shows that `(G) < `(Z), contradicting the
minimality of Z. If G is inside Z, then consider the region B in the proof
of Lemma 14.3, bound by γ and the edges E of G between v1 and v2. B is
isometric to a plane polygon, and so some vertex along E must be convex.
We have thus identified a vertex on G with a right angle β < π. So G can be
short-cut there, contracting the assumption that no more G-short-cuts were
possible.

In Case 2, neither is nested in the other, so they must cross. This leads
to a polygon shorter than either G or Z, a contradiction to the minimality
of Z.

Example 14.5. The assumption of pinned nodes in Lemma 14.4 is clearly
necessary. Here we show that the second assumption, that V ⊂ R(G), is also
necessary.

Consider an equilateral triangle abd′ inscribed in the rectangle abce′, and
choose d ∈ ce′ between d′ and e′, and e ∈ ae′ such that ed ⊥ bd. See Fig-
ure 14.3. Extend the sides e′a and cb sufficiently beyond a and b respectively,
and let L be the double of the extended abcde. Let V = {b, c, d}. Note that
e 6∈ V .

On L, Q = aba is a simple closed quasigeodesic, and the geodesic polygon
G = bdb has each of its angles β towards Q at least π. However, e /∈ R(G)
and Z(V ) = Q, because |a− b| = |b− d′| < |b− d|.

We prove here the following result, which will be employed in the next
chapter.

Lemma 14.6. For any point p /∈ V , R(Z(V )) ⊆ R(Z(V ∪ {p})).1

Proof. The argument is similar to the one proving the uniqueness of Z.
Set V ′ = V ∪ {p}. Clearly, R(Z(V )) = R(Z(V ′)) if p ∈ R(Z(V )). So

assume that p is strictly exterior to R(Z(V )).
Put I = R(Z(V )) ∩ R(Z(V ′)) and assume there exists q ∈ R(Z(V )) \

R(Z(V ′)). If the lemma were to hold, then I = R(Z(V )) and R(Z(V )) \
1We believe that also `(Z(V )) ≤ `(Z(V ∪{p})), but this inequality is not important in

the following.
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Figure 14.3: Lemma 14.4 is optimal. V = {b, c, d}, G = bdb 6= Z = Q.

R(Z(V ′)) = ∅, so there could be no such q. We now prove that the existence
of q leads to a contradiction.

Since V ⊂ I and q is outside I, q lies on an geoarc A ⊂ Z(V ) with
extremities on Z(V ′). Those extremities determine an arc A′ ⊂ Z(V ′) such
that A ∪ A′ bounds a flat polygonal domain L.

Because of the length minimality of both Z(V ′) and Z(V ), `(A′) = `(A).

On the other hand, if A′ is not a geoarc, the flat polygon bounded by
A∪A′ has the side A necessarily shorter than A′, a contradiction. And if A′

is a geoarc, L is a flat digon, contradicting the Gauss-Bonnet Theorem.

14.2 Shortening Algorithm

Our goal in this section is to provide a polynomial-time algorithm to construct
min `[V ].
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14.2.1 Curve-Shortening Flow

Here we digress to highlight the intuition behind curve-shortening. The fa-
mous Gage-Hamilton-Grayson (GHG) theorem says that,

If a smooth simple closed curve undergoes the curve-shortening
flow, it remains smoothly embedded without self-intersections. It
will eventually become convex, and once it does so it will remain
convex. ... The curve will then converge ... to a “round point,”
[a vanishingly small circle]. [Wik21]

First assume that all of V is strictly inside Q: Q and V are disjoint. At every
vertex u of Q strictly convex to its left, replace u with a small arc of a circle,
smoothly joined to the incident edges of Q. This is now a smooth simple
closed convex curve C, a smooth approximation of Q, to which the GHG
theorem applies. Shortening C will either result in a simple closed geodesic,
which can no longer be shortened, or it will hit one or more vertices in V .

Consider these vertices pinned, partitioning C into sections between pinned
vertices. A recent result [ALT12] established that “open curves with fixed
endpoints evolving ... do not develop singularities, and evolve to geodesics.”
Thus the arcs of C between pinned vertices shorten to geodesics. The result
is our shortest enclosing geodesic polygon Z.

Although there is recent work on discrete curve-shortening, e.g., [AN19]
and [EHPN20], it seems it could be difficult to turn this smooth curve-
shortening viewpoint into a formal proof or a finite algorithm. So we take a
different approach.

14.2.2 Algorithm Overview

We now turn to a discrete, finite algorithm, which we will see is in some sense
the reverse of the curve-shortening flow. Imagining Q as roughly equitorial,
the flow as described above shortens Q “upward” to Z, whereas the algorithm
to be described starts with G “above” Z and shortens it “downward” to
Z = min `[V ].

The algorithm consists of two steps. The first step constructs a geodesic
polygon G enclosing V . The second step shortens G to Z.
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14.2.3 Finding an Enclosing Geodesic Polygon

Our goal here is to construct a geodesic polygon G that encloses all vertices
in V .

It is tempting to build G from the subgraph of the 1-skeleton of P induced
by the vertices in V . However, this subgraph is not always connected, as
illustrated in Fig. 14.4. As it seems difficult to base an algorithm on this
subgraph, we pursue a different approach.

Figure 14.4: Q (blue) encloses V , the 8 marked vertices. The subgraph V
induces is the two disconnected red quadrilaterals.

We start by computing all geosegs between pairs of vertices in V , and
then identify those geoseg subsets (“edgelets”) on the outer boundary of the
resulting planar subdivision.

A planar subdivision is a data structure R that maintains a subset of the
plane partitioned into regions. Often called a Planar Straight-Line Graph
(PSLG) when its edges are straight-line segments,R represents an embedding
of a planar graph, and maintains the incidence relations between its regions
and edges. Such data structures support updates (for us, the addition of new
geosegs) in O(log n) time per intersection.

The algorithm described below has time complexity at worst O(n5 log n),
although a careful analysis might lead to O(n4 log n). Our focus is more to
show it is polynomial-time, as opposed to optimizing efficiency.

We first describe the three stages of the algorithm at a high-level.

(1) Calculate all geosegs between pairs of vertices in V . Let Γ be the
collection of these geosegs.
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(2) Intersect all geosegs in Γ, incrementally building a planar subdivision
data structure R on P+ = R(Q). As each g ∈ Γ crosses the others
already processed, the surface is partitioned into convex regions, call
them g-faces bounded by edgelets. Each g-face is flat and isometric to
a planar convex polygon; an edgelet is a (generally short) subsegment
of a geoseg g, between two points where other geosegs cross g. G-
faces do not necessarily lie in one face of P , but they are always empty
of strictly interior vertices, or internal edgelets. Fig. 14.5 illustrates
a simple such a partition; Fig. 14.7 below is a bit more complicated.
As the intersections are calculated, the data structure R is updated
to record ccw orientation of each newly created g-face. The process
parallels the incremental algorithm for constructing an arrangement of
lines; see Fig. 14.6.

(3) Each interior edgelet is shared by exactly two g-faces, recorded in R.
A edgelet e shared with just one g-face must be on the boundary of the
outer face of the planar subdivision. Connecting all the outer-boundary
edgelets yields a geodesic polygon G that encloses all vertices in V .

Figure 14.5: V is the four marked vertices. Geosegs (red) form four g-faces.

Next we discuss some computational details for each of the three stages.

(1) The total number of geosegs between vertices of P is O(n2), each of
which can be found in O(n log n) by the algorithm in [SS08]. Although
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Figure 14.6: Inserting a line into a line-arrangement data structure. (Im-
age from Jan Verschelde Lecture Notes: http://homepages.math.uic.edu/

~jan/mcs481/arrangements.pdf)

two vertices may have more than one geoseg connecting them, the
number of geosegs from one vertex v and the n − 1 other vertices is
still O(n). This claim can be proved by induction using the cut locus
partition (Lemma 2.6 in Chapter 2. For another proof idea, notice that
each extra pair of geosegs between two vertices must have a vertex
separating them. And there are only n vertices.

(2) The total combinatorial size of the data structure R is O(n4), the same
size as an arrangement of

(
n
2

)
lines. That each of the O(n4) edgelets may

cross several edges of P is accounted for in the implicit data structure
of [SS08].

(3) We note that the sides of G are not necessarily full geosegs between
vertices. G in the example shown in Fig. 14.7 includes two edgelets v1x
and v3x whose containing geosegs are not wholly on the outer bound-
ary. This example also shows that G is not necessarily convex: it is
reflex at x.
The complexity of any face, including the outer face, of an arrange-
ment of segments is just slightly more than linear in the number of
segments. Therefore, since G is built from O(n2) geosegs, the total
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number of edgelets on G is O(n2α(n)), where α is the inverse Acker-
mann function [CEG+93].

Figure 14.7: V is all the vertices except excluding v2. Q = v1v2v3. G =
v1xv3v1. g16 and g35 (red) on the front are geosegs. The dashed paths around
the back are longer and so not geosegs.

A more formal presentation is displayed below as Algorithm 6.
There are two special cases. When V is a single vertex v, we allow

G = {v}. And when |V | = 2, say, V = {a, b}, G is the ccw loop aba.
We have established this lemma:

Lemma 14.7. Let P have n vertices, and V a set of vertices in or on quasi-
geodesic Q (possibly including all vertices of Q). Then a geodesic polygon G
enclosing all of V can be constructed in O(n5 log n) time.

14.2.4 Algorithm for Curve Shortening

We now describe an algorithm for shortening G = G0 to Z = min `[V ]. We
will repeatedly shorten G0 to G1, G2, . . . , Gk = G, until Gk = Z for some
k ≤ n = |V |. We next describe one shortening step.

Case 1. |V ∩Gj| ≥ 3. Let vi−1, vi, vi+1 be three consecutive nodes of Gj

(for some j), and let αi and βi be the angles at vi left and right of Gj. If
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Algorithm 6: Algorithm to find an enclosing geodesic polygon

Input : n vertices V inside or on quasigeodesic Q, on P#.
Output: Geodesic polygon G enclosing V .

