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Abstract

We explore an Art Gallery variant where each point of
a polygon must be seen by k guards, and guards cannot
see through other guards. Surprisingly, even covering
convex polygons under this variant is not straightfor-
ward. For example, covering every point in a triangle
k=4 times (a 4-cover) requires 5 guards, and achieving
a 10-cover requires 12 guards. Our main result is tight
bounds on k-covering a convex polygon of n vertices, for
all k and n. The proofs of both upper and lower bounds
are nontrivial. We also obtain bounds for simple poly-
gons, leaving tight bounds an open problem.

1 Introduction

The original Art Gallery Theorem showed that bn/3c
guards are sometimes necessary and always sufficient
to guard a simple polygon P of n vertices [O’R87].
(Throughout, P includes its boundary ∂P .) There have
been many interesting variants explored since then. In
this paper we explore two variants that are interesting
in combination, although not individually.

(1) Guards blocking guards: Suppose guards cannot see
through other guards.1 More precisely, if g1 and g2
are guards, and g1, g2, p are on a line in that order,
then point p is not visible from g1. Still the original
bound bn/3c holds, because g2 can continue g1’s
line-of-sight to p, picking it up where that line-of-
sight terminates at g2.

(2) Multiple coverage: Suppose every point in the
closed polygon must be seen by k guards i.e., the
guards must k-cover the polygon. The problem of
k-guarding has been explored under various restric-
tions on guard location [BBC+94, Sal09, BEK13].
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1This was posed as an exercise in [DO11], Exercise 1.28, p. 14.

If multiple guards can be co-located at the same
point, then this is trivial. If co-location is disal-
lowed, but guards can see through other guards,
then this still reduces to the case k = 1 since we
can replace a single guard by a cluster of k guards.
(We detail the argument in Section 4.)

So neither of these variations is “interesting” by itself
in the sense that easy arguments lead to bn/3c bounds.
However, consider now mixing these two variants:

Q: How many guards are necessary and suffi-
cient to cover a simple polygon P of n vertices
so that every point of P is seen by at least
k guards, where guards cannot be co-located,
and each guard blocks lines-of-sight through
it?

To our surprise, answering Q is not straightforward,
even for convex polygons, even for triangles. For exam-
ple, to cover a triangle to depth k = 3, one guard at
each vertex suffices. Note here we consider a guard to
see itself. But to cover to depth k = 4 requires g = 5
guards; see Fig. 9. And covering to depth k = 10 re-
quires g = 12 guards.

The main result of this paper is the following theorem.
We use n for the number of vertices, k for the depth of
cover, and g for the number of guards.

Theorem 1 For a closed convex n-gon, coverage to
depth k requires g ∈ {k, k + 1, k + 2} guards:

(1) For k ≤ n: g = k guards are necessary and suffi-
cient.

(2) For n < k < 4n−2: g = k+1 guards are necessary
and sufficient.

(3) For 4n − 2 ≤ k: g = k + 2 guards are necessary
and sufficient.

Thus there are three regimes depending on the relation-
ship between n and k. For triangles, n = 3, the following
table details those regimes:

k 1 2 3 4 5 6 7 8 9 10 11 · · ·
g 1 2 3 5 6 7 8 9 10 12 13 · · ·
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Another example: For n = 4, g = 14 guards 13-cover,
but a 14-cover requires g = 16 guards. See ahead to
Fig. 10.

Our primary focus is proving Theorem 1. We also
obtain in Lemma 8 tight bounds for a convex wedge,
which can be viewed as a 2-sided unbounded convex
polygon. Finally, we briefly address simple polygons in
Theorem 7, which we do not consider as natural a fit as
the question for convex polygons.

1.1 Dark Rays and Dark Points

With some abuse of notation, we will identify both a
guard and that guard’s location as gi. Let g1 and g2
be two guards visible to one another. We say that g2
generates a dark ray at g1, which is a ray contained
in the line through g1 and g2, incident to and rooted
at g1 and invisible to g2. And similarly, g1 generates a
dark ray at g2.

A point is called dark if it is contained in a dark ray,
and d-dark if it is contained in at least d dark rays.

Because a d-dark point is hidden from d guards, we
obtain an immediate relationship between dark rays and
multiple guarding for convex polygons.

Observation 1

(1) k-guarding with g = k guards is possible if and only
if there is no dark point inside P , i.e., all dark rays
are strictly exterior to P .

(2) k-guarding with g = k + 1 guards is possible if and
only if there is no 2-dark point inside P .

(3) k-guarding with g = k+ 2 guards is always possible
because we can perturb the guards to avoid 3-dark
points, as justified in Appendix A.4.

