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Abstract We extend the notion of star unfolding to be based on a quasigeodesic loop
Q rather than on a point. This gives a new general method to unfold the surface of
any convex polyhedron P to a simple (nonoverlapping) planar polygon: cut along
one shortest path from each vertex of P to Q, and cut all but one segment of Q.

Keywords Unfolding · Star unfolding · Convex polyhedra · Quasigeodesics ·
Quasigeodesic loops · Shortest paths

1 Introduction

There are two general methods known to unfold the surface P of any convex poly-
hedron to a simple (nonoverlapping) polygon in the plane: the source unfolding and
the star unfolding. Both unfoldings are with respect to a point x ∈ P . Here we define
a third general method: the star unfolding with respect to a simple closed “quasigeo-
desic loop” Q on P . In a companion paper [12], we extend the analysis to the source
unfolding with respect to a wider class of curves Q.
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The point source unfolding cuts the cut locus of a point x: the closure of the set
of all those points y to which there is more than one shortest path on P from x. The
notion of cut locus was introduced by Poincaré [18] in 1905 and since then has gained
an important place in global Riemannian geometry; see, e.g., [13] or [19]. The point
source unfolding has been studied for polyhedral convex surfaces since [20] (where
the cut locus is called the “ridge tree”).

The point star unfolding cuts the shortest paths from x to every vertex of P . The
idea goes back to Alexandrov [1, p. 181, see [2] for German translation and [3] for
English translation];1 that it unfolds P to a simple (nonoverlapping) polygon was
established in [5].

In this paper we extend the star unfolding to be based on a simple closed polygonal
curve Q with particular properties, rather than on a single point. This unfolds any
convex polyhedron to a simple polygon, answering a question raised in [6, p. 307].
The curves Q for which our star unfolding works are quasigeodesic loops, which we
now define.

Geodesics and Quasigeodesics. Let Γ be any directed curve on a convex surface P ,
and p ∈ Γ be any point in the relative interior of Γ , i.e., not an endpoint. Let L(p)

be the total surface angle incident to the left side of p, and R(p) the angle to the
right side. Γ is a geodesic if L(p)=R(p) = π for all such points p. A quasigeodesic
Γ loosens this condition to L(p) ≤ π and R(p) ≤ π , again for all p interior to Γ

[4, p. 16], [17, p. 28]. So a quasigeodesic Γ has π total face angle incident to each
side at all nonvertex points (just like a geodesic) and has at most π angle to each side
where Γ passes through a polyhedron vertex. A simple closed geodesic is non-self-
intersecting (simple) closed curve that is a geodesic, and a simple closed quasigeo-
desic is a simple closed curve on P that is quasigeodesic throughout its length. As all
curves we consider must be simple, we will henceforth drop that prefix.

A geodesic loop is a closed curve that is geodesic everywhere except possibly
at one point, and similarly a quasigeodesic loop is quasigeodesic except possibly at
one point x, the loop point, at which the angle conditions on L(x) and R(x) may be
violated—one may be larger than π . Quasigeodesic loops encompass closed geodes-
ics and quasigeodesics, as well as geodesic loops.

Pogorelov showed that any convex polyhedron P has at least three closed qua-
sigeodesics [16], extending the celebrated earlier result of Lyusternik–Schnirelmann
showing the same for differentiable surfaces homeomorphic to a sphere. However,
there is no algorithm known that will find a simple closed quasigeodesic in polyno-
mial time: Open Problem 24.2 [6, p. 374].

Fortunately it is in general easy to find quasigeodesic loops on a given P : start at
any nonvertex point p and extend a geodesic from p in opposite directions, follow-
ing each branch until a self-intersection point is found, either between branches or
within one branch. If no vertices are encountered, we have a geodesic loop; if ver-
tices are encountered, at each vertex continue in an arbitrary direction that maintains
quasigeodesicity, to obtain a quasigeodesic loop. An exception to this ease of finding
a quasigeodesic loop could occur on an isosceles tetrahedron: a tetrahedron whose

1It is called the “Alexandrov unfolding” in [14].
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four faces are congruent triangles, or, equivalently, one at which the total face angle
incident to each vertex is π . It is proved in [9] that a convex surface possesses a sim-
ple quasigeodesic line—a non-self-intersecting quasigeodesic infinite (of unbounded
length) in both directions—if and only if the surface is an isosceles tetrahedron. So
extending a quasigeodesic indefinitely in both directions without self-intersection is
possible only on isosceles tetrahedra.