// Calculate all geosegs between pairs of vertices:

O(n3 log n).

foreach
(
n
2

)
pairs of vertices in V do

Compute geosegs vi to vj, each in O(n log n) time [SS08].
end
Let Γ be the set of these O(n2) geosegs.

// Compute g-faces and edgelets: O(n5 log n).
foreach geoseg g ∈ Γ do

Intersect g with previously built data structure R.
Create g-face regions, orient each ccw, bounded by edgelets.
O(n log n) per geoseg insertion.

end

// Identify outer boundary: O(n4 log n).
foreach edgelet e do

Check in data structure R if e is shared between two g-faces.
If not, e is on the boundary of the outer face of the subdivision:
Then add e to G.

end
return G.
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vi ∈ Q, or if βi ≥ π, we take no action—Gj should not or can not be shortened
at vi. If however vi 6∈ Q and βi < π, then we can locally shorten Gj in a
neighborhood of vi. But rather than locally shorten, we shorten by replacing
the sequence (vi−1, vi, vi+1) by (vi−1, vi+1). This is a shortening because the
triangle inequality holds for geodesic triangles on a convex polyhedron. Let
γ = vi−1vi+1.

Before proceeding with the description, we re-examine the example in
Fig. 14.8. In the example previously shown in Fig. 14.2, we have G0 =

Figure 14.8: Flattening the region between G and Q in Fig. 14.2(b). α ≈ 94◦,
β ≈ 150◦, ω ≈ 116◦.

(a, v, c), and Q = Z as illustrated. Here β < π, and flattening the region
below v leads to the planar triangle, short-cut by geoarc γ = abc.

Returning to the shortening step, the region of P+ between Gj and Q
is empty of vertices. So the path γ does not cross any portion of Gj, nor
can it cross Q, because the P# construction would require γ to cross below
and return above Q, violating the fact that geodesics do not branch. So
the triangle vi−1vivi+1 is between Gj and Q, and empty of vertices. By the
triangle inequality, γ is shorter than |vi−1 − vi|+ |vi − vi+1|.

Another way to view this construction is to imagine a point p initially at
vi, sliding down the edge vi−1vi until it reaches vi−1. Then the line segment
pvi+1 never encounters a vertex during this motion, and leads to pvi+1 =
vi−1vi+1 = γ.

Applying one of these shortening steps moves a node that was originally
on G—either a vertex or an intersection of edgelets—to the interior of Gj.
Because the combinatorial size of G is bounded by O(n2α(n)), there can be
no more than that nearly quadratic number of steps.

When no further shortening steps are possible, Gk is a geodesic polygon
with βi ≥ π at every vertex vi. By Lemma 14.4 then Gk = Z = min `[V ].
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Before passing to the other cases, we notice that the total curvature ω of
V ⊂ R(Q) is at most 2π.

Case 2. |V ∩ Gj| = 2 and Gj is a digon with endpoints v1 and v2. Let
βi be the exterior angles at vi, and let τi = βi − π be the turn angles at vi.
Gauss-Bonnet requires that ω+τ = 2π. If both βi < π, then τ1 +τ2 = τ < 0,
and ω + τ = 2π cannot be satisfied. If both βi ≥ π, the algorithm halts. So
let β2 < π.

Because Q is a convex curve, we can merge inside R(Q) all vertices it
encloses to obtain one apex a of a cone Υ. Clearly, the vertex-free region
between Q and Gj is isometric to a subset of Υ. Unfold Υ by cutting it
open along the cone generator av1. Then there exists a geodesic loop at v1

enclosing R(Gj) and strictly shorter than Gj.
A special case is when |V | = |V ∩ Gj| = 2 and αi = 0. For example, in

Fig. 14.9, with V = {c, d}, G = cdc, and short-cutting at d leads to Z = cfc.

Figure 14.9: Doubly-covered quadrilateral. If V = {a, c, d}, G = aca, Z =
aea. If V = {c, d}, G = cdc, Z = cfc. Vertex c is nonconvex in the doubled
4acd.

Case 3. |V ∩ Gj| = 1. Then Gj is a geodesic loop at v, where Gauss-
Bonnet implies that necessarily β ≥ π. Therefore the algorithm halts.
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This completes the description of the shortening algorithm.

A few remarks on the shortening algorithm:

• The short-cut edge γ = vi−1vi+1 is a geoarc, not a geoseg, because if
γ were a geoseg, it would have been incorporated into the construc-
tion of G = G0. So every shortening step inserts a geoarc. Later (in
Chapter 15), algorithms will vertex-merge along such a geoarc (beyond
a geoseg).

• The algorithm relies on the property that the region of P+ between
G and Q is empty of vertices. All the shortenings insert arcs in this
vertex-free region. For that reason, V must include all vertices inside
Q, i.e., the algorithm may not work if V is a proper subset of the
vertices inside Q. (However, the construction of G still works, but the
shortening may not.) So in this sense, it is not a general “convex hull”
algorithm, but rather a construction tailored to our needs.

• The algorithm also works for all vertices inside a convex curve C, be-
cause doubling R(C) via AGT transforms C into a quasigeodesic.

• Even when V includes all vertices on Q, it may be that G 6= Q, if
Q contains geoarcs. But then the shortening algorithm will result in
Z = Q.

• Viewing P+ as the upper half-surface, one can view Q as the rim of
the base of P+, Z a closed convex curve “above”/inside Q, and G a
closed curve “above”/inside Z. The shortening algorithm works by, in
some sense “area growing” G down to Z, even though each growing
step is in fact length-shortening. In contrast, the curve-shortening flow
described in Section 14.2.1 “raises” Q until it matches Z.

We have now established this theorem:

Theorem 14.8 (Z-Algorithm). The minimum-length geodesic polygon en-
closing V , Z = Z(V ) = min `[V ], can be constructed in polynomial-time,
specifically in time O(n5 log n) where n = |V |.
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14.3 AG-convexity and Z

To parallel the notation Z = Z(V ) = min `[V ], define W = W (V ) =
∂ rconv(V ).

Lemma 14.9. The set R(Z) enclosed by Z = Z(V ) is a relatively ag-convex
set containing V , but it is not necessarily equal to rconv(V ).

Proof. The relative convexity of R(Z) follows directly from the strict αβ-
convexity of Z and Lemma 13.38. The second claim is established by the
next example.

Example 14.10. It could be that Z(V ) 6= W (V ).
Let P be the octahedron illustrated in Fig. 14.10. The shape is symmet-

ric front-to-back and top-to-bottom. Triangles acd and ac′d′ are congruent
45◦ − 45◦ − 90◦ triangles, and triangles acc′ and add′ are congruent equi-
lateral triangles. Q (red) is aba′ea, and V = {a, c, d, a′}. Let G = acda′

as illustrated. Then αi < βi at each of the four vertices / gs-nodes. By
Lemma 13.38, rconv(V ) is the union of the two triangles acd and a′cd. How-
ever, because β at both c and d is strictly less than π, the algorithm would
short-cut there, leading to Z = aba′ea = Q. So Z(V ) 6= W (V ).

Figure 14.10: Q = aba′ea, V = {a, c, d, a′}. Z = aba′ea = Q. W (V ) =
aca′da. Z(V ) 6= W (V ).
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It follows, directly from Lemma 14.9 and the definition of rconv(V ), that
R(W ) ⊆ R(Z), with Z = Z(V ) and W = W (Z). So of the two generaliza-
tions of the planar convex hull, rconv(V ) is “tighter” than min `[V ].

14.4 Algorithm for rconv(V ) = R(W )

An algorithm to constructW = W (V ) can be obtained by minor modification
of the algorithm for Z = Z(V ). The first part, calculation of a geodesic
polygon G enclosing V , is identical. The second part, short-cutting G, can
be followed with just different criteria of when to short-cut. We will continue
to call it a “short-cut” even though it is no longer aimed at length-shortening.

Just as the construction of Z relies on Lemma 14.4, the construction of W
relies on the αβ-converse Lemma 13.38. Assuming the preconditions of these
lemmas are satisfied, then the short-cutting decisions of the two algorithm
are as follows.

Z: If Gj is such that, for every v on Gj, β ≥ π, then Gj = Z. So we
short-cut whenever β < π.

W : If Gj is such that, for every v on Gj,

(a) if v is a gs-node, then v is strictly αβ-convex. So we short-cut
whenever α ≥ β. For positive curvature v, this implies β < π.

(b) if v is a g-node, then v is αβ-convex. So we short-cut whenever
α > β. And this implies β < π.

then Gj = W .

We next explain in some detail how the short-cutting conditions for W imply
β < π, as claimed in (a) and (b) above. Because α+β = 2π, we have: α ≥ β
implies that β ≤ π, and α > β implies that β < π. Below we abbreviate “the
Z-algorithm” and “the W -algorithm” with just Z and W , for readability.

Positive Curvature v. If v has positive curvature, then α ≥ β implies
that β < π (because if β = π, then α = β = π and v is flat). So, for positive
curvature v, whenever W short-cuts, β < π and also Z short-cuts. And for
a gs-node, if α < β, then W does not short-cut independent of β, but Z will
short-cut if β < π. And for a g-node, if α ≤ β, then W does not short-cut
independent of β, but Z will short-cut if β < π.
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Flat v. For flat v, if α = β = π, then short-cutting effectively leaves a
geodesic through v, and so neither algorithm takes action. For flat v and
α < β, neither algorithm short-cuts: Z because β > π; W because strictly
αβ-convex. For flat v and α > β, both algorithms short-cut: Z because
β < π; W because not αβ-convex. We have now established this result:

Lemma 14.11. The W -algorithm’s short-cuts are a subset (or equal) to the
Z-algorithm’s short-cuts.

This accords with our conclusion from Lemma 14.9 that R(W ) ⊆ R(Z).
The arguments that the W -algorithm’s short-cuts are possible, and that

the algorithm halts after at most n steps, are identical to those for the Z-
algorithm, because every W -algorithm short-cut is a Z-algorithm short-cut,
by Lemma 14.11. So we achieve a result parallel to Theorem 14.8:

Theorem 14.12 (W -Algorithm). The boundary W (V ) of rconv(V ) can be
constructed in polynomial-time, specifically in time O(n5 log n) where n =
|V |.



