188

Motion Planning Amidst
Movable Square Blocks

Arundhati Dhagat
Joseph O’Rourke”

Abstract

We explore a particular motion planning prob-
lem with movable obstacles: all obstacles are
unit square blocks on the integer lattice that
can be moved horizontally or vertically by a
pushing robot. We consider four cases, de-
pending on (1) whether the obstacles are all
movable (but confined to a rectangle), or some
are affixed to the plane, and (2) whether or
not the robot path must be monotonic. Not
surprisingly, the monotonic path problems are
polynomial. For general paths, the case where
some blocks are immovable we prove to be NP-
complete. This is our main result, which can be
viewed as a sharpening of a similar result due
to Wilfong. For the case where all blocks are
movable, we were only able to find a weak nec-
essary condition for the existence of a solution.
We leave the complexity of this interesting mo-
tion planning problem open.

1 Introduction

1.1 Planning Environment

Inspired by a computer game for the Macin-
tosh called “Beast 1.0,”! we studied the follow-
ing motion planning problem. All obstacles are
unit squares with corners on the integer lattice.
Obstacles come in two varieties: movable and
immovable. The former can be pushed (not
pulled) by a robot, while the latter are fixed to
the plane. The robot may move horizontally
or vertically in discrete unit steps, pushing any
number of movable obstacles in front of it. The

* Authors’ address: Department of Computer Sci-
ence, Smith College, Northampton, MA 01063, USA.
Supported by NSF grants CCR-882194 and CCR-
9122169,

1Copyright BIAP, 1989, Chuck Shotton.

robot has no orientation; it can be thought of
as a circle occupying an otherwise empty unit
lattice square.

We imagine all motion to take place in the
positive quadrant of a Cartesian coordinate
system. It is convenient to view all obstacle
blocks, and the robot, to be centered on inte-
ger coordinates. The robot starts in the square
s = (0,0), and its goal is to reach the square
t = (a,b). The robot and all obstacles are con-
fined to the rectangle R = (s,t). Pushed blocks
are obstructed by the sides of this rectangle.
Note that there is a solution only if ¢ is empty,
that is, does not contain an obstacle block.

1.2 Problem Matrix

Our main interest was in solving the motion
planning just described, where all obstacles
are movable and there is no restriction on the
robot’s path. But at this writing we have not
resolved the complexity of this problem. We
therefore looked at several variations, summa-
rized in the following table.

Obstacle || Path

Mobility || Monotonic | Unrestricted
Some fixed]| Polynomial | NP-complete
All movable || Polynomial Open

In this table, a monotonic path for the robot
is one that never takes a step leftwards or down-
wards, i.e., is monotonic with respect to both
the positive z- and the y-directions. For mono-
tonic paths, a dynamic programming algorithm
can solve the problems in polynomial time.

When some blocks can be fixed to the plane,
we prove the problem to be NP-complete. This
theorem is very much related to (but appar-
ently does not follow from) a result of Wil-

fong [Wil91].

e

For the case where all obstacles are movable,
we establish one necessary condition for the ex-
istence of a solution. We first describe this the-
orem.

2 Necessary Condition

Let D(k) be the set of lattice points that are
a distance at most k from the destination t,
where distance is measured by the Manhattan
or L, metric. Thus the points in D(k) fall
within the disk of radius k centered on t.

Theorem 2.1 For the problem version where
all blocks are movable, if at any time the robot
stands on a square at distance k from t, then
there is a path to t only if there are at least k
emply squares in D(k).2

Thus if R is too cluttered with blocks hud-
dled around the destination, there can be no
solution. This necessary condition is unfortu-
nately weak, in that many arrangements that
satisfy it do not admit any solution.

3 Monotonic Paths

We define a Boolean array Path[x,y] to be
true iff, if and when the robot enters (z,y)
from (z — 1,y), it can reach the destination
from there via a monotonic path. The value
of Path[x,y] can be defined from the values
of Path[x+i,y+j] for 0 < i < a — z and
0 < j < b~—y. Because the path is monotonic,
the value at (z,y) depends only on the arrange-
ment within the rectangle ((z,y), (a,b)).

Consequently, Path can be computed via dy-
namic programming. Our naive algorithm re-
quires O(n®) time, where n is the larger of a
and b. We do not doubt that a better time
complexity is possible, but the main point is
that the problem is polynomial. Whether all
blocks are movable, or some are fixed, is not an
issue for this algorithm.

4 NP-Completeness
4.1 Wilfong’s Theorem

Wilfong proved a certain motion planning
problem with movable obstacles is NP-
complete [Wil91]. His model is much broader

2The square on which the robot stands is not
counted among the empty squares.

than the special case we are considering. For
example, he permits his robot to pull objects
under certain circumstances. Pulling greatly
increases the agility of the robot: if all obsta-
cles are movable in our problem, there is a so-
lution for any configuration of blocks as long
as the robot has a small constant number of
empty squares around it initially.3 In addition,
Wilfong’s obstacles are not restricted to be unit
squares, nor are they restricted to the integer
lattice.