Discrete Curvature. The discrete curvature ω(p) at any point p ∈ P is the angle
deficit or gap: 2π minus the sum of the face angles incident to p. The curvature is
only nonzero at vertices of P ; at each vertex it is positive because P is convex. The
Gauss–Bonnet theorem says that, for any closed curve Q, the total turn τ of Q (the
sum of π − L(p) over all p along Q) plus the curvature enclosed to the left of Q

is 2π . For a closed geodesic, τ = 0, so a closed geodesic partitions the curvature into
2π in each “hemisphere” of P . For quasigeodesics that pass through vertices, τ ≥ 0
to either side, so the curvature in each half is at most 2π . The curvature in each half
defined by a quasigeodesic loop depends on the angle at the loop point.

Some Notation. Denote by P1 and P2 the closure of the two components of
P \ Q. As our main focus is usually on one such half, to ease notation we sometimes
use P without a subscript to represent either such half-surface when the distinction
between them does not matter. Unless otherwise stated, vertices of P are labeled vi

in arbitrary order. We will use pp′ to denote a shortest path on P between p and p′.
Other notation will be introduced as needed.

2 Examples and Algorithm

We start with an example. Figure 1(a) shows a geodesic loop Q on the surface P of
a cube. L(p)=R(p) = π at every point p of Q except at x, where R(x)= 3

2π and
L(x)= 1

2π . Note that three cube vertices, v3, v6, v7 are to the left of Q, and the other
five to the right. This is consistent with the Gauss–Bonnet theorem, because Q has a
total turn of 1

2π , so turn plus enclosed curvature is 2π .
For each vertex vi ∈ P , we select a shortest path sp(vi) = viv

′
i to Q: a geodesic

from vi to a point v′
i ∈ Q whose length is minimal among all geodesics to Q. In

general there could be several shortest paths from vi to Q; we use sp(vi) to represent
an arbitrarily selected one. The point v′

i ∈ Q is called a projection of vi onto Q. In
this example, for each vi , there is a unique shortest path sp(vi), which is the generic
situation.

Algorithm If we view the star unfolding as an algorithm with inputs P and Q, it
consists of four main steps:

0. Cut P along Q, producing the half-surfaces P1 and P2.
1. For each half-surface Pk , select shortest paths sp(vi) from each vi ∈ Pk to Q.
2. Cut along all sp(vi) and flatten each half-surface.
3. Rejoin the two flattened halves at a segment s ⊂ Q.
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Fig. 1 (a) Geodesic loop Q on cube. Shortest paths sp(vi ) are shown. Faces are labeled
{F,T ,L,R,Bt,Bk}. (b) Star unfolding with respect to Q, joined at s = v′

0v′
7

After cutting along sp(vi), we conceptually insert an isosceles triangle with apex
angle ω(vi) at each vi , which flattens each resulting half. One half-surface (in our
example, the left half) is convex, while the other resulting half-surface may have
several points of nonconvexity, at the images of x. (In our example, only the image
x1 is nonconvex, when the inserted “curvature triangles” are included.) In the final
step of the procedure, we select a segment s of Q whose interior contains neither a
vertex vi nor any vertex projection v′

i , such that the extension of s is a supporting line
of each half, and glue to the halves along s. In our first example, we choose s = v′

0v
′
7

(many choices for s work in this example), which leads to nonoverlap of the two
halves.

We illustrate with one more example before proceeding. Again P is a cube, but
now Q is the closed quasigeodesic composed of the edges bounding one square face,
the bottom face in Fig. 2(a). Cutting four shortest paths from the other vertices or-
thogonal to Q and cutting all but one edge s of Q result in the standard Latin-cross
unfolding of the cube shown in (b).

We now proceed to detail the three steps of the procedure, this time with proofs.
Because the proofs for quasigeodesics are straightforward in comparison to the proofs
for quasigeodesic loops, we separate the two in the exposition.

3 Quasigeodesics

3.1 Shortest Path Cuts for Quasigeodesics

We again use a cube as an illustrative example, but this time with a closed quasigeo-
desic Q, not a loop: Q = (v0, v5, v7); see Fig. 3(a). There is π angle incident to the
right at v5, and 1

2π incident to the left; and similarly at v0 and v7. At all other points
p ∈ Q, L(p)=R(p) = π . Thus Q is indeed a quasigeodesic. We will call the right
half (including v2) P1 and the left half (including v4) P2. In Fig. 3(a), the paths from
{v1, v3, v6} are uniquely shortest. From v2 there are three paths tied for shortest, and
from v4 also three are tied.
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Fig. 2 (a) Q = (v0, v1, v2, v3). (b) Star unfolding with respect to Q. Here the uncut segment of Q is
s = v0v1

A central fact that enables our construction is this key lemma from [7, Corollary 1],
slightly modified for our circumstances:

Lemma 1 Let W be a simple closed polygonal curve on a convex surface P , and let
p be any point of one (closed) half-surface P bounded by W , but not on W . Let p′
be one of the points of W closest to p. Then for any choice of sp(p) = pp′, the angle
α made by sp(p) with W at p′ is at least π/2. In particular, if p′ is not a corner
of W , then α = π/2 and the path sp(p) is unique as shortest between p and p′, and
α > π/2 occurs only at corners p′ where the angle of W toward P is larger than π .