Chapter 15

Spiral Tree on Polyhedron

In the previous chapters we have established the planar model for our spiral
tree (based on convex hulls), and the extensions to convex polyhedra of the
planar notions of convex hull/minimal length enclosing polygon. In this
chapter we continue our program and prove that the spiraling idea works
as well for vertex-merging in polyhedral half-surfaces bounded by simple
closed quasigeodesics, with respect to either convex hull, or enclosing geodesic
polygon.

Although in some sense the 3D algorithm follows the 2D algorithm in
Chapter 12 closely, there are several significant differences. One is that, in 2D,
no triangles are inserted along each slit, whereas in 3D these insertions change
P to a different (larger) polyhedron Pi at each step. Another difference is
that the 2D slit segments were all geosegs, whereas in 3D some of the slits
are geoarcs. These and other differences make the proofs in this chapter
somewhat intricate.

15.1 Notation

The notation is a bit complex, so we list the central symbols here for later
reference. It may help to refer ahead to Fig. 15.2 to illustrate the definitions
below.

• V = V0 = {v1, v2, v3, . . . , vn}: Vertices on the surface P .

• Pi: Polyhedron after the i-th vertex-merge.

187
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• mi: merge vertex, the vertex created by merging mi−1 with vi+1, with
m0 = v1.

• gi = mi−1vi+1. The i-th slit/merge geoarc.

• v1 is also given the label m0, so g1 = v1v2 = m0v2.

• vi is called flattened if it has already been merged; the merge will reduce
vi’s curvature to zero.

• Vi is the set of not-flattened vertices on Pi remaining after the i-th
merge along gi = mi−1vi+1. mi ∈ Vi. |Vi| is the number of vertices in
Vi.

• T 2
i represents the pair of triangles inserted along gi in a vertex-merge,

and Ti refers to the one of the pair crossed by gi+1.

• Hi = rconv(Vi) is the relative ag-convex hull of Vi, defined in Sec-
tion 13.7. We view Hi as a region of Pi and let ∂Hi denote its boundary.
H0 is the convex hull of V = V0.

• With some abuse of notation, we identify objects on Pi with their image
on P and vice-versa.

For an object Xi, we put X̃i ⊂ P for the image on P of Xi ⊂ Pi. So,
H̃i = Hi ∩ P , and g̃i = gi ∩ P , for all i.

• Occasionally, we may also use notation from Chapter 11. For example,
as in that chapter, we also identify objects on Pi−1 with their image on
Pi and vice-versa.

• Λ̃i = ∪i g̃i is the slit graph after the i-th merge. Λ̃ is the full slit graph.

15.2 Icosahedron Example

Before we describe and prove the spiral algorithm in Section 15.3, we il-
lustrate its application to an icosahedron P . This repeats our discussion
in Section 11.4 but following a spiral sequence of vm-reductions. In Chap-
ter 11 the endpoint of the reductions was the doubly-covered triangle shown
in Fig. 11.7. Here the endpoint of the reductions will be a half-cylinder,
described in the next chapter (Fig. 16.9).
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We label the 12 vertices of P as shown in Fig. 15.1. Q is a simple closed
geodesic around the “equator” of the icosahedron, and V the six vertices
above Q, v1, v2, v3, v4, v5, v6. The vertices are merged in that order, as indi-
cated in Fig. 15.1. (This differs from the order in Section 11.4, which merged
v1, v2, v3, v4, v6, leaving v5 unmerged.)

Figure 15.1: Labels i for vertices vi. Sequential merge path in red.
Cf. Fig. 11.5.

Each of the five merges i is accomplished by inserting two copies of a
triangle Ti, whose apex is the merge vertex mi. By convention m0 = v1. For
i = 1, . . . , 5,

mi−1 + vi+1 → mi , Ti along gi .

Here m5 is special for the icosahedron in that T5 is actually an infinite par-
allelogram sending m5 off to z = +∞, because the sum of the curvatures of
v1, . . . , v6 is exactly 2π.

Now we describe the steps of the algorithm, referring to Fig. 15.2 through-
out.

With V = V0 on P = P0, the initial convex hull containing V0 is rconv(V0) =
H0 = H̃0, with ∂H0 = v1v2v3v4v5. See Fig. 15.2(b).

The first step, i=1, merges two consecutive vertices of ∂H0, say v1 and
v2 (as illustrated). So the slit segment is g1 = v1v2 = m0v2, where v1 = m0.
Doubled triangles T 2

1 are inserted along g1, which flatten v1 and v2, and
introduces a new vertex m1 at the apex of the triangles. The result is a new
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Figure 15.2: (a) Five geodesic slits γi on P , each entering P from Ti at m′i.
(b,c) H̃0 and H̃1. Cf. Fig. 11.6.
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polyhedron P1. We cannot easily illustrate P1 (because of the nonconstructive
nature of AGT), but it can be imagined from the (yellow) triangle T1 shown
attached to v1v2 in Fig. 15.2(a).

On P1, V1 = {m1, v3, v4, v5, v6}. H1 = rconv(V1), with ∂H1 = m1v3v4v5,
with m1v3 a geodesic from the apex m1 of T1, to m′1 where it enters P , and
then on P to v3. H̃1 has boundary ∂H̃1 = m′1v3v4v6, as shown in Fig. 15.2(c).
Notice that H̃1 ⊂ H̃0 on P , but H1 6⊂ H0 on P1: m1 6∈ H0.

P2 is obtained by inserting T 2
2 triangles along the slit g2 connecting m1

to v3, red in Fig. 15.2(a). These triangles flatten m1 and v3, leaving V2 =
{m2, v4, v5, v6}, and H2 = rconv(V2), with ∂H2 = m2v4v5 and ∂H̃2 = m′2v4v5.

The process continues, with the final set of slits as depicted in Fig. 15.2(a).
Note that, on P , each slit g̃i starts from a point m′i−1 on g̃i−1 and ends at
vi+1.

15.3 Spiraling Algorithm for rconv

First Step. As described above in the icosahedron example, H0 = rconv(V )
is computed via the algorithm described in Section 14.4. Two vertex end-
points of an edge of ∂H0, v1 = m0 and v2, are merged along g1 = m0v2.
Triangles T 2

1 are inserted along g1, flattening v1 and v2 and introducing a
merge vertex m1. Now V1 = (V \ {v1, v2}) ∪ {m1} and H1 = rconv(V1).

General Step. We now describe the general step, referring to Fig. 15.3.
Suppose step i− 1 has been completed. Hi−1 = rconv(Vi−1) is on Pi−1, with
Vi−1 = {mi−1, vi+1, . . .}. The merge vertex mi−1 is a vertex of ∂Hi−1, and
vi+1 is the next vertex of that hull boundary, counterclockwise.

For the i-th step, we consider two cases:

Case 1: mi−1 6= vi+1. Then gi = mi−1vi+1 is an edge of ∂Hi−1. Triangles
T 2
i are inserted along gi, flattening mi−1 and vi+1, and forming Pi. Vi loses

these two vertices and gains the new merge vertex mi. Hi = rconv(Vi).

Case 2: mi−1 = vi+1, hence ∂Hi−1 is a geodesic loop. We have seen that
this case can occur. For example, in Fig. 15.4, (a, e, a) is a geodesic loop.
(See Example 13.31 for the proof.) In such a case, ∂Hi−1 consists only of the
vertex mi−1, and a geodesic loop at mi−1. Clearly we cannot execute vertex-
merging along such a loop, so we need another strategy for this exceptional
case.
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Figure 15.3: Hi−1 and Hi on Pi.

Figure 15.4: Double-sided quadrilateral, Q = (a, b, a). The path (a, e, a) is a
geodesic loop. For V = {a, c, d}, ∂ rconv(V ) = (a, e, a).
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Let V ′i−1 = Vi−1 \ {mi−1}. Construct H ′i−1 = rconvV ′i−1, and let p be the
point on ∂H ′i−1 closest to mi−1, say p ∈ γ, where γ is a geoarc of ∂H ′i−1.
Notice that either p is a vertex of V ′i−1, or there is a unique geoseg from mi−1

to p, which in particular is orthogonal to γ at p.
If p is a vertex of V ′i−1, take gi = mi−1p and notice that gi intersects neither

∂Hi−1 nor ∂H ′i−1, other than at mi−1 and at p, respectively, by construction.
Assume now that p is a flat point of H ′i−1, hence interior to γ. Then

take vi+1 to be either endpoint-vertex of γ (or the only vertex on γ if γ is a
geodesic loop). Next we show there exists a geoarc gi = mi−1vi+1 intersecting
neither ∂Hi−1, nor ∂H ′i−1, other than at mi−1 and at vi+1, respectively.

Figure 15.5: On the cone Υ, gi = mi−1vi+1 crosses neither ∂Hi−1 nor ∂H ′i−1.

Notice first that V ′i−1 is strictly interior to Hi−1 (because ∂Hi−1 only con-
tains the one vertex mi−1), hence so is H ′i−1 = rconv(V ′i−1) (by Lemma 13.15,
the interior of a convex set is convex). Therefore, ∂Hi−1 ∩ ∂H ′i−1 = ∅.

Because both ∂Hi−1 and ∂H ′i−1 are convex curves, we can merge all ver-
tices of V ′i−1 to obtain one apex a of a cone Υ. It follows that both ∂Hi−1

and ∂H ′i−1 “live on Υ,” in the sense that the closed region A of Pi−i they
bound is isometric to a subset of Υ containing a. (For details see [OV14].)
Refer to Fig. 15.5.

Unfold A by cutting it open along the cone generator through ap. Also
denote by A the result. Then (the images of) ∂Hi−1 and ∂H ′i−1 are convex
planar curves in A, and mi−1p ⊥ γ ⊂ ∂H ′i−1. Then we see that gi = mi−1vi+1

again intersects neither ∂Hi−1 nor ∂H ′i−1 except at its endpoints.
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Lemma 15.1. The new merge vertex mi created at step i is on ∂Hi (as
opposed to strictly interior to ∂Hi).

