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Abstract

Soss proved that it is NP-hard to find the maximum
flat span of a fixed-angle polygonal chain: the largest
distance achievable between the endpoints in a planar
embedding. These fixed-angle chains can serve as mod-
els of protein backbones. The corresponding problem
in 3D is open. We show that two special cases of par-
ticular relevance to the protein model are solvable in
polynomial time: when all link lengths are equal, and
all angles are equal, the maximum 3D span is achieved
in a flat configuration and can be computed in constant
time. When all angles are equal (but the link lengths ar-
bitrary), the maximum 3D span is in general nonplanar
but can be found in polynomial time.

1 Introduction

Polygonal chains with fixed joint angles, permit-
ting “dihedral” spinning about each edge, have
been used to model the geometry of protein back-
bones [ST00] [DLO06]. Soss studied the span of such
chains: the endpoint-to-endpoint distance. He proved
that finding the minimum and the maximum span of
planar configurations of the chain—the min and max
flat span—are NP-hard problems [Sos01]. Protein back-
bones are rarely planar, so the real interest lies in 3D.
Soss provided an example of a 4-chain whose max span
in 3D is not achieved by a planar configuration, estab-
lishing that 3D does not reduce to 2D. He designed an
approximation algorithm, but left open the computa-
tional complexity of finding 3D spans.

Soss concentrated on the maxspan problem, and we
do the same. We make progress on the 3D maxs-
pan problem by focusing on restricted classes of chains,
which are incidentally among the most relevant under
the protein model.

Let a polygonal chain C have vertices (v0, v1, . . . , vn).
The fixed joint angle is αi = ∠vi−1vivi+1. Define an
α-chain as one all of whose joint angles are the same
angle α. Protein backbones can be crudely modeled as
α-chains, with α obtuse, roughly in [109◦, 122◦]. De-
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fine a unit chain1 as one all of whose link lengths are
1. Again roughly, protein backbones have equal-length
links, because the bonds along the backbone lie in the
range [1.33Å,1.52Å].

We can summarize Soss’s investigation in the first two
lines of Table 1, and our results in the last three lines.
We show that the 3D max span of a unit α-chain is
achieved in a planar configuration, what we call the
trans-configuration: a flat configuration in which the
joint turns τ = π − α alternate between +τ and −τ .
(The terminology is from molecular biology, which dis-
tinguishes between the trans- and cis-configurations of
molecules.) We provide examples that show that, with-
out the equal-length assumption, or without the equal-
angle assumption, the maxspan configuration might be
nonplanar. For α-chains, the max flat span is achieved
by the trans-configuration, and can be found efficiently,
in contrast to the arbitrary-α situation. Finally, we es-
tablish a structural theorem that permits the 3D max
span of α-chains to be found via a dynamic program-
ming algorithm in O(n3) time.

Chain dim angles lengths complexity

fixed-angle 2 arbitrary arbitrary NP-hard
chains 3 arbitrary arbitrary ?

unit α-chains 3 = α 1 O(1)
α-chains 2 = α arbitrary O(n)

3 = α arbitrary O(n3)

Table 1: Maxspan Computational Complexities.

2 Basic Lemmas

We start with two lemmas which hold for arbitrary joint
angles and arbitrary link lengths. Proofs not included
in this abstract may be found in [Ben06].

Lemma 1 (3-Chain Lemma) The maximum span of
any fixed-angle 3-chain is achieved in a planar configu-
ration.

See Fig. 1.

A near-immediate corollary is:

1The terminology is from [Poo05].
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Figure 1: The maximum span of a fixed-angle 3-chain
is achieved in a flat configuration. The rim of the cone
is the locus of possible locations of v3. The cone ribs
specify all possible locations of edge v2v3, which rides
along a cone whose axis is v1v2. The blue rings are the
level sets for β = ∠v0v2v3. The maxspan is achieved
when β is maximized with v3 in the plane of {v0, v1, v2}.

Lemma 2 (4-Vertex Lemma) Let (v0, v1, . . . , vk) be
a fixed-angle k-chain. Then in any maximal configura-
tion of the chain, vertices {v0, v1, v2, vk}, and vertices
{v0, vk−2, vk−1, vk} are coplanar.
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Figure 2: The maximal configuration of a unit, α- 4-
chain. The maxspan is 2 |v0v2|.

3 Unit Chains

Now we specialize to unit α-chains. Our first lemma will
serve as the base case in an induction proof to follow.

Lemma 3 The maximum span of a unit α-chain of 4
links, is achieved in a planar configuration.

See Fig. 2. This lemma is false without either the unit-
length or the same-angle assumptions. Fig. 3 shows an
example establishing the latter claim.

