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Abstract

We show that the hypercube has a face-unfolding that tiles space, and
that unfolding has an edge-unfolding that tiles the plane. So the hyper-
cube is a “dimension-descending tiler.” We also show that the hypercube
cross unfolding made famous by Dali tiles space, but we leave open the
question of whether or not it has an edge-unfolding that tiles the plane.

1 Introduction

The cube in R3 has 11 distinct (incongruent) edge-unfoldings1 to 6-square planar
polyominoes, each of which tiles the plane [Kon15]. A single tile (a prototile)
that tiles the plane with congruent copies of that tile (i.e., tiles via translations
and rotations, but not reflections) is called a monohedral tile. The cube itself
obviously tiles R3. So the cube has the pleasing property that it tiles R3 and
all of its edge-unfoldings tile R2. The latter property makes the cube a semi-
tile-maker in Akiyama’s notation [Aki07], a property shared by the regular
octahedron.

In this note we begin to address a higher-dimensional analog of these ques-
tions. The 4D hypercube (or tesseract) tiles R4. Do all of its face-unfoldings
monohedrally tile R3? The hypercube has 261 distinct face-unfoldings (cutting
along 2-dimensional square faces) to 8-cube polycubes, first enumerated by Tur-
ney [Tur84] and recently constructed and confirmed by McClure [McC15] [O’R15a].
The second author posed the question of determining which of the 261 unfold-
ings tile space monohedrally [O’R15c].

Whether or not it is even decidable to determine if a given tile can tile the
plane monohedrally is an open problem [O’R15b], and equally open for R3. The
only general tool is Conway’s sufficiency criteria [Sch80] for planar prototiles,
which seem too specialized to help much here. In the absence of an algorithm,
this seems a daunting task.

Here we focus on two narrower questions, essentially replacing Akiyama’s
“all” with “at least one”:
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1 An edge-unfolding cuts along edges.
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Question 1 Is there an unfolding of the hypercube that tiles R3, and which
itself has an edge-unfolding that tiles R2?

Call a polytope that monohedrally tiles Rd a dimension-descending tiler (DDT)
if it has a facet-unfolding that tiles Rd−1, and that Rd−1 polytope has a facet-
unfolding that tiles Rd−2, and so on down to an edge-unfolding that tiles R2.
(Every polygon has a vertex-unfolding of its perimeter that trivially tiles R1.)
Thus the cube is a DDT. We answer Question 1 positively by showing that the
hypercube is a DDT, by finding one face-unfolding to an 8-cube polyform in R3,
which itself has an edge-unfolding to a 34-square polyominoe that tiles R2.

It is natural to wonder about the other 260 face-unfoldings of the hypercube,
and in particular, the most “famous” one, what we call the Dali cross, made
famous in Salvadore Dali’s painting shown in Figure 1.

Figure 1: The 1954 Dali painting Corpus Hypercubus. (Image from Wikipedia).

Question 2 Does the Dali cross tile R3, and if so, does it have an edge-
unfolding that tiles R2?

Here we are only partially successful: We show that the Dali cross does indeed
tile space (Theorem 1), but we have not succeeded in finding an unfolding of
this cross that tiles the plane.
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2 Hypercube Unfoldings that Tile R3

So far as we are aware, there are now 4 hypercube unfoldings that are known to
tile space. The first two were found by Steven Stadnicki [Sta15] in response to
the question raised in [O’R15c]. We call the first of Stadnicki’s unfoldings the
L-unfolding. We describe this in detail for it is the unfolding we use to answer
Question 1.

2.1 The Hypercube L-unfolding tiles R3

The L-unfolding is shown in Figure 2. (The labels will not be used until Sec-
tion 3.) Stadnicki showed this leads to a particularly simple tiling of space,

Figure 2: The L-unfolding of the hypercube. Some face labels are shown.

because nestling one L inside another as shown in Figure 3 leads to a 2-cube
thick infinite slab, as illustrated in Figure 4. Then of course all of R3 can be
tiled by stacking the 2-cube thick slabs. We will return to edge-unfolding the L
in Section .

Stadnicki showed that a second unfolding (Figure 5) also tiles space [Sta15],
via a slightly more complicated but still simple structure. We will not describe
that tiling.
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Figure 3: Five nestled L’s.
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Figure 4: Ten nestled L’s. Note the evolving structure is two-cubes thick in
depth.
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Figure 5: Another hypercube unfolding that tiles R3 (Stadnicki).

2.2 The Dali Cross Unfolding tiles R3

Recall the Dali cross consists of four cubes in a tower, with the third tower-cube
surrounded by four more; see Figure 6. (Again the labels will not be used until
Section 3.)

Our proof that this shape tiles R3 is in six steps:

1. 2-cross unit.

2. Cross-strip.

3. Cross-layer.

4. Two cross-layers.

5. Three cross-layers.

6. Four cross-layers.

2.3 2-Cross Unit

We first build a 2-cross unit with prone, opposing crosses, as illustrated in
Figure 7. We will call planes of possible cube locations z-layers 1, 2, 3, . . ., corre-
sponding to z-height. The 2-cross unit has two cubes in z-layers 1 and 3, in the
same xy-locations, and the remaining cubes in z-layer 2. It will be convenient
to use bump to indicate a cube protruding above a particular layer of interest,
and use hole to indicate a cube cell as-yet unoccupied by a cube.
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Figure 6: The Dali cross. Some face labels are shown.