Proof. The algorithm constructs Hi by removing the two flattened vertices
mi−1 and vi+1 and adding the new merge vertex mi. Formally,

Hi = rconv ( (Vi−1 \ {mi−1, vi+1}) ∪ {mi}) .

Let H−i−1 = rconv(Vi−1 \ {mi−1, vi+1}), i.e., the relative convex hull of Vi−1

with the flattened vertices removed, but the new merge vertex mi not yet
added. See Fig. 15.3. The geoarc gi = mi−1vi+1 is strictly exterior to H−i−1,
because it is included in ∂Hi−1. Now attach the doubled T 2

i triangle to gi,
with triangle apex mi. It is clear that mi is also strictly exterior to H−i−1:
some points on a geoseg from mi to a point in H−i−1 must be exterior to H−i−1.
So mi 6∈ H−i−1. Therefore, with Hi = rconv(H−i−1 ∪mi), it must be that mi is
a vertex of ∂Hi.

For the exceptional geodesic-loop case of the algorithm, the conclusion
follows by construction.

Notice that Hi−1 is not necessarily closed, which in some circumstances
leads to ∂Hi−1 being not strictly αβ-convex, but it remains nevertheless αβ-
convex. See Lemma 13.6 and Example 13.7 concerning αβ-convexity.

Lemma 15.2 (Visibility). Let γ be the geoarc connecting the new merge
vertex mi created at step i to the next vertex vi+2 to be merged. Then γ
crosses the geoarc gi at a point {m′i} = gi ∩ γ. In a sense, vi+2 is “visible”
to mi through gi.

Proof. We use the αβ-convexity property of ∂Hi−1: the angles αi+1, βi+1 at
the vi+1 endpoint of the geoarc gi = mi−1vi+1 satisfy αi+1 ≤ βi+1.

We aim to show that, after insertion of the double triangle along gi, the
new angle at vi+1, ∠mivi+1vi+2, is convex, which proves the claim of the
lemma.

So we aim to prove that αi+1 + 1
2
ωi+1 ≤ π; the factor 1

2
appears because

that is the angle of Ti’s corner at vi+1. To simplify the derivation, we suppress
the index i + 1; so the goal is α + 1

2
ω ≤ π. Because the triangle insertion

flattens vi+1, we know that ω = 2π−(α+β). So we get equivalent inequalities:

α + 1
2
ω ≤ π

α + π − 1
2
α− 1

2
β ≤ π

1
2
α ≤ 1

2
β
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which holds at vi+1 by αβ-convexity.

The same argument applies to the other endpoint mi−1 of gi.

This lemma verifies that the drawing in Fig. 15.3 is a correct depiction. If
this lemma did not hold, then γ = mivi+2 would not necessarily cross gi.

15.4 Proof: Slit Graph is a Tree

The next lemma is the counterpart to the nesting property of the 2D spiral
algorithm, previously illustrated in Fig. 12.4.

Lemma 15.3 (Nesting). H̃i ⊂ H̃i−1.

It may be useful to keep in mind the situation on Pi in Fig. 15.3, and the
H̃i examples on P in Fig. 15.2(bc), which shows H̃1 ⊂ H̃0. With some abuse
of notation in the proof, we will identify objects on Pi−1 with their image on
Pi and vice-versa.

Figure 15.6: Hi ⊂ H+
i .
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Proof. The proof is in two parts. We show first that H̃i ⊂ H̃i−1. Set V −i−1 =
Vi−1 \ {mi−1, vi+1}, i.e., Vi−1 without the two vertices that will form the next
vertex-merge insertion. To keep track of the notation, we refer to Fig. 15.6
(a variation of Fig. 15.3) and this display, where we use “−” to indicate
“missing” vertices among the three mi−1,mi, vi+1:

V −i−1 = {vi+2, . . . , vn}
Hi−1 = rconv(Vi−1) , Vi−1 = {mi−1,−, vi+1} ∪ V −i−1

Hi = rconv(Vi) , Vi = {−,mi,−, } ∪ V −i−1

H+
i = rconv(V +

i ) , Vi = {mi−1,mi, vi+1} ∪ V −i−1

Set H+
i as above. Then as Fig. 15.6 shows, Hi ⊂ H+

i and thus H̃i ⊂ H̃+
i .

Denote by Ti = 4mi−1mivi+1 one of the two inserted triangles along gi,
the one sharing gi in common with Hi−1.

For the second part of the proof, we next show that, on Pi, H
+
i = Hi−1∪Ti.

First, notice that Hi−1 ∪ Ti ⊂ H+
i (by Lemma 13.24 on the hull of a set

partition), so rconv(Hi−1 ∪ Ti) ⊂ H+
i . Second, the αβ-convexity of ∂Hi−1 at

mi−1 and vi+1 on Pi−1 shows that, on Pi, the two sides of Ti incident to mi

either extend two boundary arcs of Hi−1 (if the αβ-convexity is not strict), or
they make with the respective boundary arcs angles < π towards Hi−1∪Ti (if
the αβ-convexity is strict); see Lemma 15.2 (Visiblity). Therefore, Hi−1 ∪ Ti
is a convex set (by Lemma 13.38) containing V −i−1 ∪ {mi−1,mi, vi+1}, hence
Hi−1 ∪ Ti ⊃ rconv(V −i−1 ∪ {mi−1,mi, vi+1}) = H+

i .
Finally, since H+

i = Hi−1 ∪ Ti and the image on P of Ti is a subarc of g̃i,
we have H̃+

i = H̃i−1.
In conclusion, H̃i ⊂ H̃+

i = H̃i−1.

Notice that, unlike the planar case where gi only intersects Hi in one point,
gi∩Hi = {mi} (Fig. 12.2(b)), on polyhedra gi intersects Hi on a sub-segment
(Fig. 15.3).

Recall that, in our notation, gi−1 is a curve (a geoarc) on Pi−2 and gi is a
curve on Pi−1.

Lemma 15.4 (gi ∩ gi−1). On Pi−1, gi intersects the two images (“banks”) of
gi−1 at precisely one point. Consequently, g̃i has an endpoint on g̃i−1 and no
other common point.
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Proof. On Pi−1, gi joins the pointmi−1 to a vertex vi+1. Butmi−1 is inside the
inserted region (a pair of triangles) Ti−1, while vi+1 is outside Ti−1. Remember
that the boundary of Ti−1 consists of two copies of gi−1, say g′i−1 and g′′i−1.
So gi intersects those two copies, g′i−1 ∪ g′′i−1, at least once.1

Assume, for the sake of contradiction, that there are two distinct points

x′, x′′ ∈ gi ∩ (g′i−1 ∪ g′′i−1) .

Assume first that {x′} = gi ∩ g′i−1 and {x′′} = gi ∩ g′′i−1. It follows that gi
exits Ti−1 and enters it again, and so to reach vi+1 it has to exit Ti−1 again,
crossing g′i−1 ∪ g′′i−1 once more. Therefore, we may assume next that both x′

and x′′ arise from gi intersecting one gi−1 image, say g′i−1. Hence gi and g′i−1

determine a geodesic digon, which necessarily contains a vertex v ∈ V (by
the Gauss-Bonnet Theorem). Since there is no vertex both outside Hi−1 and
inside Hi−2, and there is no vertex both outside Hi−2 and inside Hi−1 other
than mi−1, a contradiction is obtained.

Therefore, gi intersects the two images of gi−1 at precisely one point, and
thus we get that |g̃i−1 ∩ g̃i| = 1.

Lemma 15.5. The set of vertices reduces by one each iteration: |Vi| =
|Vi−1| − 1, for i > 1.

Proof. Clearly |Vi| = |Vi−1| − 1, because Vi = Vi−1 \ {mi−1, vi+1} ∪ {mi}.

Lemma 15.6. Λ̃i is a tree.

Proof. By Lemma 15.4 above, g̃i has an endpoint on g̃i−1, and otherwise
does not intersect g̃i−1. It remains to prove that the interaction of g̃i with
the earlier segments in Λ̃i maintains the tree property. In fact, we show that
g̃i ∩ g̃j = ∅ for j < i− 1.

By our sequential-merge choice, gi is an edge e = mi−1vi+1 of ∂Hi−1, and
so g̃i is an edge ẽ of ∂H̃i−1. For example, in Fig. 15.2(bc), g̃1 = v1v2 is an
edge of H̃0, and g̃2 = m′1v3 is an edge of H̃1.

From Lemma 15.3 (Nesting) we know that H̃j ⊃ H̃i−1 for j < i− 1.
Therefore, g̃j ∩ H̃i−1 is either the empty set, or an edge of H̃i−1, so it

cannot intersect other edges of H̃i−1 excepting those adjacent to it (by The-
orem 13.40, which established the simplicity of rconv boundaries).

1With yet another abuse of notation, we use the same symbol g for an arc g : I → P
(with I ⊂ R an interval) and its geometrical image on P .
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Since the edge g̃i−1∩H̃i−1 is between g̃j∩H̃i−1 (not empty by Lemma 11.1)
and g̃i (“between” with respect to the circular order of sides in ∂H̃i−1), g̃j
cannot intersect g̃i for j < i− 1.

For example, returning to Fig. 15.2, when i = 3 and j = 1, we have
H̃i−1 = H̃2, g̃i = g̃3 = m′2v4, g̃j = g̃1 = v1v2, and indeed g̃1 does not intersect
g̃3.

Therefore, we have shown that g̃i just intersects Λ̃i−1 at the one point,
and so maintains the tree structure for Λ̃i.

Putting together the above lemmas yields the following theorem, one of
our primary goals.

Theorem 15.7. Let Q be a simple closed quasigeodesic on the convex poly-
hedron P , and V the set of vertices of P enclosed by Q, to either side of Q.
Then the sequential vertex-merging algorithm detailed in Section 12.3 results
in a slit graph Λ̃ that is a tree.

The consequence of this theorem is that the slits do not disconnect a half
-surface of P , i.e., it remains simply connected. This will be expanded upon
in the following chapter.