1.2 Outline of Proof of Theorem 1

Most steps of the proof follow directly from Observa-
tion 1, with the exception of the following non-trivial
result.

Theorem 2 The maximum number of guards that can
be placed in a convex n-gon P without creating 2-dark
points in P is 4n− 2.

We prove the upper bound (at most 4n − 2 guards)
in Section 2 and the lower bound (4n − 2 is possible)
by a direct construction in Section 3. Both directions
are non-trivial, and their proofs constitute the main fo-
cus of the paper. Assuming these results, the proof of
Theorem 1 proceeds as follows:

To k-cover when k ≤ n (regime (1)) it is clear that k
guards are necessary. For sufficiency, place k guards at
vertices of polygon P . Then all dark rays are exterior
to P , so by Observation 1(1), this is a k-cover.

To k-cover when n < k < 4n − 2 (regime (2)) the
necessity of k + 1 guards follows from Lemma 9 (Ap-
pendix A.2) where we show that any placement of n+ 1
guards in a convex P results in a dark point inside P .
Sufficiency is proved by Observation 1(2) (that we only
need to avoid 2-dark points) and the lower bound of
Theorem 2 (that we can place k+ 1 points without cre-
ating 2-dark points), since k + 1 ≤ 4n− 2.

To k-cover when 4n − 2 ≤ k (regime (3)) the suffi-
ciency of k + 2 guards follows from Observation 1(3).
Necessity is proved by the upper bound of Theorem 2.

2 4n− 2 Upper Bound

In this section we prove that at most 4n− 2 guards can
be placed in a convex n-gon P without creating 2-dark
points in P .

2.1 Triangle Lemma

The following lemma is a key tool in the proof of the
upper bound. It establishes that, excluding the excep-
tional case, any triangle of guards in P may only contain
one additional guard if we are to avoid 2-dark points in
T .

Lemma 3 (Triangle) Suppose some guards are placed
in P without creating 2-dark points. Let T be a closed
triangle in P with guards g1, g2, g3 at its corners. Then,
with one exception, T contains at most one more guard.

The exceptional case allows two guards, g4, g5, in T
when (up to relabelling) g1g3 is an edge of P , g4 lies on
that edge, and g2, g5, g4 are collinear.

Proof. Refer to Fig. 1(a,b) throughout. We first dis-
cuss the non-exceptional case. First suppose that there
is an extra guard g4 strictly interior to T . Then g1, g2, g3
generate 3 dark rays at g4, each of which crosses a dif-
ferent edge of T . The same would be true for a second
strictly interior guard g5. So a dark ray at g5 must cross
a dark ray at g4 to reach an edge of T . The result is a
2-dark point, marked x in (a) of the figure. Since we as-
sumed no 2-dark points in P , there cannot be two extra
guards interior to T .

Suppose now that g4 lies on edge e = g1g3 of T . Then
left and right of g4 on e are dark rays generated by g1
and g3. Placing g5 at any point not collinear with g4 and
g2 leads to a dark ray at g5, generated by g2, crossing e
to form a 2-dark point there.

We are left with the exceptional case, illustrated in
(b) of the figure: g4 lies on an edge of T , and g5 is
collinear with g4 and the opposite corner of the triangle,
g2 in the case illustrated. There are no 2-dark points
inside T . The dark ray at g5 generated by g2 contains
the dark ray at g4 generated by g5 so, to avoid 2-dark
points inside P , g4 must be on the boundary of P . By
the same argument, g1 and g3 must be vertices of P . �
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Figure 1: In this and following figures, guards are indi-
cated by hollow circles. (a) Generic placements of g4, g5
produce a 2-dark point x. (b) The exceptional case,
with dark rays exterior to P .

We now sketch the main idea of the 4n − 2 upper
bound. Consider a placement of guards in P such that
there are no 2-dark points in P . Our goal is to prove
that there are at most 4n − 2 guards. Let C be the
convex hull of the guards. We will show in Lemma 4
that the number of guards on ∂C, not counting collinear
guards interior to P , is at most 2n. Triangulating C
leads to at most 2n− 2 triangles. Lemma 3 then shows
that there is at most one extra guard inside each trian-
gle, which leads to the 4n − 2 upper bound. To make
this rigorous, we must take into account collinear guards
and the exceptional case of Lemma 3.

We first shrink P so that it maximally touches C, as
follows. Move each edge of P parallel to itself toward
the interior until it hits a guard. If an edge e only
has a guard at one endpoint, then rotate e about that
endpoint toward the interior until it hits another guard.
The reduced polygon contains all the guards, has no
2-dark point, and has at most n vertices, so it suffices
to prove the bound on the number of guards for the
reduced polygon. Henceforth we assume every edge of
P has either one or more guards in its interior, or a
guard at its endpoint (or at both endpoints).

