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UNIQUENESS OF ORTHOGONAL CONNECT-THE-DOTS

Joseph O’ROURKE

Department of Computer Science
Johns Hopkins University
Baltimore, MD 21218

It is proven that a collection of non-intersecting simgle orthogonal
oly{gons is uniquely determined by its vertex set, and reconstructi-
le’ from this set in" O (n logn ) time. The theorem is also extended

to three dimensions: a collection of orthogonal polyhedra is

uniquely determined by its set of edges.

1. INTRODUCTION

Our perceptual system’s ability to reconstruct the shape of objects from
sparse partial data has led pattern recognition researchers to study a partic-
ularly pure condensation of the problem: given a set of points (dots) in the
plane, connect them with polygonal paths into a “‘meaningful” whole. This
is hopelessly vague as stated, but several natural constraints suggest them-
selves that lead to interesting problems and solutions [8] [3] [2] [7] [1]. One
such constraint requires the dots to be connected to form simple closed
polygons. This still leaves so much freedom, however, that it seems difficult
to choose a ‘‘natural” candidate solution [5]. In search of a more con-
strained problem, I investigate here the problem of connecting dots into
orthogonal polygons.! The conclusion is that there is at most one way of
connecting a set of dots into a collection of orthogonal polygons. This
theorem extends to three dimensions: there is at most one way to flesh out a
wire-frame into a collection of orthogonal polyhedra.

More formally, let P be a collection of non-intersecting simple orthogo-
nal polygons in the plane. Each polygon is composed of an alternating
sequence of horizontal and vertical edges, any two of which meet in at most
one point, which point is a vertex of the polygon. [Sach edge contains

t This research was partially supported by grants from NSI* (DSR 83-
51468) General Motors, IBM, and Martin Marietta. An earlicr version of
this paper was released as [4].
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exactly two vertices; vertices are only permitied at corners. The polygons
may be nested inside one another, but they may not intersect or share ver-
tices. The vertices of the polygons are not necessarily in ‘“‘general position”:
any number may fall on the same vertical or horizontal line. We will view
P as composed of two sets: the vertices V' and the edges E .

Now imagine erasing all the edges of P, leaving only the set of vertices
V on the plane. The main result of this note is that E is uniquely deter-
mined by V. The curious implication is that the edges of orthogonal
polygons are superfluous: there is only one way (if there is a way) to connect
a set of dots into orthogonal polygons. Moreover, the proof of this theorem

is constructive, leading to an O (nlogn) algorithm for reconstructing P
from V.

2. TWO DIMENSIONS

Each vertex is incident to exactly one horizontal edge and one vertical
edge. A vertex that is leftmost on the horizontal line containing it must be
the left endpoint of a horizontal edge, and a vertex that is uppermost on the
vertical line containing it must be the upper endpoint of a vertical edge.
These simple observations lead to the following algorithm.

Index the vertices on a particular horizontal line H from 1 to m; m
must be even because each horizontal edge on H has two distinct endpoints.
Let [i,7] be the horizontal edge from vertex 1 to 5 on H. Then the edges
[20-1,2¢] for 1<¢ <m /2 must be in E, and these are the only edges in E
that lie on H. [1,2]€E because 1 is leftmost; [2,3]¢ E because 2 may only
have one incident horizontal edge; [3,4/€E because 3 must have an incident
horizontal edge; and so on. Therefore all the horizontal edges of P may be
reconstructed by connecting alternate pairs of dots in each horizontal row as
above. Similarly all vertical edges can be reconstructed by connecting alter-
nate pairs of dots in each vertical column from top to bottom. Fig. 1 shows
a particular point set and Fig. 2 shows its unique reconstruction.

This procedure can be accomplished easily in O (n logn ) time by sorting
the vertices horizontally and vertically.