15.5 Spiraling Algorithm for Z(V ) = min `[V ]

The spiraling approach, developed in Section 15.3 into Algorithm 1 based on
the sets Hi = rconv(Vi), can be also based on the sets Mi = R(Z(Vi)). And,
because it can be that W (V ) 6= Z(V ) (Example 14.10), in these cases we get
a different but analogous Algorithm 2.

The general description of Algorithm 2 is precisely the same as for Algo-
rithm 1, as it only uses the geodesic polygon ∂Hi which can be replaced by
Z. So we will retain the same notation, but always remember to replace Hi

by Mi.
For the icosahedron example in Fig. 15.2, Section 11.4, H̃i = M̃i for all i,

and the resulting slit tree is the same.
Recall that Fig. 14.10 is an example where Z 6= W . Using the Z-

algorithm, the first merge would be along the aba′ geoarc, whereas the W -
algorithm would start with, say, the ac geoseg. So the two vm-reductions
would not be identical, and would result in different slit trees.
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Lemma 15.8. The new merge vertex mi created at step i is on Zi (as opposed
to strictly interior to Zi).

Proof. Similar to that for Lemma 15.1. The algorithm constructs Mi by
removing the two flattened vertices mi−1 and vi+1 and adding the new merge
vertex mi. Formally,

Mi = R (Z ( (Vi−1 \ {mi−1, vi+1}) ∪ {mi})) .

Let M−
i−1 = R(Z(Vi−1\{mi−1, vi+1})); see Fig. 15.3 with N →M . The geoarc

gi = mi−1vi+1 is strictly exterior to M−
i−1, because it is included in Zi−1. Now

attach the doubled T 2
i triangle to gi, with triangle apex mi. It is clear that

mi is also strictly exterior to M−
i−1. Therefore, with Mi = R(Z(M−

i−1 ∪mi)),
it must be that mi is a vertex of Zi.

For the exceptional geodesic-loop case of the algorithm, the conclusion
follows by construction.

Lemma 15.9 (Visibility). Let γ be the geoarc connecting the new merge
vertex mi created at step i to the next vertex vi+2 to be merged. Then γ
crosses the geoarc gi at a point {m′i} = gi ∩ γ. In a sense, vi+2 is “visible”
to mi through gi.

Proof. As in the proof of Lemma 15.2, we only make use of the αβ-convexity
property of Zi−1, which in this case is strict.

Lemma 15.10 (Nesting). M̃i ⊂ M̃i−1.

With some abuse of notation in the proof, we will identify objects on Pi−1

with their image on Pi and vice-versa.

Proof. Similar to that for Lemma 15.3.
The proof is in two parts. We show first that M̃i ⊂ M̃i−1. Set V −i−1 =

Vi−1 \ {mi−1, vi+1}, i.e., Vi−1 without the two vertices that will form the next
vertex-merge insertion. To keep track of the notation, we refer to Fig. 15.6
(a variation of Fig. 15.3) with N →M , and this display, where again we use
“−” to indicate “missing” vertices among the three mi−1,mi, vi+1:

V −i−1 = {vi+2, . . . , vn}
Mi−1 = R(Zi−1) , Vi−1 = {mi−1,−, vi+1} ∪ V −i−1

Mi = R(Zi) , Vi = {−,mi,−, } ∪ V −i−1

M+
i = R(Z(V +

i )) , V +
i = {mi−1,mi, vi+1} ∪ V −i−1
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Set M+
i as above. Then as Fig. 15.6 shows, Mi ⊂ M+

i (by Lemma 14.6
applied twice) and thus M̃i ⊂ M̃+

i .

Denote by Ti = 4mi−1mivi+1 one of the two inserted triangles along gi,
the one sharing gi in common with Mi−1.

For the second part of the proof, we next show that, on Pi, M
+
i = Mi−1∪

Ti.
First, notice that Mi−1 ∪ Ti ⊂ M+

i . Second, the strict αβ-convexity of
Z(Vi−1) at mi−1 and vi+1 on Pi−1 shows that, on Pi, the two sides of Ti
incident to mi make with the respective boundary arcs angles < π towards
Mi−1 ∪ Ti, hence > π on the other side; see Lemma 15.9 (Visiblity).

Therefore, the boundary of Mi−1 ∪ Ti is precisely the minimal length
enclosing polygon of V +

i (by Lemma 14.4).
Finally, since M+

i = Mi−1 ∪Ti and the image on P of Ti is a subarc of g̃i,
we have M̃+

i = M̃i−1. In conclusion, M̃i ⊂ M̃+
i = M̃i−1.

The proofs for the next four results are identical to the proofs or their
counterparts in Section 15.4 (Lemma 15.4 and the following results).

Lemma 15.11 (gi ∩ gi−1). On Pi−1, gi intersects the two images (“banks”)
of gi−1 at precisely one point. Consequently, g̃i has an endpoint on g̃i−1 and
no other common point.

Lemma 15.12. The set of vertices reduces by one each iteration: |Vi| =
|Vi−1| − 1, for i > 1.

Lemma 15.13. Λ̃i is a tree.

Putting together the above lemmas, we obtain a counterpart to Theo-
rem 15.7.

Theorem 15.14. Let Q be a simple closed quasigeodesic on the convex poly-
hedron P , and V the set of vertices of P enclosed by Q, to either side of Q.
Then the sequential vertex-merging algorithm, based on Z = min `[V ] and
detailed in Section 12.3, results in a slit graph Λ̃ that is a tree.

Application of these slit trees to unfoldings of P is discussed in the next
chapter.



Chapter 16

Unfoldings via Slit Trees

In this chapter we gather together results from Chapter 11 concerning the
connectivity structure of slit graphs, and the spiral slit trees just obtained
in Chapter 15, to draw conclusions about unfolding convex polyhedra P via
vertex-merging.

Depending on circumstances we will detail, vertex-mergings result in P
embedded in a doubly-covered triangle (or isosceles tetrahedron), in a pair
of joined cones, or in a cylinder. The slits may leave P in one piece, or cut
into several pieces. In some situations, we can develop P to the plane as a
net.

16.1 Notation

We first recall previous notation to be used in this chapter, and introduce
some new notation.

• Q is a simple closed quasigeodesic on P .

• P+ and P− are the closed half-surfaces bounded by Q. Because closed,
both of these half-surfaces include Q.

• V (Q) = {q1, . . . , qk} is set of vertices on Q.

• ε is either of +,−.

• We refer to the Z-algorithm (minimum enclosing polygon) and the
W -algorithm (∂ rconv), summarized in Theorems 14.8 and 14.12 re-
spectively.

201
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• Λ̃ε is the full slit tree on P ε, obtained from a set V of vertices containing
all vertices interior to P ε, and possibly some vertices in V (Q), via either
the Z- or W -spiral algorithm.

• αi and βi are the angles incident to qi in P+ and in P− respectively,
i.e., above and below Q.

• The curvature of P at qi is ωi = 2π − (αi + βi).

• The partial curvatures at qi toward P+ and P− are ω+
i = π − αi and

ω−i = π − βi, respectively. Hence ωi = ω+
i + ω−i < 2π.

• Ωε is the total curvature of all interior vertices of P ε.

The Gauss-Bonnet Theorem gives, for ε ∈ {+,−},

Ωε +
k∑
i=1

ωεi = 2π , (16.1)

Ω+ + Ω− +
k∑
i=1

ωi = 4π . (16.2)

16.2 Unfoldings via spiraling algorithms

Assume in the following that V contains all vertices of P enclosed by Q, to
either side, including those on Q: V ⊃ V (Q).

Next we see that the spiraling algorithm works fine in this case, too.
The total curvature of V may be > 2π on P , but on P# it is precisely

2π, because all angles βi are π on P#.

Choose two consecutive vertices on Q, q1, q2. If there are no such vertices,
then Q is either a closed geodesic or a geodesic loop, handled later.

Merge q1 and q2 along the geoarc g12 of Q joining them (either arc, if
there are two), to produce m1 ∈ V1 ⊂ P1. This merging inserts a double
triangle of base g12 and base angles ω+

i /2 at vi. Call this a partial merging.
By Lemmas 15.1 and 15.8, m1 is interior to P1. Further merging m1 to

another vertex q3 ∈ Q would force Λ̃+ to have a leaf on Q. Therefore, if
k = |V (Q)| > 2 then Λ̃+ intersects Q at g12 and at each qj with αj < π, for
j = 3, . . . , k.
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For example, return to Fig. 15.2(a), repeated below as Fig. 16.6. Suppose
that Q = v1v2v3v4v5 is the pentagon of edges surrounding v6. Then Λ̃+ has
leaves at v3, v4, v5.

Similar considerations lead to the the conclusion that Λ̃− also intersects
Q at g12 (if it starts by merging q1 and q2) and at each qj with βj < π, for
j = 3, . . . , k.

Continuing with the example in Fig. 16.6, if Λ̃− also had leaves at, say, v3

and v4, then a piece of P , bounded on P+ by v3m
′
2v4, and similarly bounded

on P−, would be disconnected from the remainder of P .

The above discussion of the way the trees Λ̃ε connect to one another along
Q leads to several main results.

We see two main options: merge the vertices strictly inside P ε, or, in
addition, include all vertices on Q via partial merging.

16.2.1 Two Cones

We start with merging all vertices inside Q.

Lemma 16.1. Let P be a convex polyhedron and Q a simple closed quasi-
geodesic on P . Merging all vertices strictly inside Q to either side, along the
slit trees Λ̃ε (ε = +,−), unfolds P onto the union U of two cones, each of
base Q, glued together along Q. The unfolding of P onto U can be decomposed
into two simple geodesic polygons, one to each side of Q, sharing Q.

Proof. Merging all vertices inside P ε reduces all those vertices to one merge
vertex, the apex of a cone. Because Q is unaffected by the merges, it remains
shared by the cones. Theorem 11.5 (that Λ̃ε a tree implies that P ε is a simple
polygonal domain) guarantees the P unfolding is a simple geodesic polygon
to each side of Q.

Notice that the image of Q on U above is not necessarily planar.