The proof requires careful handling of collinear
guards: a guard is called collinear if it lies on a line
between two other guards.

Define G∗ as the set of guards on ∂C, but exclud-
ing those guards that are collinear and not on ∂P . So
collinear guards on ∂P are in G∗, but collinear guards
on ∂C and internal to P are excluded from G∗. See
Fig. 2. Equivalently, G∗ consists of the guards on ∂P
together with any guard that is a corner of C in the
interior of P . Define g∗ = |G∗|. This is the key count
that is needed to complete the upper-bound proof.

Lemma 4 The number of guards g∗ as defined above is
at most 2n.

Proof. Let gP be the number of guards on ∂P and let
c be the number of guards that are corners of C in the

g*=6

P

C

v2v1

g4g5

(a) (b)

v6 v3

v5 v4

Figure 2: (a) The two pink guards are not included in
g∗ = |G∗|. (b) v1, v2 are darkened but have no guard;
g4, g5 are both guards and darkened vertices. So d = 4
and gP = n+ 1

2d = 8.

interior of P . As noted above, g∗ = gP + c. We will
bound gP and c separately. Both bounds are in terms
of the number of darkened vertices, where a vertex v
of P is darkened if guards on ∂P generate a dark ray
through v.

We first bound gP . The constraint that limits gP is
that a vertex v cannot be darkened from both incident
edges, as that would render v a 2-dark point.

The idea is to count guards and darkened vertices
per edge. A guard internal to an edge counts towards
the edge, and a vertex guard counts half towards each
incident edge. More precisely, for an edge e, let g(e) be
the number of guards internal to e plus half the number
of vertex guards on e. Then gP =

∑
e g(e).

Fig. 3 shows the possibilities: g(e) = 2, either from
two internal guards, or one internal guard and two end-
point guards; g(e) = 1 1

2 from one endpoint guard and
one internal guard; or g(e) = 1 from one internal guard
or two endpoint guards.

These are the only possibilities: (a) An edge cannot
have four or more guards, as then the extreme points
would be at least 2-dark. (b) And an edge can only
have three guards when two are at the endpoints of the
edge: an endpoint without a guard would be rendered
2-dark by the three guards on the edge. (c) An edge
cannot have just a guard at one endpoint, because the
shrinking procedure would rotate that edge about the
endpoint until it hit another guard.

Next we observe from Fig. 3 a relationship between
g(e) and d(e), the number of dark rays on edge e gen-
erated by guards on e: if g(e) = 2 then d(e) = 2; if
g(e) = 1 1

2 then d(e) = 1; and if g(e) = 1 then d(e) = 0.
Equivalently, d(e) = 2(g(e)− 1).

Finally, we note that d, the number of darkened ver-
tices, is

∑
e d(e), since each dark ray on e darkens an

endpoint of e, and no vertex can be darkened from both
incident edges.
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Putting these together,

d =
∑
e

d(e) =
∑
e

2(g(e)−1) = 2
∑
e

g(e)−2n = 2gP−2n

which gives gP = n+ 1
2d. For example, for even n, plac-

ing a guard at every vertex and a guard in the interior
of every other edge darkens every vertex, so gP = 3

2n.

g(e) = 1 g(e) = 1 

g(e) = 2 g(e) = 2 g(e) = 1½ 

Figure 3: Edge counts. Arrows indicate darkened ver-
tices.

We next bound c, the number of guards strictly inter-
nal to P that are corners of C. Let g0 be such a corner
guard. Moving left and right on C, let g1 and g2 be
the first guards that are on ∂P , say on edges e1 and e2.
Note that there cannot be another vertex of C internal
to P between g1 and g2, as then two dark rays would
cross inside P : see Fig. 4(a). Also note that g0 is not
collinear with g1 and g2, because we are counting g∗,
which excludes collinear guards on C. Since every edge
has a guard, edges e1 and e2 must be incident at a vertex
v of P , and v has no guard (because otherwise g0 would
be internal to C). The dark rays incident to g0 from
g1 and g2 cross e1 and e2 as shown in Fig. 4(b). So v
cannot be darkened by the guards on e1 or e2 otherwise
again two dark rays would cross.

Thus each guard g0 counted in c corresponds to a
non-darkened vertex, so c ≤ n− d.

In total,

g∗ = gP + c ≤ n+
1

2
d+ (n− d) = 2n− 1

2
d ≤ 2n .