A second fact we need concerning the shortest paths sp(vi) is that they are disjoint.

Lemma 2 Any two shortest paths sp(v1) and sp(v2) are disjoint for distinct vertices
v1, v2 ∈ P .

Proof Suppose for contradiction that at least one point u is shared: u ∈ sp(v1) ∩
sp(v2). We consider four cases: one shortest path is a subset of the other, the shortest
paths cross, the shortest paths touch at an interior point but do not cross, or their
endpoints coincide.

1. sp(v2) ⊂ sp(v1). Then sp(v1) contains a vertex v2 in its interior, which violates a
property of shortest paths [20, Lemma 4.1].

2. sp(v1) and sp(v2) cross properly at u. It must be that |uv′
1| = |uv′

2|, otherwise both
paths would follow whichever tail is shorter. But now it is possible to shortcut the
path in the vicinity of u via σ as shown in Fig. 4(a), and the path (v1, σ, v′

2) is
shorter than sp(v1).

3. sp(v1) and sp(v2) touch at u but do not cross properly there. Then there is a short-
cut σ to one side (the side with angle less than π ), as shown in Fig. 4(b).
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Fig. 3 (a) Cube and quasigeodesic Q = (v0, v5, v7). Shortest paths sp(vi ) as indicated. (b) Flattening the
right half-surface by insertion of curvature triangles along the shortest paths sp(vi ) = viv

′
i
. (c) Flattening

the left half-surface. (d) Two halves joined at s = v5v′
6

4. v′
1 = v′

2. From Lemma 1 we know the two paths are orthogonal to the quasigeo-
desic Q at v′

1 = v′
2; hence, since they cannot be in the situation of Case 1, there is

an angle α > 0 separating the paths in a neighborhood of the common endpoint;
see Fig. 4(c). Then Q has more than π angle to one side at this point, violating the
definition of a quasigeodesic. �
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Fig. 4 Lemma 2: (a) paths cross; (b) paths touch at an interior point; (c) paths meet at endpoint

This lemma ensures that the cuttings along sp(vi) do not interfere with one an-
other.

3.2 Flattening the Half-Surfaces Determined by Quasigeodesics

The next step is to flatten each chosen half-surface P1 and P2 (independently) by
suturing in “curvature triangles” along each sp(v) path. Let P be one of P1 or P2.
The basic idea goes back to Alexandrov [3, p. 241, Fig. 103] and was used also
in [8]. Let � be the length of a shortest path sp(v), and let ω = ω(v) > 0 be the
curvature at v. We glue into sp(v) = vv′ the isosceles curvature triangle � with apex
angle ω gluing to v, and incident sides of length � gluing along the cut vv′. This is
illustrated in Fig. 3(b,c). We display this in the plane for convenience of presentation;
the triangle insertion should be viewed as operations on the manifolds P1 and P2,
each independently.

This procedure only works if ω < π , for ω becomes the apex of the inserted trian-
gle �. If ω ≥ π , we glue in two triangles of apex angle ω/2, both with their apexes at
v.2 Slightly abusing notation, we use � to represent these two triangles together. In
fact we must have ω < 2π for any vertex v (else there would be no face angle at v),
so ω/2 < π , and this insertion is indeed well defined.

We should remark that an alternative method of handling ω ≥ π would be to sim-
ply not glue in anything to the vertex v with ω(v) ≥ π , in which case we still obtain
the lemma below leading to the exact same unfolding.

Now, because ω is the curvature (angle deficit) at v, gluing in � there flattens v to
have total incident angle 2π . Thus v is no longer a vertex of P (and two new vertices
are created along the bounding curve).

Let P � be the new manifold with boundary obtained after insertion of all curvature
triangles into P . We claim that a planar embedding of P � does not overlap; i.e., P �
is isometric to a simple planar polygonal domain.

In the proof we use two results of Alexandrov. The first is his celebrated theo-
rem [3, Theorem 1, p. 100] that gluing polygons to form a topological sphere in such
a way that at most 2π angle is glued at any point results in a unique convex polyhe-
dron.