Despite these significant differences, his
proof of NP-completeness only uses a small
amount of the latitude he allows himself. In
particular, he arranges that his robot can never
pull an object, and that all obstacles and mo-
tions are orthogonal. So his result is closer to
our case than it might initially appear.

There remain, we believe, two differences:
Wilfong’s proof uses four sizes of rectangu-
lar blocks, and uses L-shaped blocks. This of
course falls outside of our domain, which only
permits unit square blocks. Only having square
blocks makes it more difficult to control the
construction. One can view our contribution
as a sharpening of Wilfong’s result, proving in-
tractability in an even more constrained envi-
ronment.

4.2 Overall Design of Reduction

Our proof (like Wilfong’s) is a reduction from
3SAT: we construct an arrangement of ob-
stacles that can be traversed from s to ¢ iff
there is a satisfying truth assignment for a
given instance of 3SAT. The overall design is
as follows.4

The robot first enters a “variable compo-
nent” that corresponds to setting the boolean
value of the first variable, u;. Here the robot
will have the option of choosing one of two par-
allel paths. Once the choice is made, return is
blocked by insertion of an “irreversible compo-
nent,” as shown in Fig. 1.5 The parallel paths
for u, visit each of the “clause junctions” cor-
responding to all the clauses in which the vari-
able u;-participates. The paths may need to
be twisted over one another so that the nega-
tive literal can be closest to the clause. At the

3Seven squares seems to suffice, but we did not prove
this formally.

4Our design is different from Wilfong’s. We suspect
that the choice of design is not significant.

5This is essentially the same mechanism as used by
Wilfong (his Fig. 4).

189

d 1]
| e
11
Figureb
"lf IEJ :

B 10

| 1 L1

Fgwes Fgoed

Figure 1: Irreversible component: after traver-
sal A — B, neither B — A nor A — B are
possible.

Clause C=(X+Y+2)

)

Figure 2: Clause junction.

clause, blocks are or are not deposited into a
path that needs to be traversed later.

After visiting each relevant clause junction,
the path returns and enters the uy variable
component, and so on through the other vari-
able components. After all variable compo-
nents have been traversed, the robot then must
pass through all the clause junctions to reach
the destination, and it can do so only if at least
one literal in the clause is true (as we will show
below). The overall design is depicted in Fig. 3.

4.3 Clause Junction

The clause junction is designed so that each
false literal will deposit one block into a corri-
dor; see Fig. 2. Later traversal will be possible
if 0, 1, or 2 blocks have been deposited, but not
if 3 have been. Thus if the clause evaluates to
false, the corridor is impassable and therefore
the destination is unreachable. Conversely, if
all clauses evaluate to true, the destination can
be reached.

4.4 Crossovers

These are the most complex parts of the
construction.® We found it necessary to ar-
range the crossovers between different variable
paths” so that both the X and X paths (for
some variable u; = X) cross a path Y (for some
literal Y = u; or @) for i < j in a three-way
intersection. See Fig. 4. Call the three paths
entering the intersection X;, X;, and Y;. They
emerge in reverse order; call these paths Yo,
X,, and X,.

Suppose the robot first travels down X; (A
in the figure); then we want to ensure that it
can only exit along X, (B in the figure). The
delicate point is when the robot is at the triple
intersection (G in the figure): we must prevent
“leakage” into any. path except X,. Leakage
along X, (to D in the figure) is not possible
because traversal of X; deposits a block in X,
that clogs it. Leakage along Y, (to F in the
figure) is not possible because one of the paths
X, or X, must be traversed first to “unlock”
Y,. And similarly all other potential leakages
are impossible.

5 Open Problem

Whether the problem with all obstacles mov-

able is polynomial or NP-complete is open.

References

[Wil91] G. Wilfong. Motion planning in the
presence of movable obstacles. Annals

of Mathematics and Artificial Intelli-
gence, 3:131-150, 1991.

6And incidentally it is here that Wilfong used L-
shaped blocks. His crossovers are much simpler.

7Crossovers between u; and #; are much easier and
not discussed here.

P R T A ———

e i

P VI S

e o

e

ot st

=

191

ul

Star . ey /%_‘

B
&

Ul —-

E,I
l_
!

ul L] u2 u3

. NYE

Destination

a Lor) c1
(ul +u2 +u3) (ul +u2 +u3) (02 +u3 +ud)

Figure 3: Overall design for (u1_+t'42 + ug)(uy + up + #3)(uz + 63 + ug).

—_—
—51
—_—

F — D B

SERNRETNRNEREEDE

&
&
i3
B EER
&
Eid
k3
X _o i
1' & - Y
"‘“3{ G B
A S
B E
s fo %
i
] 3
ot f E3 10 0 N 0 Y R R e B 3
X =
C

Figure 4: Crossover.

	one
	two
	three
	four