Note that the algorithm also detects when a point set cannot be the ver-
tex set of a collection of non-intersecting simple orthogonal polygons: when-
ever no move can be made at a step of the algorithm, or when edges deter-
mined by the algorithm cross. An example of the former case is shown if
Fig. 3a, and of the latter case in Fig. 3b.
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FIGURE 1

A set of dots in the plane.

FIGURE 2
The orthogonal polygons reconstructed from Fig. 1.
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The results of preceding discussion can be summarized in the following
theorem:

THEOREM 1. A collection of non-intersecting orthogonal polygons is
uniquely determined by its set of vertices V', and its edges can be recon-
structed from V in O (n logn ) time, where | V | =n.

3. THREE DIMENSIONS

This theorem cannot be extended directly to three (or higher) dimen-
sions: two identical crosses arranged parallel, one above the other, can be
connected by a central beam without addition of vertices. More specifically,
reflect the three points { (2,1), (1,1), (1,2) } in the X -axis, the Y -axis, and
the origin, resulting in 12 points defining a cross in the XY plane. Define
V to be the 48 points composed of this pattern at Z =0, Z =1, Z =2, and
Z=3. Then the central rectangular box defined by the square { (1,1), (-
1,1), (-1,-1), (1,-1) } between Z=1 and Z =2 either may or may not be
present; see Fig. 4. Thus V does not uniquely determine a collection of
orthogonal polyhedra.

The crucial property used in the two-dimensional proof that no longer
holds in three dimensions is that each vertex is incident to exactly one hor-
izontal and one vertical edge. Call an edge parallel to the X -axis an X-
edge, and similarly for Y- and Z-edges. Then in the X =1 plane, the ver-
tex (1,1,1) in Fig. 4 has an incident Y -edge [(1,1,1), (1,2,1)], but may or may
not have the incident Z -edge [(1,1,1), (1,1,2)], shown dotted in Fig. 4.

To resolve this ambiguity, it is necessary to know the edges as well as
the vertices. Of course the edges determine the vertices by definition, so
only the edges need be given for reconstruction. We now establish this
claim.

Let P be a collection of simple orthogonal polyhedra in three dimen-
sions. Each polyhedron is composed of faces that lie in planes parallel to two
of three orthogonal coordinate axes X, Y, and Z. A plane parallel to the
Y and Z axes is called a YZ-plane, and a face in the YZ-plane is called a
YZ -face, and similarly for the other two combinations. Each face is an
orthogonal polygon. Each edge on the boundary of a face is contained in
exactly two orthogonal faces; note that there must be a right angle at each
edge: edges are not permitted to lie at the junction of two coplanar faces.
Distinct faces intersect only at edges and vertices, if at all. We view P as
composed of three sets: the faces F, the edges E, and the vertices V.
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FIGURE 3
Two illegal reconstructions: (a) no matching vertex; (b} illegal self-intersection.
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An example of 48 vertices in three dimensions that do not uniquely determine po-
lyhedra: the central box between the two crosses (whose vertical edges are dotted)
either may or may not be present.
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Suppose we are given I, with each edge defined by a pair of endpoints.
V is simply the union of all these endpoints. We reconstruct I’ from E in
three parts. The first step computes the YZ -faces. Let X =c be any YZ-
plane 7 that wholly contains at least one edge ¢ €E. Since e is in the
boundary of exactly two orthogonal faces, one of them, say f €F, must lie
wholly in 7. Recall that [ is an orthogonal polygon; so all its boundary
edges lie wholly in .

It is natural then to conclude that we have an instance of the two-
dimensional problem just solved: a collection of orthogonal polygons in .
But the collection does not necessarily satisfy the assumption that each ver-
tex is incident to exactly two edges. Returning again to Fig. 4, let 7 be the
plane X =1. Then, if the central box is absent, the collection of edges in 7
is as shown in Fig. 5a; if the box is present, then as in Fig. 5b. In Fig. 5b,
some vertices are incident to four edges.

a b
FIGURE 5
The edges that lie in X=1 in Fig. 4 if the central box is not (a) or is (b) present.