2One can view this as having two vertices with half the curvature collocated at v.
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Fig. 5 Lemma 5, Case 1:
(a) ω < π ; (b) ω ≥ π

The second is a tool that relies on this theorem:

Lemma 3 Let M be a convex polyhedral manifold with convex boundary, i.e., the
angle toward M of the left and right tangent directions to ∂M is at most π at every
point. Then the closed manifold M# obtained by gluing two copies of M along ∂M

by identifying the corresponding points is isometric to a unique polyhedron, with a
plane of symmetry Π containing ∂M , which is a convex polygon in Π .

Proof That M# is a convex polyhedron follows from Alexandrov’s gluing theorem.
Because M# has intrinsic symmetry, a lemma of Alexandrov [3, p. 214] applies to
show that the polyhedron has a symmetry plane containing the polygon ∂M . �

One consequence of this lemma we record in a corollary:

Corollary 4 A convex polyhedral manifold M with convex boundary Q and with no
interior curvature is isometric to a planar convex polygon.

Proof Apply Lemma 3 to M and let M# be the resulting polyhedron. The lemma
says that M# has a symmetry plane containing Q = ∂M . As all the vertices of M#

are on Q, M# itself must be planar. Therefore Q is the boundary of a planar convex
polygon. �

Now we apply these tools to P �:

Lemma 5 For each half-surface P of P , P � is a planar convex polygon and there-
fore simple (nonoverlapping).

Proof P � is clearly a topological disk: P is, and the insertions of �’s maintains it
a disk. At every interior point of P �, the curvature is zero by construction. So the
interior is flat.

Next we show that the boundary ∂P � is convex. This follows from the orthogo-
nality of sp(v) guaranteed by Lemma 1, as the base angle of the inserted triangle(s)
is π/2 − ω/2 for ω < π , or π/2 − ω/4 for ω ≥ π (see Fig. 5; ω = ω(v)), so the new
angle is smaller than π by ω/2 or ω/4.

Once we know that P � is homeomorphic to a disk and has a convex boundary,
Corollary 4 shows that P � is a planar convex polygon and therefore simple. �
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Note that, when the total curvature in P is 2π , then the straight development of Q

is turned 2π by the � insertions, as in Fig. 3(b). When the total curvature in P is less
than 2π , the development of Q is not straight, but the � insertions turn it exactly the
additional amount needed to close it to 2π , as in (c) of the same figure.

3.3 Joining the Halves for Quasigeodesics

The final step of the unfolding procedure selects a supporting segment s ⊂ Q whose
relative interior does not contain a projection v′ of a vertex. All of Q will be cut except
for s. When Q is a closed quasigeodesic, any choice for s generates a supporting line
to a planar development of Pk , k = 1,2, because P

�
k is a convex domain. Then joining

planar developments of P1 and P2 along s places them on opposite sides of the line
through s, thus guaranteeing nonoverlap. See Fig. 3(d), where s = v5v

′
6.

4 Quasigeodesic Loops

We now turn to the case where Q is a closed quasigeodesic loop with loop point x,
at which the angle toward P is β > π . See Fig. 1, where β = 3

2π .

4.1 Shortest Path Cuts for Quasigeodesic Loops

Lemma 1, claiming that the shortest path sp(p) = pp′ is unique and orthogonal to Q

at p′, needs no modification. For p′ = x, the shortest path px makes a nonacute (at
least π/2) angle with Q on both sides. Lemma 2, claiming disjointness of the shortest
paths for distinct vertices v1, v2, need only be modified by observing that more than
one shortest path can project to x, but the paths do not intersect other than at x. The
proof is identical.

The significant differences between quasigeodesics and quasigeodesic loops are
concentrated largely in the proofs for flattening and for joining the halves. We should
emphasize that the algorithm steps detailed earlier are the same; it is only the justifi-
cation that becomes more complicated.

4.2 Flattening the Half-Surfaces Determined by Quasigeodesic Loops

We aim to prove the analog of Lemma 5 for quasigeodesic loops: P � is (isometric
to) a simple, planar polygon. Obviously that lemma establishes this for the convex
half-surface of P . In this subsection let P be the nonconvex half-surface in which the
angle β at x exceeds π .

The argument will be different (and easier) if no vertices project to x.

