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Abstract

This note establishes that every polyhedron that has a Hamiltonian
quasigeodesic can be edge-unfolded to a net.

1 Introduction

This note establishes one result (Theorem 1) that is more an observation than
a theorem, as it largely depends on definitions and a straightforward argument.
Nevertheless, it may be of some interest, making connections between several
different aspects of convex polyhedra.

We start with the definitions needed to describe the result. We restrict
attention to convex polyhedra. An edge-unfolding of a convex polyhedron P is
a collection of edge cuts forming a spanning tree of the vertices, which unfolds
the surface of P to one piece in the plane. If the planar unfolding is a simple
polygon, with no self-overlap, it is known as a net. It is a long unsolved problem
to decide whether or not every convex polyhedron has a net. This has become
known as “Dürer’s problem” [DO07] [O’R13]. The conclusion of Theorem 1 is
that, under certain conditions, P has a net.

A quasigeodesic has at most π angle to each side at every point, in contrast to
geodesics which have exactly π to each side. Quasigeodesics can pass through
vertices, and are geodesic segments between vertices. Pogorelov proved that
every convex polyhedron has at least three simple closed quasigeodesics [Pog49].
Here we focus on quasigeodesics that follow edges of the 1-skeleton of P . A
Hamiltonian quasigeodesic is a simple closed quasigeodesic following edges of P ,
and passing through every vertex of P . Thus a Hamiltonian quasigeodesic is
a Hamiltonian circuit, but with angle restrictions at each vertex. This notion
was introduced and played a role in [HLM+22]. Earlier, Hamiltonian unfoldings
without the quasigeodesic condition (also called zipper edge-unfoldings) were
studied in [DDL+10].

Of course not every convex polyhedron has a Hamiltonian quasigeodesic be-
cause some polyhedra have no Hamiltonian circuit, for example, the rhombic
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dodecahedron. In [HLM+22] it was shown that three of the Platonic solids—
tetrahedron, octahedron, cube—have a Hamiltonian quasigeodesic, but the do-
decahedron and the icosahedron do not. Note that the boundary of a doubly-
covered convex polygon, which is treated as a polyhedron in this literature, is a
Hamiltonian quasigeodesic.

We can now state the theorem.

Theorem 1 If a convex polyhedron P has a Hamiltonian quasigeodesic Q, then
there is an edge-unfolding of P to a net.

Proof: The proof follows from two straightforward claims.

(1) The portion of P enclosed to the right or left of Q is isometric to a convex
polygon.

(2) Joining two convex polygons A and B along a shared edge e avoids overlap
between A and B.

We now add more detail to these claims. Consider Q directed, partitioning P
into two “halves” A and B, with P = A ∪B.

(1) Because Q is a quasigeosdic, the angle to the left of every vertex of Q is
≤ π. Because Q passes through every vertex of P , there are no vertices of
P to the left, enclosed by Q, and because all curvature is concentrated at
vertices, no curvature. Therefore the region A of the surface of P to the
left of Q is isometric to a planar convex polygon (convex because of the
≤ π condition); and similarly for B. Let Ā and B̄ be planar embeddings
of A and B.

(2) Although Ā and B̄ are not necessarily congruent, their boundaries are each
composed of the same edges of Q. Select any edge e ∈ Q. Then joining
Ā to B̄ to either side of and sharing e produces a non-overlapping simple
polygon—a net—because they sit on opposite sides of the line containing
e, and so cannot overlap one another. One can view this as unfolding after
cutting all edges of Q but e, a spanning cut-path.

2 Examples

We present three examples. In each we label faces as F, R, K, L, T, B, for Front,
Right, bacK, Left, Top, Bottom. The first is a pyramid, the top half of a regular
octahedron: see Fig. 1. Note the angles along Q are π×{ 13 ,

1
2 ,

2
3 ,

5
6 , 1}—all ≤ π.

Two different ways of joining A to B are shown.
Our second example is the full regular octahedron: see Fig. 2. Here and in

the next example, Ā and B̄ are congruent. Again two unfoldings are shown.
Finally, Fig. 3 illustrates the cube with Q forming a “napkin holder,” leading

to two of the 11 nets of a cube.
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Figure 1: Q = 12534. Arrows indicate counterclockwise (red) ordering around
A, and clockwise (blue) ordering around B.
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Figure 2: Q = 123645.
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Figure 3: Q = 15623784.
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3 Open Problems

Although simple closed quasigeodecs are always present, it appears that Hamil-
tonian quasigeodesics are relatively rare. It would be useful (and likely difficult)
to characterize those convex polyhedra that have a Hamiltonian quasigeodesic,
for we then know that each has a net.

I have not explored non-convex polyhedra P , but Theorem 1 still holds as
long as P has a Hamiltonian quasigeodesic.

Acknowledgements. I thank my coauthors on [HLM+22] for stimulating
discussions.
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