Nevertheless it is not difficult to reconstruct the faces in m from the
edges in 7. Let H be a horizontal line in 7 parallel to the Y -axis that inter-
sects at least one edge but contains no vertices. Index the edges intersected
by H from 1 to m. Now we have a variant of the problem solved previ-
ously. Let [¢,7] represent the closed segment on I from edge 7 to edge 7.
Again m must be even, and the segments [21-1,27] for 1St <m /2 must be
subsets of faces. Sorting the vertices in m vertically by Z-coordinate and
locating H between every adjacent pair in this sort, is clearly sufficient to
identify the interior of each orthogonal face. See Fig. 6.
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FIGURE 6
The interior of the faces may be detected by positioning a line between vertices; here
dashed indicates exterior and dotted interior.

Reconstruction of all YZ -faces can then be achieved by setting 7 to
each YZ-plane that contains an edge. The XZ- and XY -faces may be
reconstructed similarly. Informally, the conclusion of this argument is that
orthogonal polyhedra may be reconstructed from their “wire-frames.” The
following theorem is a more formal statement.

T HE-'ORE"M 2. A collection of orthogonal polyhedra that intersect only at
vertices (if at all) is uniquely determined by its set of edges E, and its faces
may be reconstructed from E in O (nlogn ) time, where | E | =n.

Note that the polyhedra may intersect at vertices, as this does not des-

;roy the crucial property that each edge is shared by exactly two orthogonal
aces.

4. DISCUSSION

' The generalization of this theorem to higher dimensions is that a collec-
tion of orthogonal polytopes in d-dimensions is uniquely reconstructible
from its set of (d ~2)-dimensional facets or ‘‘ridges.” The proof of this claim
is similar in spirit to those above and will not be detailed. Note that in
Pigher dimensions, the number of these facets is no longer necessarily linear
in the number of vertices. Perhaps of more interest is a question posed by
Raimund Seidel: can the two-dimensional theorem be generalized to
polygons with edges parallel to a given fixed set of directions? Exploration
of this question may uncover a middle ground between the extreme freedom
of the unconstrained problem, and the total lack of [reedom of the
orthogonally constrained problem.
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In another direction, David Rappaport recently showed that if the
assumption that each vertex is a corner is removed from the two-
dimensional problem, thereby permitting two collinear edges to meet at a
vertex, the reconstruction problem becomes NP-complete [6].
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ON THE SHAPE OF A SET OF POINTS

John D. Radke#*

Inspired by recent developments in computational
morphology, this paper discusses their potential impact
on research undertaken in the field of spatial analysis
addressing the characterization and recognition of form
in point sets. A brief discussion of point pattern
recognition methods now common in spatial analysis is
included, pointing to their limitations and gquestioning
their success. The main focus of the paper, however, is
the examination of recent methods of geometric
decomposition that appear more useful for solving
questions concerning form. New techniques based in
computational morphology may very well revolutionize the
characterization of point sets for spatial analysts.
Some of these techniques are referenced and briefly
discussed here, including their potential applications to
point pattern recognition problems in spatial analysis.

1. Introduction

What at first appears to be a simple task, to address the shape
of a set of points, becomes a complex and thought provoking
endeavour when the points are locational identifiers of some real
spatial phenomenon. Physical, biological and social scientists
have always been faced with this challenge but progress seems to
have been made in the past few decades. This paper identifies
the use of some ideas and techniques of computational morphology

that appear useful to scientists in a variety of disciplines.

Computational geometry is quickly expanding and influencing
other fields of study. Computational morphology, according to
Toussaint occurs when "a computational geometric structure is
intended to extract the form of the input" [T3]. The input,
usually representing a spatial distribution of some phenomenon,
can be easily characterized by a set of elements, such as points,
lines or areas. The recognition of spatial patterns within these
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