4.2.1 No Vertex Projects to x

Lemma 6 If no vertex of P projects to x, then P � is a simple, planar polygon.
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Fig. 6 No vertex of P projects
onto Q at x

Proof Let γ be a geodesic on P � bisecting the angle β at x and meeting ∂P � at y;
see Fig. 6. Because P � is flat, γ does in fact meet the boundary of P �, i.e., it does not
self-cross before reaching the boundary. Cut P � along γ = xy into two manifolds.
Because β < 2π , the angle at x in each manifold is less than π . Therefore, we have
obtained exactly the situation in Lemma 5: each is a flat manifold homeomorphic to
a disk, with a convex boundary. Corollary 4 then implies that each is isometric to a
planar convex polygon, with a supporting line through xy. Therefore they may rejoin
along γ to form a planar simple polygon, with one reflex (concave) vertex at x. �

4.2.2 Vertices Project to x

Now we consider the more difficult case where vertices in a set V = {v1, v2, . . . , vk}
project to x. Rather than construct P � directly as above, we proceed in two stages:
first we insert curvature triangles for all those vertices of P that project to Q \ {x},
forming a (nonflat) manifold X, and then argue that X unfolds without overlap. We
will not insert curvature triangles for the vertices in V , but rather argue directly for
nonoverlap of a flattening U(X) of X. The boundary of U(X) will consist of two
portions: a convex chain Qc deriving from Q \ {x} and the insertion of the curvature
triangles, and the remainder, a (generally) nonconvex chain Qn deriving from x and
the vertices in V . Much as in Fig. 6, we will cut X by a geodesic γ and later glue
the two unfolding pieces back along γ . We will see that the chain Qn is formed of
subchains of particular star unfoldings with respect to x.

Preliminaries. We need several ingredients for this proof. First, we will need the
cut locus of x on the manifold-with-boundary X, which may be defined as in Sect. 1:
C(x) is the closure of the set of all points of X joined to the source point x by at least
two shortest paths on X.

Second, we need two extensions to the theorem established in [5, Theorem 9.1]
that the star unfolding of a polyhedron does not overlap. That paper assumed that
the source point x was generic in the sense that it had a unique path to every vertex.
We extend the result to the case where x has two or more distinct shortest paths to
a vertex v: then simply cutting one of the paths to v again leads to nonoverlap. The
second extension is more substantive. For any three points r, s, t in the plane, forming
the counterclockwise angle θ = ∠rst at s, define the angular region determined by
these points to be the set of points p such that the segment ps falls within the angle θ :
counterclockwise of rs and clockwise of ts.
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Fig. 7 The open angular region
determined by x and the
vertex v is disjoint from the star
unfolding S(x)

Lemma 7 Let v be a vertex of the star unfolding S(x) of a polyhedral convex surface
P with respect to x ∈ P , and x1 and x2 the images of x resulting from cutting a short-
est path xv, with x2 counterclockwise of x1 around S(x). Then S(x) is disjoint from
the open angular region determined by x1, v, x2, or, equivalently, S(x) is enclosed in
the closed angular region determined by x2, v, x1.

See Fig. 7. Both of these extensions to [5] are established in [15].
We will also need this fact:

Lemma 8 Let M# be a convex polyhedron obtained by doubling M as in Lemma 3.
Then a shortest path vu from a vertex v on the symmetry plane Π , to a vertex u not
on Π , lies completely in the half containing u.

Proof Let u be in the bottom half. Suppose for contradiction that a shortest path vu

includes a section σ that enters the top half at s1 ∈ Π and exits back to the bottom half
at s2 ∈ Π . Then we can reflect σ through Π to place it on the bottom half, without
changing its length. Because shortest paths on convex surfaces do not branch, we
obtain a contradiction. �

The flattening proof consists of two parts: first, a procedure is used to find the
splitting geodesic γ or to determine that no such geodesic exists. The second part
then has two cases for reaching the final unfolding.

Part I: Excising Digons. We now describe a process to flatten a subset of X by
cutting out regions containing all its interior vertices. The flattened version X′ will
then be used in further steps of the proof.

Recall that we defined X as the manifold obtained by inserting curvature triangles
into P for all shortest paths incident to Q \ {x} but leaving V = {v1, v2, . . . , vk}
unaltered. So X is not flat, but its boundary ∂X is the simple closed convex curve Qc.
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Fig. 8 (a) Manifold X for the nonconvex half-surface of Fig. 1(b). The two points labeled x should be
identified along the shortest path v1x; so X in this case is isometric to a subset of a cone with apex v1.
(b) After removing the digon bounded by paths from x to w1 and identifying the paths

Let C(x) be the cut locus of x on X. In general C(x) is a forest of trees, each of
which meets ∂X in a single point, and whose leaves are the vertices in V . This follows
from the proof of Theorem A in [22] but may also be seen intuitively as follows. By
a remark of Alexandrov [3, p. 236], there exist many convex polyhedral surfaces X
containing X. The cut locus of x on X is a tree which gets clipped by ∂X to a forest
on X, provided that X can be chosen such that any shortest path in ∂X starting at x

crosses ∂X only once. A direct way to see this is to observe that, at every vertex v

interior to X, an edge of C(x) emanates, and when two such edges meet interior to
X, they join to start a third edge of C(x).