2.4 Cross-strip

Now we form a vertical strip of 2-cross units as shown in Figure 8. Here we
introduce a convention of displaying the construction by using colors and z-layer
numbers. So the cubes in a cross-strip occupy z-layers 1, 2, 3, but only z-layers
2 and 3 are visible from above in an overhead view.

2.5 Cross-layer

Now we place cross-strips adjacent to one another horizontally, as shown in
Figure 9. The remaining steps stack cross-layers one on top of the other. So
the pattern of holes and bumps in each cross-layer will be important.

2.6 Two Cross-Layers

Henceforth we color all cubes in one cross-layer the same primary color, with
the bumps slightly darker, as in Figure 10(a). Remember the bumps in one
cross-layer align vertically. Now we place a second cross-layer on top of the
first, with the bumps in the second cross-layer fitting into the holes of the
first. Figure 10(b) shows the top view, which will be our focus. Note that now
we see cubes at z-layers 2, 3, 4. That there are no holes all the way through;
rather, z-layer-2 cells are dents and z-layer-4 cells bumps. We ask the reader
to concentrate on the pattern depicted in Figure 11: in two adjacent columns,
we see (4, 3, 3, 3, 4) and (2, 3, 3, 3, 2), with the latter pattern shifted diagonally
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Figure 7: A 2-cross unit.
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Figure 8: Cross-strip.
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Figure 9: Cross-layer.
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Figure 10: Two cross-layers. (a) One cross-layer. (b) Two cross-layers.

upward one unit. It should be clear that the entire overhead z-layer-view is
composed of copies of this fundmental layer-pattern.

2.7 Three Cross-Layers

When we stack a third cross-layer on the construction, again inserting bumps
into dents, we do not quite regain the fundamental layer-pattern. Instead we see
that pattern shifted diagonally downward rather than upward; see Figure 12.
Although we could argue that now we see a reflection (over a horizontal) of the
full pattern of visible z-layer numbers, it seems easier and more convincing to
us to add one more cross-layer.

2.8 Four Cross-Layers

With the addition of the fourth cross-layer (Figure 13), we regain the exact
same pattern of z-layer numbers. Note the fundamental layer-pattern is now
(6, 5, 5, 5, 6) and (4, 5, 5, 5, 4), exactly +2 of the pattern in two cross-layers, as
emphasized in Figure 14.

It is now clear that because we have regained at four cross-layers the exact
same “z-layer landscape” as we had at two cross-layers, the stacking can be
continued indefinitely.

Theorem 1 The Dali cross unfolding of the hypercube tiles R3 monohedrally.
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Figure 11: Fundamental layer-pattern after stacking two cross-layers.
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Figure 12: Three cross-layers and a reflected pattern.
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Figure 13: Four cross-layers.
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Figure 14: Two cross-layers (a) compared to four cross-layers (b), with the same
fundamental pattern indicated.

We have found another hypercube unfolding, shown in Figure 15, that tiles
R3 in a similar manner, not described here.
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Figure 15: Another hypercube unfolding that tiles R3.

3 Edge-unfoldings to tile R2

Now we turn to unfolding the L to tile the plane. We label the cubes from 1
to 8, and the faces as {F,L,K,R,B, T} for {Front, Left, bacK, Right, Bottom,
Top} respectively. Refer again to Figure 2. There are 34 exposed faces of the 8
cubes. Through a mixture of heuristic computer searches and hand tinkering,
we found the unfolding shown in Figure 16.

That this tiles the plane (by translation only) is demonstrated in Figure 17.
This then establishes our answer to Question 1:

Theorem 2 The L-unfolding of the hypercube has an edge-unfolding that tiles
the plane, establishing that the hypercube is a dimension-descending tiler.

3.1 Edge-unfoldings of the Dali cross

There are a huge number of edge-unfoldings of each hypercube unfolding. Each
edge-unfolding corresponds to a spanning tree of the dual graph, where each
square face is a node, and arcs represent uncut edges. There are at most
approximately 5n spanning trees [Rot05] of planar graphs with n nodes, and
asymptotically that many for some graphs. It seems conservative to estimate
that the dual graph of the Dali cross has at least 2n = 234 ≈ 1010 spanning trees,
and more likely 334 ≈ 1016. (The square grid has 3.2n spanning trees, and each
hypercube unfolding dual graph is also regular of degree 4.) Each of these trees
leads to an unfolding, but many self-overlap in their planar layout, and even
among those that avoid overlap, many delimit a region with holes, and so could
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Figure 16: Unfolding of the L (Figure 2), with face labels and dual-tree (uncut)
connections.
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Figure 17: Tiling of the plane with the unfolding shown in Figure 16.
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not form tilers. With brute-force search infeasible, and no algorithm available,
we are left only with heuristics, with which we have not been successful.

Figure 18 shows the closest to a tiling unfolding of the Dali cross that we
found.

Figure 18: An edge-unfolding of the Dali cross that nearly tiles the plane. (See
Figure 6 for labels.)

4 Open Problems

1. Is the 5-dimensional cube in R5 a dimension-descending tiler?

2. What are good heuristics to test if the remaining 2572 hypercube unfold-
ings tile R3?

3. Can any of the hypercube unfoldings be proved not to tile R3?

2 261− 4, because 4 are known to tile: Figures 2, 5, 6, 15.
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4. Does the Dali cross have an unfolding that tiles R2?

Addendum. We learned after posting this note that polyhedra that have an
edge-unfolding that tiles the plane are called tessellation polyhedra in [AKL+11].
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