Equality is achieved when there is one guard inter-
nal to each edge, and one guard inside P between each
consecutive pair, and no collinear guards nor darkened
vertices of P . See Fig. 4(c). �

Theorem 5 The number of guards g that can be placed
in a convex n-gon so that no two dark rays intersect
inside is at most g = 4n− 2.

Proof. Consider a placement of guards inside P that
avoids 2-dark points. We use G∗ and g∗ as defined
above. By Lemma 4, g∗ ≤ 2n. Triangulate the guards
in G∗. By definition of G∗, this includes collinear guards
on ∂P but excludes collinear guards internal to P .

v v

g0 g'0 g2g1 g2g1

e2e1 e2e1(a) (b)

(c)

PC

Figure 4: (a) g0 and g′0 create intersecting dark rays in
P . (b) v cannot be a darkened vertex. (c) The upper
bound g∗ = 2n can be achieved.

There are at most 2n − 2 triangles in this triangula-
tion. By Lemma 3, there is at most one extra guard in
each triangle, for a total of at most 2n+(2n−2) = 4n−2
guards, so long as we rule out the exceptional case of
Lemma 3 where a triangle of guards can contain two
extra guards. But that exception only happens when
one of the extra guards is on ∂P , and all the guards on
∂P were already included in G∗. �

3 Lower Bound

The challenge is to locate g = 4n − 2 guards so that
there are no 2-dark points in P , thus proving the lower
bound of Theorem 2.

We first illustrate a placement in a triangle of g = 10
guards without 2-dark points, i.e., so that no two dark
rays intersect inside the triangle. We then introduce
the general strategy for the triangle, and hint at the
strategy for convex n-gons, but proofs are deferred to
Appendix A.3.

3.1 g = 4n− 2 guards achievable for triangle

Fig. 5 illustrates a placement of 10 guards in a triangle
P such that all dark-ray intersections are strictly exte-
rior to P . Although it is difficult to verify visually, even
enlarged, a calculation described in the Appendix veri-
fies that all dark-ray intersections lie strictly exterior to
the triangle. This demonstrates g = 4n−2 is achievable
for triangles.
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Figure 5: g = 10 guards 9-covering a triangle. Apex
enlargement below. Indexing follows Fig. 6.

Several features of this construction will repeat for
general n-gons:

(1) n guards are on edges of P .

(2) 2n guards are on the hull ∂C (the maximum by
Lemma 4).

(3) Three guards are placed near each vertex,

(4) Two of the three guards near a vertex are nearly
co-located.

(5) There is one extra guard in each triangle of a tri-
angulation of P (this is g10 in Fig. 5).

This construction leads to 3 guards near each of P ’s n
vertices, plus n− 2 guards in the triangles of a triangu-
lation, yielding g = 4n− 2. Note that the triangulation
is of the n-gon P , not the 2n-gon convex hull C used in
the proof of Theorem 5.

Idea of the construction in Fig. 5. Before turning
to the general construction, we first provide intuition
for the triangle construction, illustrated in Fig. 6. The
triangle is partitioned into six sectors with g10 in the
center. Three guards are placed in the yellow sectors
near each vertex, so that the dark rays they generate
at g10 exit through the empty white sectors. First, two
of three guards are placed as illustrated: g2, g4, g6 on

triangle edges, and g1, g3, g5 slightly inside the adja-
cent edges. The final three guards will be placed in-
side the convex hull of g1, . . . , g6, but their locations
are tightly constrained. The guards placed so far define
three dark wedges apexed at guards g1, g3, g5, where the
wedge apexed at gi contains all the dark rays at gi. The
last three guards g7, g8, g9 are placed quite close to the
even-index guards g2, g4, g6 so that none of their dark
rays enter the dark wedges. For further explanation, see
Section A.3. The construction works for any triangle:
there are no shape assumptions.

g4

g10

g5

g6
g1

g2

g3

Figure 6: Dark rays from g10 exit through empty white
sectors. Dark wedges apexed at g1, g3, g5 contain the
dark rays from all other guards, illustrated for the g1
wedge.

The conclusion of the lower bound construction in the
Appendix (Section A.3) is this theorem:

Theorem 6 It is possible to place 4n − 2 guards in a
convex n-gon P so that all dark-ray intersections lie
strictly exterior to P .

Theorems 5 and 6 establish the tight bounds in Theo-
rem 2.