A special case of this lemma is that, if there is just one vertex q1 on Q,
so Q is a geodesic loop, then U has three vertices—two cone apexes and the
unmerged q1 ∈ Q—and so is a doubly-covered triangle.

Another special case of this lemma is if Q is a simple closed geodesic; i.e.,
there is no vertex on Q. We defer this case to Theorem 16.6 below.
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Example: Spiral Q on Box. We illustrate Lemma 16.1 with an exam-
ple based on Fig. 2 in [DHK21], reproduced in Fig. 16.1. Its interesting
feature is that the illustrated simple closed quasigeodesic spirals around the
box, arbitrarily many times as L grows large. For simplicity, in our version,

Figure 16.1: Detail from Fig. 2 in [DHK21].

Fig. 16.2(a), the quasigeodesic Q spirals just one turn, but the example could
be extended to many turns.

Our quasigeodesic Q = v1v3v5v7 passes through four vertices, and encloses
two vertices, v4 and v6, strictly to its left. Fig. 16.2(b) shows an unfolding of
P+, the half-surface left of Q. P− (not shown) is symmetrical to the right of
Q.

Merging the two vertices v4 and v6 produces a cone apexed at the merge
vertex m46. For display purposes, it is flattened to the plane as a doubly-
covered triangle in (c) of the figure. One can see that the portion of P to the
left of Q is indeed a simple geodesic polygon, as claimed by Lemma 16.1.

Merging v2 and v8 on P− produces a second cone apexed at m28. The
two cones are glued together along Q, which still contains four vertices. So
U is a polyhedron of 6 vertices, an octahedron.

It is tempting to develop each cone to the plane to achieve nets of P ε.
This works in the example just presented, but not always, as we now detail.

Let U+ be the upper cone containing P+. P+ is topologically an annulus,
with ∂P+ = Q ∪ Q′. Parametrize points p(t) on the upper boundary Q′,
t ∈ [0, 1], with p(0) = p(1). Define φ(t) to be the angular turn of the
segment from ap(0) to ap(t) about the apex a on the surface of U+ . Then
with φ(0) = 0, we have that φ(1) = α, for the segment makes one full turn
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Figure 16.2: (a) A 1× 1× 2 box. (b) The surface P+ to the left of Q. Note
the two images of v1 are identified, as are the images of v5. ω(v4) = ω(v6) =
π/2. (c) After merging v4 and v6, a cone, here flattened to a doubly-covered
triangle.
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to return to p(0). However, it could be that if Q′ spirals around the cone,
intermediate positions represent turns greater than α. See Fig. 16.3.

Figure 16.3: φ(t2)− φ(t1) > α.

Let φmax = maxt1<t2 |φ(t2) − φ(t1)|. Then k = dφmax/αe represents the
number of full turns around the cone that might be needed to fully develop
P+ to the plane. No overlap in the development can occur unless kα > 2π,
so that the imprint of the cut-open cone cycles around a more than once.
Therefore we have this result.

Proposition 16.2. If kα ≤ 2π, where k = dφmax/αe, then P+ develops to
the plane without overlap.

In the absence of the limit detailed in this proposition, it is indeed possible
for the development of P+ to overlap. This was established with a nontrivial
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example in [OV14, Fig. 14] by a curve that spirals around a four times.
Building this curve into P+ would establish an overlapping development of
P+.

Another very special case occurs when α evenly divides 2π. For then,
even if the development spirals around a more than 2π, the imprint of the
cut-open cone lays exactly on top of its earlier-rolled image. So any overlap
in the development would have been mirrored by overlap on the cone. But
P+ does not overlap on U+.

Proposition 16.3. If α evenly divides 2π, then P+ develops without overlap.

16.2.2 Reduction to Cylinder

We return now to the second option: including all vertices on Q via partial
merging.

Lemma 16.4. With P and Q as before, let there be k = |V (Q)| vertices
on Q. Merging all vertices of P , along the trees Λ̃ε, including the vertices
V via partial merges as described above, unfolds P onto a cylinder C. The
unfolding of P onto C is the union of at most k−2 simple geodesic polygons,
joined circularly at k − 2 vertices of Q.

Proof. The reason the final surface is a cylinder is that (a) all vertices are
merged; none remain, and (b) the curvature to each side is exactly 2π:
Eq. 16.1. Although Theorem 11.5 again guarantees the P unfolding to each
side of Q is a simple geodesic polygon, as we’ve seen, the coinciding leaves
of Λ̃ε partitions P into at most k − 2 pieces.

In contrast to the two-cones case, rolling the cylinder C on the plane
cannot cause overlap.

We’ve already mentioned that k = |V (Q)| = 1 is a special case of
Lemma 16.1, and k ≤ 2 plays a special role in Lemma 16.4. We highlight
the latter in the following theorem.

Theorem 16.5. Let P be a convex polyhedron and Q be a simple closed
quasigeodesic on P containing k = |V (Q)| vertices. If either

(1) k ≤ 2, or
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(2) if the total number of non-π angles αi and βi (i.e., < π angle to both
sides) is at most two,

then the unfolding of P onto C (Lemma 16.4) is a simple geodesic polygon.
In this case, rolling C onto a plane develops P to a net.

Proof. Lemma 16.4 established the specialness of k ≤ 2: then the unfolding
of P onto C is a single, simple geodesic polygon.

When either of the angles αi or βi incident to qi is equal to π, there is
no need to partially merge to qi from one side or the other. The two slit
trees can have a common leaf only at a vertex qi having to both sides angles
strictly less than π. This reduces the number of pieces from k − 2.

Returning to Fig. 16.6 with Q = v1v2v3v4v5, αi = 2
3
π and βi = π, so there

are no angles < π to both sides, and Theorem 16.5 applies. We will indeed
see below (Fig. 16.9) this leads to a net for the icosahedron.

We believe that every convex poyhedron has a a simple closed quasi-
geodesic containing at most one vertex, see Open Problem 18.13. If this
would be true, the above result would provide vertex-merging nets for all
convex polyhedra. We discuss this question of the number of vertices on a
simple closed quasigeodesic in Chapter 17.

The case k = 0 (i.e., Q is a simple closed geodesic) is considered next. In
this case, P contains a region R isometric to a cylinder; assume R is maximal
with respect to inclusion. Then the two boundary components ofR are simple
closed quasigeodesics, denoted by Qε. We then denote by P ε the caps of P
bounded by Qε outside R, and apply the previous considerations. Precisely,
we unfold both P ε onto the same cylinder, which in this case contains R, and
further roll the cylinder to obtain a net of P .

The case k = 0 is also special in that we can obtain an unfolding of P onto
an isosceles tetrahedron (as opposed to the doubly covered triangles obtained
in Lemma 16.1 for k = 1). In this case, Q is a simple closed geodesic. Then
the merging processes end with two vertices of total curvature 2π, to each
side of Q. If both of those vertices (to the same side of Q) have curvature
π, we have reached half of an isosceles tetrahedron. Otherwise, suitably
choosing a partial merge between the two vertices results in one of them
having curvature π, and a new merge vertex also of curvature π. Globally, we
obtain U an isosceles tetrahedron, the special case of vm-irreducible surfaces.
This discussion is consistent with the above argument: once we have an
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isosceles tetrahedron, we can obtain the cylinder by cutting open a pair of
opposite edges.

Theorem 16.6. If P contains a simple closed geodesic then, unfolding it as
described above provides a net.

We next provide two examples illustrating this theorem.

16.2.3 Cube Example

To illustrate Theorem 16.6, we revisit the cube example in Section 11.3
(Fig. 11.4). There we sequentially-merged three vertices on the top face,
v7, v8 and then v5 with v78, and symmetrically three on the bottom face.

Instead now we merge all four vertices on the top face, and then on the
bottom face. So, for a quasigeodesic Q around the middle of the cube, we
are merging all vertices inside P+, and all vertices inside P−, leading to a
cylinder.

We perform the same two initial merges on the top vertices, resulting
again in v578. Let a = m′1 and b = m′2, the two points on the top face where
the geodesic segments from the merge vertices m1 = v12 and m2 = v578 enter
the top face of the cube.

Note that the angle incident to the merge vertex v578 is 90◦, and the angle
incident to the as-yet unmerged top vertex v6 is 270◦. So a merge of v578 with
v6 would not produce a triangle pair, because the sum of their curvatures is
2π. However, we can imagine a merge resulting in a pair of unbounded
parallelograms. If we cut the surface along the geodesic segment v6v578 (of
length 2

√
2 for a unit cube) and insert twin parallelograms, the result is a

cylinder unbounded above. See Fig. 16.4. Note the two 45◦ angles inserted
at v6 flattens that vertex, and the insertion of the two 135◦ angles flattens
v578. Symmetric merges on the bottom-face vertices leads to an unbounded
cylinder in both directions.

Unrolling the cylinder unfolds the cube to a non-overlapping net: Fig. 16.5.
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Figure 16.4: (a) Cutting along the v6v578 geodesic segment (green), and
inserting double parallelograms (b) leads to an unbounded cylinder above,
and similarly below. In (b) the yellow regions are inserted merge triangles;
pink regions pieces of the top and bottom cube faces.
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Figure 16.5: Unfolding of cube to a net by rolling the cylinder on the plane.

16.2.4 Icosahedron Example

For a second example of Theorem 16.6, we revisit and continue the example
of the icosahedron from Sections 11.4 and 15.2. Fig. 16.6 below repeats for
easy reference Fig. 15.2(a) showing the cuts g̃i.

The triangles inserts T1, T2, T3, T4 are shown in Fig. 16.7. Note the half
angles at the merge vertex mi apexes of the triangles are 120◦, 90◦, 60◦, 30◦

respectively. The fifth merge vertex m5 would have zero angle, and represents
the infinite parallelogram that sends m5 to infinity.

Inserting the doubled triangles T 2
i along the cuts gi produces the layout

shown in Fig. 16.8. Here we only show the top half of the icosahedron.
The assembly closes to a half-cylinder shown in Fig. 16.9. The infinite

parallelogram T5 with angles 60◦ and 120◦ (not shown) would attach at v6

and m4 respectively. Joining the two symmetric half-cylinders together and
rolling on the plane produces a net for the icosahedron, the white faces in
Fig. 16.8.