Let w1,w2, . . . be the points of C(x) ∩ ∂X. Each wi is joined to x by at least two
shortest paths, and the union of two of these bounds a digon Di that includes the tree
component Ti of C(x) incident to wi .

Cut out from X all Di ’s and glue back their boundary segments in X \ ⋃
i intDi

to get a new surface X′. Because the vertices V of X have been excised with the
digons, X′ is flat. And ∂X′ is convex except (possibly) at x. Therefore, the argument
of Lemma 6 applies to X′, showing that it is the join of two planar convex polygons.

We illustrate this construction before proceeding with the proof, first with a real
example, second with an abstract example. Figure 8(a) illustrates X for the geodesic
loop on a cube from Fig. 1; only v1 projects to x. C(x) is in this case the single
segment xw1. After excising the digon bounded by the two xw1 shortest paths, the
planar polygon X′ shown in (b) is attained.

A more generic situation is illustrated in Fig. 9.

Part II: Partitioning X, Case 1. The next step of the proof is to partition the man-
ifold X into pieces each of which has a convex boundary. The partition will be into
either two or three pieces. We start with the two-piece Case 1. Let αi be the digon
angle of Di at x on X. Then the angle β at x on X is reduced by

∑
αi on X′. Case 1

holds when there is a segment γ = xy on X′ from x to some point y ∈ ∂X′ such that
the corresponding geodesic on X splits the angle β at x into two parts, each of which
is at most π . (It is not possible to simply select the bisector of β on X for γ , be-
cause that bisector might fall inside the αi of one of the digons, and so not be realized
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Fig. 9 (a) The manifold X depicted abstractly. (b) Planar, simple X′ after excision of digons

Fig. 10 (a) The double polyhedron X#
1 of X1. (b) The star unfolding U#

1 of X#
1 with respect to x

in X′.) Assuming for Case 1 that such a γ exists, we partition X by cutting along
γ , resulting in two (nonflat) manifolds X1 and X2. Note that each such manifold has
a convex boundary: ∂X is convex at every point excepting x, the angle at y is less
than π , and we have conveniently split the angle at x. Therefore, we may apply the
“doubling” Lemma 3 to each half. Henceforth we confine our attention to X1.

According to that lemma, we have a convex polyhedron X#
1 with ∂X1 lying in

the symmetry plane Π . We will call the portion above and below Π the upper
and lower halves, respectively. The upper half includes (a subset of) vertices of V ,
say v1, . . . , vj , and the lower half includes equivalent copies, call them u1, . . . , uj .
There are a number of vertices on Π deriving from ∂X1, including x, y; call them
z0, z1, z2, . . ., with z0 adjacent to y.

Now the plan is to construct the star unfolding of X#
1 with respect to the point x.

By Lemma 8, the shortest paths from x to the vertices of X#
1 in Π lie wholly in

one half or the other. For a vertex on Π , either the shortest path lies in Π , or there
are pairs of equal-length shortest paths, one in the upper and one in the lower half.
By our extension of the star unfolding theorem, we may choose which shortest path
to cut in the case of ties and still obtain a nonoverlapping unfolding. We choose to
select all shortest paths to the vertices on Π in the lower half (or along Π if that is
where they lie). See Fig. 10(a). Note that γ = xy will necessarily lie in Π , and it is
also necessarily a shortest path from x to y (because it is an edge of the polyhedron,
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Fig. 11 Complementary
exterior open angular regions
at y

and every edge of a polyhedron is a shortest path between its endpoints). So we cut
xy = γ as well. The result is a planar, nonoverlapping unfolding U#

1 . Now, identify
within U#

1 the portion U1 corresponding to the upper half. Also note that γ is one
edge of ∂U1. Let xi−1 and xi be the images of x adjacent to vi . See Fig. 10(b).
Note that Qn

1 = (x0, v1, x1, v2, . . . , vj , xj ) ⊂ ∂U1 is a subchain of the nonconvex
chain Qn mentioned earlier, and its complementary chain Qc

1 in ∂U1 is a subchain
of the convex chain Qc .

Next we perform the exact same procedure for X2, resulting in U#
2 containing U2.

Now glue U#
1 to U#

2 along their boundary edges deriving from γ . Applying Lemma 7
at the point y in each unfolding shows that they join without overlap, as follows.