4 Simple Polygon

We mentioned in the Introduction that the variant we
are exploring—multiple coverage and guards-blocking-
guards—is not a natural fit for arbitrary simple poly-
gons. In a convex polygon P , each pair of guards sees all
of P except for their dark rays, whereas in an arbitrary
polygon, guard visibility is also blocked by reflexivities
of ∂P .
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4.1 Necessity

The comb example that establishes necessity of bn/3c
guards to cover a simple polygon of n vertices, also
shows the necessity of kbn/3c guards to cover to depth
k—since no guard can see into more than one spike of
the comb, each of the bn/3c spikes needs at least k dis-
tinct guards. In fact, if the comb has at least two spikes,
then kbn/3c guards also suffice. The general construc-
tion for k ≥ 2 is illustrated in Fig. 7 for depth k = 4
and n = 9.

Figure 7: 4 · 3 = 12 guards suffice to 4-cover the comb
of 9 vertices.

Place k guards in a convex arc below each spike of
the comb so that none of the dark rays generated by
these guards enters any spike. Points in a spike are
covered to depth k by the k guards below it. Although
many dark rays cross in the base corridor of the comb,
slight vertical staggering of the convex arcs of k guards
ensures that no corridor point is at the intersection of
three dark rays, which ensures coverage to depth k for
k ≥ 2 and at least two spikes.

4.2 Sufficiency

For sufficiency, we have not obtained a tight bound:
To cover a simple polygon P of n vertices to depth k,
we show that g = (k + 2)bn/3c guards suffice. First
triangulate P , 3-color, and choose the smallest color
class, which has cardinality at most bn/3c [Fis78]. In
Fig. 8, say we select color 1. If a color-1 vertex v is
convex, then define a cone C apexed at v bounded by
the edges incident to v. If a color-1 vertex v is reflex,
then define C to be the “anticone” at v: the cone apexed
at v and bound by the extensions of the incident edges
into the interior.

To cover P to depth k, place k + 2 guards along a
convex arc near a color-1 vertex v, and inside v’s cone.
In the figure, we aim to 3-cover and so place 5 guards in
each cone. Now it is clear that the k+2 guards at color-
1 vertex v see into all the triangles incident to v. These
guards generate crossing dark rays, but by perturbing
the locations of the guards we can avoid three dark rays
meeting in P . The result is coverage to depth 2 less
than the number of guards at each color-1 vertex:

3

1

2

1

3

2

Figure 8: Cones at the color-1 reflex vertices each con-
tain k + 2 guards. Here the 5 guards achieve a 3-cover.

Theorem 7 To cover a simple polygon of n vertices to
depth k, g = kbn/3c guards are sometimes necessary,
and g = (k + 2)bn/3c guards always suffice.

5 10 Guards in a Wedge

Finally, in Appendix A.5 we establish a tight bound for
a wedge, which can be viewed as an unbounded 2-sided
convex polygon with one vertex and two rays:

Lemma 8 Covering a wedge to depth k requires the
same number of guards as it does to cover a triangle
to depth k, except that to 3-cover requires 4 guards. In
particular, g = 10 guards can cover to depth 9.

The surprising part of this result is that 10 guards can
be placed in a wedge without creating 2-dark points—
despite the fact that our triangle construction (see
Fig. 6) fails for a wedge because it has 2-dark points
just outside each triangle edge.

6 Open Problems

1. Investigate bounds or the complexity (NP-hard?)
of placing points in a simple polygon so that no
two dark rays intersect. (As noted in Section 4, the
connection between this problem and k-guarding
fails for non-convex polygons.)

2. Close the simple polygon gap in Theorem 7.

3. Can the tight bound for a wedge in Lemma 8 be
generalized to tight bounds for unbounded convex
polygons with two rays joined by a chain of n − 1
vertices and n− 2 edges?



CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Acknowledgements. We benefited from suggestions of
three referees.

References

[AAM21] Mikkel Abrahamsen, Anna Adamaszek, and
Tillmann Miltzow. The art gallery problem
is ∃R-complete. J. ACM, 69(1), 2021.

[BBC+94] Patrice Belleville, Prosenjit Bose, Jurek Czy-
zowicz, Jorge Urrutia, and Joseph Zaks. K-
guarding polygons on the plane. In Proc. 6th
Canad. Conf. Comput. Geom., pages 381–
386, 1994.

[BEK13] Daniel Busto, William S Evans, and David G
Kirkpatrick. On k-guarding polygons. In
Proc. 25th Canad. Conf. Comput. Geom.,
2013.

[DO11] Satyan Devadoss and Joseph O’Rourke. Dis-
crete and Computational Geometry. Prince-
ton University Press, 2011.

[Fis78] Stephen Fisk. A short proof of Chvátal’s
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A Appendix

A.1 4-guarding a Triangle

g1

g3

g4 g2 g1

g3

g5

g2

(a) (b)

g4

Figure 9: Five guards needed to 4-cover. (a) All strictly
interior points are 4-covered, but the blue segments to
either side of g4 are only 3-covered. (b) Points on the
dark rays (blue segments) incident to g4 and g5 are 4-
covered; all other points are 5-covered.