Earlier we discussed the quasigeodesic v1v2v3v4v5, call it Q′. Note that
Q′ can be viewed as the Q in Fig. 16.8 slid upward parallel to itself until it
touches those vertices. So both lead to the same embedding on the cylinder
C.
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Figure 16.6: The vertex-merge cuts on P . Repeat of Fig. 15.2(a).

Figure 16.7: The four triangles Ti. Each is doubled to T 2
i and inserted along

gi.
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Figure 16.8: Unfolding of the top half of the icoshedron with T 2
i inserted

(shaded polygonal domains), i = 1, 2, 3, 4. Icosahedron faces are white; Q is
blue.
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Figure 16.9: The half-cylinder obtained from Fig. 16.8 by joining the two
images of v11v5v6.



Chapter 17

Vertices on Quasigeodesics

Theorem 16.5 demonstrated the importance in our context of the number of
vertices on a quasigeodesic. If, as we conjecture in Open Problem 18.13, every
convex polyhedron P has a quasigeodesic Q containing at most one vertex,
then the vertex-merging described in that theorem leads to an unfolding
of P to a cylinder C and then to a net for P . In this chapter, we prove
that the space Pn of convex polyhedra of n vertices contains infinitely many
polyhedra with quasigeodesics through one or two vertices, or in fact through
any number k of vertices, 1 ≤ k ≤ n. “Infinitely many” is expressed as a set
in Pn with non-empty interior. Precise definitions are given below.

17.1 Notation

We continue to use P for a convex polyhedron and Q for a quasigeodesic.
As in the previous chapter, V (Q) = {q1, . . . , qk} is the set of vertices on Q;
hence k = |V (Q)|. The spaces of polyhedra are defined as follows:

• For any n ∈ N, let Pn be the space of all convex polyhedra in R3 with
n vertices, with the topology induced by the usual Pompeiu-Hausdorff
metric. Two polyhedra in P are then close to each other if and only if
they have close respective vertices. (See Chapter 9.)

• For all 0 ≤ k ≤ n, Qk = Qk(n) denotes the subset of Pn such that
every P ∈ Qk has a simple closed quasigeodesic Q through exactly k
vertices.
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17.2 Qk Theorem

The goal of this chapter is to prove the following result.

Theorem 17.1.

(1) Q0 has empty interior in Pn.

(2) Qk has non-empty interior in Pn, for all 1 ≤ k ≤ n.

If our conjecture in Open Problem 18.13 is true, then Q0 ∪Q1 = Pn.
It is not surprising that Q0 is rare, as it requires a partition of vertex

curvatures into two halves of exactly 2π each. Indeed, (1) is a known re-
sult [Gru91], [Gal03]. As far as we are aware, (2) is new.

The proof of the second part of Theorem 17.1 will follow directly from
several lemmas. Our approach is to identify a polyhedron P in Qk for each
k, and then “fatten” P via the next lemma.

Lemma 17.2. Assume the convex polyhedron P has a simple closed quasi-
geodesic Q with |V (Q)| = k ≥ 1 and

αi < π, βi < π, ∀ 1 ≤ i ≤ k. (∗)

Then, all polyhedra P ′ sufficiently close to P in Pn have such a quasigeodesic.

Proof. The complete angles at the vertices of P depend continuously on
the vertex positions in R3. Also, the geoarcs between two vertices remain
separated from other vertices by positive distances, so they also depend con-
tinuously on the vertex positions, for small perturbations of the vertices of
P . Therefore, the strict inequalities αi < π, βi < π everywhere also remain
strict for small perturbations of the vertices of P .

In other words, there exists a neighborhood of P , such that each poly-
hedron P ′ in this neighborhood still has a quasigeodesic Q′ with the same
number of vertices as Q: |V (Q)| = |V (Q′)|. And this is true for all Q on
P .

In view of Lemma 17.2, in order to prove the second part of Theorem 17.1,
it suffices to find examples of polyhedra of n vertices with Q satisfying
|V (Q)| = k and Eq. (∗), for each 1 ≤ k ≤ n.
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17.2.1 |V (Q)| = 1

Following the plan just articulated, we will identify doubly-covered convex
polygons in Q1, and then apply Lemma 17.2.

Recall that the width of a convex polygon P is the shortest distance
between parallel supporting lines. The characterization (a) in the lemma
below has long been known. We also need (b), which we could not find in
the literature.

Lemma 17.3. The width of P is always achieved by (a) one of the supporting
lines flush with an edge e of P , and (b) the other line including a vertex that
projects onto e.

Proof. Claim (a) is Theorem 2.1 in [HT88], and known earlier. Their proof
uses a lemma (their Lemma 2.1) that says the following. Let u and v be two
points in the plane, and parallel lines Lu and Lv through each respectively.
Then there exists a “preferred direction of rotation” of the lines, maintaining
parallelism and maintaining contact with u and v, that diminishes the sepa-
ration between the lines. They call this the PDR lemma. In the special case
when the lines are orthogonal to vu, then both directions of rotation reduce
separation.

Claim (b) relies on this PDR lemma. But as they skip proving their
lemma, we include a proof here. Let ab = e be the edge of P with supporting
line Lab including e. Let the parallel line be Lc, including only vertex c,
with the separation between the lines width w. Assume, in contradiction to
claim (b), that c does not project onto ab. The situation is then as depicted
in Fig. 17.1, with ac playing the role of uv in the PDR lemma.

Rotate Lab and Lc about a, clockwise in the figure—this is the preferred
direction. Then Lc pivots around point p, and is no longer supporting P .
Now move it (down in the figure) until it again contacts c. Call the new
lines L′ab (red) and L′c (green), and let w′ be their separation. Note that
h2 = w2 + x2, and h2 = (w′)2 + (x′)2. The rotation ensures that x′ > x, and
therefore w′ < w, contradicting the assumption that the width is w.

If c instead does project into ab, as per claim (b), say to point q ∈ ab,
then the line Lab is blocked from the preferred direction of rotation because
it would penetrate P at q.

If c is the endpoint of an edge cd parallel to ab, then at least one of the
four vertices {a, b, c, d} must project onto the opposite edge, so claim (b)
holds.
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Figure 17.1: (a) Vertex c projects outside ab. (b) cq realizes the width.
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Lemma 17.4. Every doubly-covered convex polygon P with no parallel edges
has a quasigeodesic through one vertex.

Proof. Let Q be the segment from a vertex c orthogonal to an edge ab at
a point q, as guaranteed by Lemma 17.3 and illustrated in Fig. 17.1(b).
The angles on the doubled polygon at q are both π, and the left and right
angles at c are both < π (strictly less than because of the no-parallel-edges
assumption). Therefore Q = cq is a quasigeodesic.

If q = a, i.e., if c projects to an endpoint of ab, then the PDR lemma
shows that c and ab could not have realized the width; see Fig. 17.2(a). Both
directions of rotation diminish the separation, with one direction blocked
by the flush edge. Therefore, q must project into the interior of ab, and Q
includes just the one vertex c.

Although not needed for Theorem 17.1, for completeness we also handle
parallel edges.

Lemma 17.5. If the width of a convex polygon P is achieved on parallel
edges, then the doubly covered P has a simple closed geodesic.

Proof. Let the width of P be realized by edges ab and cd. If the projection of
cd onto ab is a positive-width interval, then a closed geodesic can be achieved
by a pair of points, one on each edge, strictly interior to this interval.

If instead the projection interval is a point, then that point corresponds
to a vertex-to-vertex projection, say c to b in Fig. 17.2(b). But in this
circumstance, again the PDR lemma shows that |cb| cannot have been the
width, as rotation of the supporting lines toward the < π/2 side of b and c
(counterclockwise in the figure) reduces the separation between the lines.

Figure 17.2: Neither ca (a) nor bc (b) realizes the width.
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Note that the previous two lemmas together ensure that every doubly-
covered convex polygon has a quasigeodesic through at most one vertex.

The following lemma is not needed for our main goal, but might possibly
help in resolving Open Problem 18.13.

Lemma 17.6. The width-quasigeodesic identified in Lemmas 17.4–17.5 is
the shortest quasigeodesic for P .

Proof. Call the width-quasigeodesic Qw, and the width w. So `(Qw) = 2w.
First we show there is no shorter 1-vertex quasigeodesic. Suppose Q were
such a quasigeodesic through v. It must be orthogonal to an edge e of P , and
then the line parallel to e through v is a supporting line for P . Therefore, if
Q were shorter than Qw, the width of P would not be w.

Suppose now there is a shorter diagonal-quasigeodesic, connecting vertices
a and b. Then lines orthogonal to ab through a and b must be supporting
lines, to satisfy the angle constraints needed for the quasigeodesic to be
convex to both sides at a and b. This again would contradict Qw realizing
the width.

A 0-vertex quasigeodesic Q must cross parallel edges of P . It could be
slid left or right until it touches a vertex, in which case it is now a 1-vertex
quasigeodesic, and the argument above applies.

17.2.2 |V (Q)| = 2

Lemma 17.7. Every doubly covered polygon has a simple closed quasigeodesic
Q with |V (Q)| = 2

Proof. Each extrinsic diameter of a convex polyhedron P ,

diam (P ) := max
x,y∈P

|x− y|,

is realized between two vertices of P , see for example Proposition 1 in [IRV20].
Because of its length maximality, such a diameter provides, for doubly cov-
ered polygons, the desired quasigeodesics through 2 vertices.

17.2.3 |V (Q)| = k, with 3 ≤ k ≤ n

For these cases, we construct particular examples of polyhedra Pn of n ver-
tices each of which has at least one quasigeodesic through k vertices.
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Lemma 17.8. For every 3 ≤ k ≤ n there exist doubly covered n-gons having
simple closed quasigeodesics Qk with |V (Qk)| = k and satisfying Eq. (∗).

Proof. Consider a regular k-gon Rk = v1 . . . vk, where 3 ≤ k ≤ n. Figure 17.3
illustrates the case k = 6.