Let θ1 be the angle at y in U1, and θ2 the angle in U2. If y coincides with a vertex
of Q, then θ1 + θ2 < π , hence joining the closed angular regions enclosing U#

1 and
U#

2 leaves at y an empty open angular region of measure 2(π − θ1 − θ2). If y is not
a vertex of Q, then θ1 + θ2 = π ; hence the closed angular regions enclosing U#

1 and
U#

2 are complementary; see Fig. 11. Thus, in either case, the contained U1 and U2 do
not overlap one another. And so we have established that U(X) = U1 ∪U2 is a planar
simple polygon.

Part II: Partitioning X, Case 2. Case 1 relies on the existence of a segment γ on
X′ such that the corresponding geodesic on X splits the angle β at x into two parts,
each of which is at most π . Now we consider the possibility that there is no such γ .
We illustrate this possibility with an example before handling this case.

In Fig. 12, P is a tetrahedron with three right angles incident to v0. The geodesic
loop shown has at x an angle β = 330◦ in the lower half and two vertices v1 and v2,
included in the same digon, projecting to x. In this example, the sole digon constitutes
the majority of X, and its removal leaves X′ (Fig. 12(c)) so narrow as to not admit a
γ with the desired angle-splitting properties.

In this case, we have a “fat” digon Di (possibly Di = X) whose angle αi at x

covers all the possible splitting segments γ . Let D = Di to ease notation, and let γ1
and γ2 be the two boundary edges (shortest paths) of D connecting x to wi . Let a and
b be the vertices adjacent to x on ∂X. The angle from ax to γ1 and the angle from bx

to γ2 are both less than π . Now we define three (topologically) closed submanifolds
of X: X1, the portion bounded by γ1 and containing vertex a, X2, the portion bounded
by γ2 and containing vertex b, and the digon D in between. X1 and X2 have convex
boundaries, just as the manifolds in Case 1, and we go through the identical process:

Xi → X#
i → U#

i → Ui .
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Fig. 12 (a) Geodesic loop Q = (q0, q1, q2, x). (b) The manifold after insertion of the curvature triangle
with ω(v0) = 90◦ at v0. C(x) is the “Y”, and the digon is bounded by xw. (c) X′: after removal of digon.
(d) U(X). Note the angles at the three images of x sum to β = 330◦

The digon D might not be convex at x; in Fig. 12(b) the angle at x is αi = 300◦. So
we cannot use the doubling lemma. Instead we glue (“zip”) γ1 to γ2, which produces
a convex polyhedron Dz containing the vertices of V inside D and vertices at x and
at wi . Now we produce the star unfolding of Dz with respect to x. Note that xwi =
γ1=γ2 is a shortest path on Dz (because γ1 and γ2 are shortest paths on X ⊇ D, there
can be no shorter path in D, and a path crossing γ1=γ2 on Dz is necessarily longer),
so that gets cut as part of the star unfolding. Call this unfolding UD . By Lemma 7,
UD is contained within the closed angular region at wi , bounded by rays along γ1

and γ2.
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Next we join U#
1 to UD along γ1 and U#

2 to UD along γ2, nonoverlapping by the
angular region properties, and conclude that the contained U(X) = U1 ∪ UD ∪ U2 is
a planar simple polygon. See Fig. 12(d).

Finally, removing the inserted curvature triangles from U(X) establishes the ana-
log of Lemma 5:

Lemma 9 For Q a quasigeodesic loop, the star unfolding of the nonconvex half-
surface P of P is a planar, simple polygon.

4.3 Joining the Halves for Quasigeodesic Loops

Let s be the edge of the unfolding U = U(X) on which y lies (in Case 1) or on which
w lies (in Case 2). If y or w is at a vertex of P , then let s be either incident edge.
We claim that the line L containing s is a supporting line to U(X). We establish
this by identifying a larger class of supporting lines, which includes L. We make the
argument for Part II, Case 1 above (when γ exists), as Case 2 is very similar.

Returning to Fig. 10(b), consider the two empty angular regions exterior to U#
1 ,

incident to the vertex adjacent to x0 that is not v1 (z2 in that figure), and the vertex
adjacent to xj that is not vj , i.e., y. Let H0 and Hj be the halflines on those angular
region boundaries that include x0 and xj , respectively. The empty angular regions
imply that U1 is included in the convex region U1 of the plane delimited by H0, Hj ,
and the convex boundary Qc

1 ⊂ ∂U1: the nonconvex boundary portion Qn
1 ⊂ ∂U1 can

cross neither H0 nor Hj . Let p1 be the point in H0 ∩Hj , which might be “at infinity”
if those halflines diverge. Similarly, U2 is included in a region U2 delimited by Hj

and Hk , which meet at p2 or not at all if those halflines diverge. Let Lj be the line
containing Hj , which contains γ , and p1 and p2 when those exist. We consider three
cases.