A.2 Regime (2) Lemma

Lemma 9 Any placement of n + 1 guards in a convex
n-gon P results in a dark point in P .

Proof. If a guard g0 is strictly internal to P , then there
is a dark ray at g0 generated by every other guard. So
it must be that all guards are on ∂P .

View each edge of P as half-open, including its clock-
wise endpoint but not its counterclockwise endpoint. So
the edges are disjoint and their union is ∂P . Every edge
e can contain at most one guard: If e contains two or
more, one, g1, is interior to e and so there is a dark ray
at g1 along e. So there can be at most n guards while
avoiding dark points. �

A.3 General Lower Bound Construction

Example: Square. Before commencing with the gen-
eral construction, we illustrate it with a square. Plac-
ing 4n− 2 = 14 guards in a square without any 2-dark
points follows the same construction as with the triangle
in Fig. 5: 3 guards near each vertex, and n− 2 = 2 “el-
bow” guards `i determined by a special triangulation, in
this case just a diagonal of the square. See Fig. 10. Co-
ordinates may be found in the Appendix (Section A.6).

v2v1

v4 v3

ℓ 33

ℓ11

Figure 10: 14 guards covering to depth 13. Trian-
gulation diagonal is v1v3. Elbow guards `1, `3. Vertex
guards xi, yi, zi near the four corners.

Overall Construction. The overall plan of the con-
struction is the same as for a triangle and a square:

http://cs.smith.edu/~jorourke/books/ArtGalleryTheorems/
http://cs.smith.edu/~jorourke/books/ArtGalleryTheorems/


35th Canadian Conference on Computational Geometry, 2022

3n guards, 3 near each vertex, plus one guard per tri-
angle in a triangulation of P of n − 2 triangles. The
three guards to be placed near vi will be called vertex
guards. The triangulation is a serpentine triangula-
tion formed by a zigzag path that visits all the vertices,
as illustrated in Fig. 11. The single guard in each tri-
angle will be called an elbow guard.

vi ℓi

vi+1

vi-1

ℓ j

ℓj+1

vj

vj+1

e

Figure 11: Zigzag triangulation and elbow guards `i.

Notation. We label the vertices in counterclockwise
(ccw) order: v0, . . . , vn−1 with index arithmetic mod-
ulo n. Thus “before” means clockwise (cw) and “after”
means ccw. Let vi be one of the n− 2 internal vertices
of the zigzag path. Then vi is the apex of a triangle Ti
bounded by two edges of the zigzag path plus a base
that is an edge of the polygon. The elbow guard of Ti,
which we denote `i, will be placed close to vertex vi.
For ease of notation, we will focus on one triangle with
apex vi and base vjvj+1. In each edge of P we place
two “dividing points” that are used to separate wedges
of dark rays. The dividing points adjacent to vi are la-
beled mi (on the minus (cw) side) and pi (on the plus
(ccw) side). See Fig. 12.

Note that there are two vertices of P with no el-
bow guard, and consequently either `j or `j+1 (or both)
might not exist. For example, in Fig. 10, neither `2 nor
`4 exist.

Dark-ray Wedges. The elbow guard `i will be located
close to vi, and vi’s three vertex guards even closer to
vi. We first place the elbow guards and define “safe
regions” for vertex guards so that the dark rays incident
to elbow guards lie in disjoint “dark ray wedges.” Exact
placement of vertex guards will be described later.

Let e be the base edge of Ti, e = vjvj+1. Then the
three portions of e demarcated by pj ,mj+1 each are
crossed by wedges of dark rays incident to elbow guards.
The central portion of e is crossed by rays generated by

vi’s vertex guards through `i (blue). The vjpj segment
of e is crossed by the rays at `j , generated by all the
vertex guards and elbow guards associated with vertices
ccw from vi+1 to vj−1, and symmetrically the mj+1vj+1

segment of e is crossed by dark rays at `j+1, generated
by all the vertex guards and elbow guards associated
with vertices ccw from vj+2 to vi−1.

From the viewpoint of `i, there are three dark wedges
emanating from it, one crossing pjmj+1 and two (shown
in pink) crossing vimi and vipi, before and after vi.

vi+1

mi+1

vi-1

vi

vj

vj+1

Ti

pi

mi

pi-1

mj+1

pjℓi

ℓj

ℓj+1

Figure 12: The dark-ray wedges that cross e = vjvj+1

and the dark-ray wedges emanating from `i.