We now turn to unit α-chains of an arbitrary number
of links. Our main result here is:

Theorem 4 The maximum span of any unit α-chain is
achieved in the planar trans-configuration.
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Figure 3: A unit, fixed-angle chain with non-equal joint
angles, whose maximal configuration is nonplanar. The
nonplanar span is ≈ 2.18, while the flat span is ≈ 2.17.

See Fig. 4. Clearly, this theorem permits computation
of the maxspan under these circumstances in constant
time, as in Table 1. The induction argument is different

maxspan(k-2) + |vk-2vk| = k sin α/2

(k/2)|v0v2|

cos α/2

Figure 4: The maximal configurations of a unit α-
chains.

for an even and odd number of links. For even n, we
remove two links, apply induction, and the result follows
easily. The argument for odd links is more delicate. The
key construction is displayed in Fig. 5. We prove that
maxspan is achieved in this figure when v0 = v∗.

4 Planar Trans-Configuration

Although Theorem 4 fails without the unit-length as-
sumption, if we restrict an α-chain to the plane, then
its max flat span is still the trans-configuration:

Theorem 5 If C is an α-chain (in general with differ-
ent link lengths), then the maximum flat span of C is
realized in the trans-configuration.
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Figure 5: Ck−2 is a circle of radius maxspan |k − 2| =
transspan |k − 2| centered at vk−2, Ck−1 is a circle of
radius maxspan |k − 1| = transspan |k − 1| centered at
vk−1, and Ck is a circle of radius transspan |k| centered
at vk. The circles Ck−2, Ck−1, and Ck intersect at the
common point v∗.

See Fig. 6 for an example. This theorem permits com-

vn

v0

Figure 6: Planar trans-configuration of an α-chain with
with acute α.

putation of the max flat span of an α-chain in O(n)
time, as in Table 1.

5 5-Chain Analysis

The structure Theorem 6 below relies on a close analysis
of 5-chains, to which sections of an n-chain may be re-
duced. We henceforth specialize all figures to α = 90◦,
the easiest angle to comprehend. Fig. 7 shows a 5-chain
in maxspan configuration. By Lemma 2, we know v5

must lie in the plane of {v0, v1, v2}. We analyze how
the reachability region of v5, as the end of a 3-link chain
from origin v2, intersects the xy-plane. This reachabil-
ity region is depicted in Fig. 8, and its intersection with
the plane is shown in Fig. 9.

6 Structure Theorem

We wrote code to find the maximum span configurations
of n-link chains empirically by gradient ascent. Typical
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Figure 7: The maximum span of a 90◦ 5-chain with link
lengths (2, 1

4
, 1, 1, 1

4
). The last three links correspond to

Figs. 8. and 9.
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Figure 8: A 2-chain torus (left) generated by link
lengths (1, 1), and a 3-chain torus (right) generated by
lengths (1, 1, 1

4
), both for α = 90◦. The right figure

corresponds to the quadrilaterals in Fig. 9.
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Figure 9: The region corresponding to configurations
which place v5 in the plane is a quadrilateral (blue re-
gion). The lengths of the (v2 − v5) 3-chain are (1, 1, 1

4
).
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Figure 10: Two views of an 11-chain: 3+5+3 subchains.

output is shown in Fig. 10. It was these empirical results
that suggested our main structural theorem:

Theorem 6 (Structure Theorem) The maxspan
configuration for an α-chain is either:

1. planar: in trans-configuration

2. nonplanar: there is a partition of the chain into
planar sections, each of which:

(a) is in maxspan trans-configuration; and

(b) whose spans align collinearly.
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Figure 11: A 7-chain composed of a maxspan 3-chain
aligned with a maxspan 4-chain.

7 Dynamic Programming Algorithm

In general, hardness of computing the maximum span
in 3D is not known. However, the structure theorem
permits it to be computed in O(n3) time via a dynamic

programming algorithm for α-chains, the last line of Ta-
ble 1. The computation for the example in Fig. 11 is
shown in Table 7.

Subchain Details

2 − chains (5, 10) (1, 9) (9, 9) (8, 4)
span 11.2 9.1 12.7 8.9

3 − chains (5, 10, 1) (1, 9, 9) (9, 8, 4)
span 11.6 13.5 15.3

4 − chains (5, 10, 1, 9) (9, 9, 8, 4)
span 19.9 21.4

5 − chains (5, 10, 1) + (9, 9) (1, 9, 9, 8, 4)
span 11.6 + 12.7 = 24.4 22.0

7 − chain (5, 10, 1) + (9, 9, 8, 4)
span 11.6 + 21.4 = 33.1

Table 2: Dynamic programming table for chain with
lengths (5, 10, 1, 9, 9, 8, 4). Spans are reported to one
decimal place.
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