Figure 17.3: Q6 is the blue hexagon. Cs is centered at o above the hexagon
center.

Also consider the circle C through v1 and vk, of centre o on the same side
of v1vk as Rk. On the short arc Cs of C determined by v1 and vk, choose
points vk+1, . . . , vn, to increase the polygon to n vertices, and denote by Pn
the doubly covered polygon v1 . . . vn, v1.

When the center o is beyond the center of Rk as illustrated, the measure
(length) of m(Cs) satisfies m(Cs) < 2π/k. It follows that Pn has two simple
closed quasigeodesics Qk with k vertices, both corresponding to the polygon
v1 . . . vk, v1, one including edge v1vk on the front, and one on the back.

Indeed, for Qk
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• the angles αi are each the vertex angles of Rk, equal to (k−2)
k
π < π, for

1 ≤ i ≤ k.

• the angles βi = αi for 1 < i < k.

• For i = 1, β1 is α1 plus twice ∠vkv1vn, and ∠vkv1vn < m(Cs)/2. Simi-
larly for i = k. Therefore, for i ∈ {1, k},

βi < αi +m(Cs) <
k − 2

k
π +

2

k
π < π .

Thus Qk is a quasigeodesic satisfying Eq. (∗) of Lemma 17.2.

Returning to Theorem 17.1, we have identified polygons with |V (Q)| = k,
for 1 ≤ k ≤ n, and applying Lemma 17.2 creates Qk with nonempty interiors.
This establishes Theorem 17.1.



Chapter 18

Conclusions
and Open Problems

Our work leaves open several questions of various natures, most of which
have been mentioned in the text in some form. Here we list open problems
and indicate possible directions for future research. The exposition roughly
follows the order we treated the subjects, with the comments on both parts
joined in this final chapter.

18.1 Part I

In the first part of this work, we mainly studied properties of the tailoring
operation on convex polyhedra.

• We have presented three methods for tailoring, of very different flavors.
On one hand, the methods of tailoring with sculpting given in Chapters 4
and 7—digon-tailoring or crest-tailoring—seem appropriate for local tai-
loring, and can produce any Q inside P .

On the other hand, the method of tailoring via flattening presented in
Chapter 8 is purely intrinsic, in that it doesn’t need the spatial structure
of P and Q to work. The surfaces can be given, in this case, as a collection
of polygons glued together as in AGT. But it has the disadvantage of being
“non-economical,” in the sense that it discards a lot of P ’s surface area.

Even with “surface-removal optimal” tailoring, we could be forced to lose
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almost all the surface area of P to reshape to Q, for example if approxi-
mating by tailoring a sphere inscribed in a very long convex surface.

All three methods can be reversed to enlarge surfaces, where the results
are the same, but not-requiring the spatial structure might be a clear
advantage.

• We made little attempt to optimize our algorithm complexities, resting
content with polynomial-time upper bounds. Likely several algorithms
could be improved, or lower bounds established. Especially notable is this
problem, which dominates the complexity of the tailoring-via-flattening
algorithm, Theorem 8.3.

Open Problem 18.1. Given a polyhedron P of n vertices, find a cut-locus
generic point x in less than O(n4) time.

Such a generic point has a unique geodesic segment (shortest path) to each
vertex of P .

• Recall that Lemma 4.1 established that, with a slice along the plane of a
face X of Q ⊂ P , the portion of P sliced-off can be partitioned into a fan
of g-domes. Then Theorem 3.2 showed how to reduce a g-dome to its base
by removing pyramids.

Rather than repeating this for each face X of Q, it is conceivable that a
single base X and a single g-dome suffice.

Open Problem 18.2. Let X be a “base” face of P , and D a fixed g-dome
over X, interior to P . Is it possible to partition P into pyramids and D,
with planes through the edges of X? After each sectioning we remove the
sliced pyramid.

If g-dome D is replaced with an arbitrary interior polyhedron, then the
answer is easily seen to be no. Without the restriction to planes through
base edges, the answer is yes as shown by Lemma 4.1.

• As discussed in Section 5.5.1, the proof of Theorem 5.3—that the seal graph
Σ for a pyramid is a tree—depends on the ordering of digon removal.

Open Problem 18.3. Is the seal graph for a pyramid a tree for other
orderings of digon removal?
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• We have shown in Chapter 9 that different unfoldings of Q ⊂ P onto P
exist. Clearly, the P -unfolding obtained via tailoring depends on the order
of tailoring operations. The P -unfolding of Q does not necessarily have
connected interior, which suggests this problem:

Open Problem 18.4. Is there some method and/or orderings of tailoring
operations that would render interior-connected a P -unfolding of arbitrary
Q ⊂ P? A less ambitious goal would be to minimize the number of interior-
connected pieces.

Notice that Theorem 9.3 established simply connectedness in general. But
in our usage, simply connected does not imply connected, e.g., the union
of several disjoint disks is a disconnected set but simply connected. In
Part II we pursue this question for particular P , for example, a doubly-
covered triangle.

• It seems that at least a part of the present work could apply to 1-polyhedra.
These are polyhedra whose faces are (congruent to) geodesic polygons on
the unit sphere. They can approximate convex surfaces with curvature
bounded below by 1 (in the sense of A. D. Alexandrov), just as convex
polyhedra can approximate ordinary convex surfaces [AZ67], [IRV15].

Open Problem 18.5. How much of the presented results can be carried
over and applied to 1-polyhedra?

• One could also define tailoring for general (i.e., not necessarily convex)
polyhedra, of arbitrary topology. Of course, the methods we developed
here apply locally to convex caps. Globally, a necessary condition for Q to
be tailored from a homothetic copy of P is to have the same topology as
P . Our Theorem 4.6 might suggest this is also sufficient, but that is not
true. By Alexandrov’s Gluing Theorem (AGT), tailoring a convex polyhe-
dron always produces a convex polyhedron, never a nonconvex polyhedron
homeomorphic to the sphere but having negative curvature at some ver-
tex. There is as yet no counterpart to AGT for nonconvex polyhedra.
Therefore, in the general framework, tailoring could be a much subtler
topic.

Open Problem 18.6. Is there a type of tailoring operation that permits
global reshaping of non-convex polyhedra?
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18.2 Part II

In the second part of this work, we mainly studied the vertex-merging (as
opposed to tailoring) processes on convex polyhedra, with the aim of produc-
ing “nice” polyhedral and planar unfoldings. Toward that aim, we needed to
develop a theory of convex sets on convex polyhedra.

• For any convex polyhedron P , there clearly exist vertex-merging reductions
of P that increase the surface area by the least, or the most amount.

Open Problem 18.7. Find upper and lower bounds on the added surface
area for vertex-merging reductions of P . Find the reduction yielding the
minimal, and respectively maximal area.

• General relationships between the properties of the slit graph and those of
the corresponding unfolding of P are presented in Theorem 11.5. Finding
particular vertex-mergings with “good” behaviour seems to be a difficult
task, only partly fulfilled in this study.

Open Problem 18.8. Does there exist for every convex polyhedron P a
vertex-merging reduction onto a vm-irreducible surface whose slit graph has
no cycle? If not, for which P are there such vm-reductions?

• A positive answer to the above question raises another one, related to our
discussion in Section 11.7.

Open Problem 18.9. For any simple unfolding PS of P onto a vm-
irreducible surface S, does there exists an unfolding of S in the plane which
results in a net for P?

• Our attempt to answer Open Problem 18.8 is based on a spiral-merging
idea. In order to formalize our spiraling algorithms, we needed to develop
a theory of convex sets on convex polyhedra. We only proved some basic
results in this theory, and much remains for future study. In particular,
the next question is related to Lemma 13.14 for the case when S ⊇ Q.1

Open Problem 18.10. Is it the case that every closed convex subset S
of a convex polyhedron is either included in a half-surface bounded by a
simple closed quasigeodesic Q, or is the whole surface?
1Recall that in Part II, we use Q to denote a simple closed quasigeodesic, in contrast

to Part I’s use of Q to represent the target polyhedron.
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• Of the classical results in the combinatorial theory of convex sets bearing a
name, we only adapted to our framework the Krein–Milman Theorem (that
a convex set is the convex hull of its extreme points); see Theorem 13.32.
Perhaps the statement of that result, even though suitable to our purpose,
could be improved.

Open Problem 18.11. Is Theorem 13.32 concerning extreme points and
the relative convex hull, still true without the “relative” modifier?

• Examples 13.13 and 13.22 show that the precise planar versions of Helly’s
and Radon’s theorems are false on the surface of a convex polyhedron.
It seems worth studying if there are versions of these theorems, and of
Carathéodory’s theorem, in our context.

Open Problem 18.12. Are there versions of Helly’s, Radon’s, and
Carathéodory’s theorems that hold on the surface of a convex polyhedron,
using ag-convexity?

The Radon point of any four points in the plane is their geometric median,
the point that minimizes the sum of distances to the other points [CEM+96].
Therefore, it could also be of some interest to study such points in our
framework. Note, for example, on a doubly covered square there are two
such points, the centers of the two faces.

• Theorem 16.5 established that if a polyhedron P has a quasigeodesic in-
cluding at most two vertices, vm-reduction can lead to a net for P . One
might view the reduction process as moving P closer and closer to pla-
narity, as Pi has fewer and fewer vertices. Finally P is on a cylinder which
rolls to a net.

Little seems known about the structure of quasigeodesics. Aside
from Pogorelov’s original nonconstructive proof [Pog49], [Pog73], only a
pseuopolynomial-time algorithm is available which finds a possibly self-
crossing quasigeodesic [KPD09]. It is not difficult to find a plane Π through
one vertex whose slice curve C = Π ∩ P halves the curvature as needed.
But C is not necessarily convex [O’R03], and so in general is not a quasi-
geodesic.

Open Problem 18.13. We conjecture that every convex polyhedron either
has a simple closed geodesic, or a simple closed quasigeodesic through just
one vertex.
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Note that this conjecture is verified for doubly-covered convex polygons,
by Lemmas 17.4 and 17.5.
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