Locating `i. We now describe how to place each `i so
that the dark-ray wedges illustrated in Fig. 12 indeed
contain the claimed rays, and create a “safe region” for
vi’s vertex guards.

Place `i at the intersection of two lines: the line mipi,
and the line through vi and the midpoint of pjmj+1.

Let bi be the point where the line through pj and `i
exits P . Observe that bi lies in the segment vimi. Our
mnemonic is that bi is just “before” vi. Let ai be the
point where the line through mj+1 and `i exits P . Then
ai lies in the segment vipi, just after vi.

For a vertex vi that has an elbow guard, define its
safe region Ri to be the convex quadrilateral biviai`i,
which is contained in the triangle mivipi. For a vertex
vi without an elbow guard (the first and last vertices of
the zigzag path), its safe region is the triangle mivipi.
Observe that the safe regions are pairwise disjoint.

Claim 1 If vertex guards for vi are placed in Ri then
the dark rays incident with elbow guards lie in the wedges
as specified above and do not enter the safe regions.
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Proof. Consider the dark rays incident to `i. Since vi’s
vertex guards lie in the wedge ai`ibi, they generate dark
rays at `i that lie in the complementary wedgemj+1`ipj .
Vertex guards and elbow guards associated with vertices
ccw from vi+1 to vj lie in the wedge pi`ipj so they gener-
ate dark rays at `i that lie in the complementary wedge
mi`ibi (yellow wedges in Fig. 13). Similarly vertex and
elbow guards associated with vertices ccw from vj+1 to
vi−1 lie in the wedge mj+1`imi so they generate dark
rays at `i that lie in the complementary wedge ai`ipi.
(green wedges in Fig. 13). �

bi

ai

vi

vj

vj+1

mj+1

pj

vi+1

vi-1

pi

mi

mi+1

pi-1

ℓi

Figure 13: Constraints on locating `i, and for locating
vertex guards in a safe region Ri = biviai`i.

Locating 3 vertex guards. Call the three vi vertex
guards xi, yi, zi. We will place them in that order, inside
the safe region Ri. xi will be placed on an edge of P ,
and xi and yi will be on the convex hull C of the guards,
with zi strictly inside C.

The following construction references ai and bi so it
applies to the case when `i exists. But for a vertex vi
without an elbow guard, the same construction works
with mi and pi in place of bi and ai.

Construct a triangle with apex vi and two points on
∂P strictly inside the safe region Ri. Place xi at the
corner of this triangle on edge vivi−1, and place yi on
the base of the triangle and on the pi side of the line
vi`i. Observe that all the elbow guards are inside the
resulting hull C. Because xi is the only guard on its
edge, there are no dark rays incident to xi inside P .

vi+1

xi+1

yi-1

vi-1

vi

xi

yi

ai

c
vi

c

yi-1
xi

zi

yi

bi

(a) (b)

xi+1

vi+1

vi-1

ℓi

Figure 14: (a) Locating xi and yi. Wedge of dark rays
apexed at yi shaded. (b) Locating zi so that dark rays
incident to zi exit P safely.

Because yi lies on C with neighbours xi and xi+1, all the
dark rays incident to yi lie in the complementary wedge
bounded by the lines yixi and yixi+1, and including
vi (gray in Fig. 14(a)). Note that no other dark rays
intersect this wedge because it lies inside the safe region.

We now place zi. Let c be the point where the line
xi+1yi intersects the edge vivi−1. See Fig. 14(a).

We will ensure that the dark rays incident to zi—
except for the one generated by xi—lie in the wedge
czibi (yellow in Fig. 14(b)). This implies that these
rays do not intersect any other dark rays.

We place zi:

1. inside C,

2. on the xi side of lines yibi and yi−1c,

3. on the yi side of line xiai.

Observe that these constraints determine a non-
empty region for zi.

Conditions 1 and 3 ensure that the dark ray incident
to zi generated by xi hits the edge vivi+1 in the segment
between yi’s dark wedge and ai, so it intersects no other
dark ray.

Conditions 1 and 2 ensure that, if we ignore xi, then zi
lies on the convex hull C ′ of the guards, with neighbours
yi and yi−1. Therefore the dark rays incident to zi lie
in the complementary wedge—apexed at zi and exterior
to C ′—which lies inside the wedge bizic, as required.

We note that, although our construction places
guards quite close together, the coordinates have
polynomially-bounded bit complexity, since we used a
finite sequence of linear constraints. By contrast, irra-
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tional coordinates may be required for the conventional
art gallery problem in a simple polygon [AAM21].