1. Both p1 and p2 exist. See Fig. 13(a). Then there are two supporting lines parallel
to Lj , and every edge between them along ∂U is supporting to U and so to U .

2. p2 exists, but p1 does not. See Fig. 13(b). We have the one line parallel to Lj

supporting U2. Let p′ be a point on Lj on the opposite side of y from p2 that
maximizes the chain of ∂U1 visible from p′, say the point that minimizes |p′y|.
Then again every edge between the two supporting lines—that parallel to Lj sup-
porting U2, and the line through p′ supporting U1—is supporting to U and so
to U .

3. Neither p1 nor p2 exist. See Fig. 13(c). Then again let p′ be a point on Lj on the
opposite side of y that maximizes the visibility of ∂U . Then all the edges between
the tangency points extend to supporting lines.

In particular, we see that the line(s) extending edge(s) incident to y are among the
supporting lines, as claimed. For example, s is v′

0v
′
4 in Fig. 8(b), and that edge is used

to join the halves in Fig. 1(b).
One issue remains. It could be that the segment s identified above is the base of

a curvature triangle, rather than a segment of Q, in which case it cannot be used for
joining the halves. Returning to Fig. 5, there are two cases: (a) ω < π and (b) ω ≥ π .
In case (a), s is the base of a curvature triangle, with the angle at either endpoint of the
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Fig. 13 Lines determined by the marked portion of ∂U are supporting for U = U1 ∪ U2

base larger than π/2. Note that edges adjacent to s must be edges of Q. Regardless
of the angle at which Lj intersects s, one of these two adjacent edges must include a
supporting portion of ∂U , for example, visible from p′ in Fig. 13(b, c). In case (b),
two curvature triangles are inserted, but as we noted earlier, neither is truly needed,
for the boundary of ∂U (∂P in Lemma 5) is already convex at the apexes of the two
curvature triangles. So, simply not inserting them leaves an edge of Q crossed by Lj

that can serve as s. So, in all situations, we obtain a supporting segment.

5 Conclusion

We have established our main theorem:

Theorem 1 Let Q be a quasigeodesic loop on a convex polyhedral surface P . Cut-
ting shortest paths from every vertex to Q and cutting all but a supporting segment s

of Q as designated above unfolds P to a simple planar polygon.

Figure 14 shows another example, a closed quasigeodesic on a dodecahedron, this
time a pure geodesic. The unfolding following the above construction is shown in
Fig. 14(c, d). In this case where Q is a pure, closed geodesic, there is additional
structure that can be used for an alternative unfolding. For now Q lives on a region
isometric to a right circular cylinder. Figure 14(b) illustrates that the upper and lower
rims of the cylinder are loops parallel to Q through the vertices of P at minimum dis-
tance to Q (at least one vertex on each side). In the figure, these shortest distances to
the upper rim are the short vertical paths from Q to the five pentagon vertices. Those
rim loops are themselves closed quasigeodesics. An alternative unfolding keeps the
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Fig. 14 (a) Q here is a
geodesic; it includes no vertices,
as is evident in the layout (b).
The region isometric to a right
circular cylinder is highlighted.
The convex domain P� from
Lemma 5 is shown in (c), and
one possible unfolding in (d)

cylinder between the rim loops intact and attaches the two reduced halves to either
side. See Fig. 15.

5.1 Future Work

We have focused on establishing Theorem 1 rather than the algorithmic aspects. Here
we sketch preliminary thoughts on computational complexity. Let n be the number
of vertices of P , and let q = |Q| be the number of faces crossed by the geodesic
loop Q. In general q cannot be bounded as a function of n. Let m = n + q be the
total combinatorial complexity of the “input” to the algorithm. Constructing Q from
a given point and direction will take O(q) time. Identifying a supporting segment s

and laying out the final unfolding are proportional to m. The most interesting algo-
rithmic challenge is to find the shortest paths from each vertex vi to Q. The recent
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Fig. 15 Alternative unfolding
of the example in Fig. 14.
Various construction lines are
shaded lightly

O(n logn) algorithm in [21] leads us to expect that the computation can be accom-
plished efficiently.

We do not believe that quasigeodesic loops constitute the widest class of curves for
which the star unfolding leads to nonoverlap. Extending Theorem 1 to quasigeodesics
with two exceptional points, one with angle larger than π to one side, and the other
with angle larger than π to the other side, is a natural next step, not yet completed.

If one fixes a nonvertex point p ∈ P and a surface direction −→u at p, a quasigeo-
desic loop can be generated to have direction −→u at p. It might be interesting to study
the continuum of star unfoldings generated by spinning −→u around p.

Acknowledgements We thank Boris Aronov for many observations and suggestions which improved
the paper.
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