Note that at no point do we rely on the metrical prop-
erties of P , so the construction works for all convex
polygons:

Theorem 6 It is possible to place 4n − 2 guards in a
convex n-gon P so that all dark-ray intersections lie
strictly exterior to P .

To repeat our earlier claim, Theorems 5 and 6 estab-
lish the tight bounds in Theorem 1.

A.4 General Position Guards

At several junctures we claimed we can avoid 3-dark
points inside P by perturbing the guard locations to be
in “general position.” Although this follows from general
perturbation results, we give a straightforward inductive
construction.

We show how to place g guards in a specified open
region of the plane (a convex polygon in regime (3),
or near the vertex of a vertex cone in the situation of
Section 4) while avoiding 3-dark points anywhere in the
plane.

Place the guards sequentially. After placing i guards,
let Ai be the arrangement of lines determined by:
(a) pairs of guard points; and (b) a guard point and
a 2-dark point at the intersection of two dark rays. (For
i ≤ 3 noncollinear guards, there are no 2-dark points.)
Place the (i+1)-st guard at any point in the open region
not on a line of Ai. This is possible since the region is
open. Note that this avoids three collinear guards and
also avoids three dark rays crossing. Now update the
arrangement to Ai+1 and repeat.

A.5 10 Guards in a Wedge

Define a wedge as the region of the plane bounded by
two rays from a convex vertex a, i.e., a cone with apex
a. The connection between k-guarding and dark points
(Observation 1) still holds, and the main issue is the
analogue of Theorem 2—what is the maximum number
of guards that can be placed in a wedge without creating
2-dark points? For a triangle, the bound is 4n−2 = 10.
In this section we prove that the same bound holds for
a wedge.

The upper bound of 10 is easy: If we could place
11 guards in a wedge without 2-dark points, then we
could simply cut off the empty part of the wedge to
create a triangle with 11 guards and no 2-dark points,
a contradiction to the Theorem 5 upperbound.

However, the lower bound of 10, i.e., a placement of 10
guards without 2-dark points, does not carry over from
our triangle construction, because there were dark ray
intersections beyond every edge of the triangle. Nev-
ertheless, we now show this bound is tight, with the

example illustrated in Figs. 15 and 16. We number the
guards from bottom to top. Here is a description of the
construction:

• g1 is directly below the apex a, and far below.

• g2 is slightly left of g1, so that the upward dark ray
at g2 exits the wedge at a particular “safe” spot
between g7 and g10.

• Guard pairs g3, g4, g5, g6, g7, g8 are symmetrically
placed with respect to a vertical line L through a.

• Guards g7, g8 are located on the two edges of the
wedge.

• g10 is on L near a, while g9 is right of L.

• There are six guards on the convex hull C of the
guards: {g1, g3, g7, g10, g8, g4}.

• g5, g6 are just slightly inside C.

We provide coordinates for the guards in Appendix A.6,
and have verified that there are no 2-dark points in the
wedge.

Note that this construction provides an alternative
arrangement of guards for a triangle: Introduce a trian-
gle edge bc below g1, and apply an affine transformation
to 4abc to match Fig. 15.

We summarize the implications for k-guarding a
wedge in this lemma.

Lemma 8 Covering a wedge to depth k requires the
same number of guards as it does to cover a triangle
to depth k, except that to 3-cover requires 4 guards. In
particular, g = 10 guards can cover to depth 9.

Proof. If k ≤ 2, a guard at the one vertex, or one
guard on the interior of each edge, suffices. However,
any placement of 3 guards creates a dark point in the
wedge, so for k ≥ 3, at least k+1 guards are needed to k-
guard. For k ≤ 9, the configuration just described shows
that k+1 guards suffice—this covers the middle regime.
For k ≥ 10, g = k + 2 guards are needed and suffice,
from Observation (3) in Section 1.1 and its explanation
in Section A.4. �

A.6 Guard Coordinates

We include here explicit coordinates for guards in a tri-
angle, a square, and a wedge. In all cases, Mathematica
code has verified that dark-ray intersections are strictly
exterior.

Coordinates for 10 guards in an equilateral triangle,
Fig. 5. Triangle corners are (0, 200), (±100

√
3,−100).

Guard locations for the other gi are symmetrical place-
ments following Fig. 6.
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1

2

a

L

Figure 15: Wedge apex a, 10 guards with no 2-dark
points.

3 4

5 6
7 89

10

3 4

5 6
9 87

10

a

L

Figure 16: Closeup of upper portion of Fig.15.

gi x, y

5 −102.57, −96
6 −102.6, −100
7 −118, −49
10 0, 0

Coordinates for 14 guards in a square, Fig. 10. Square
corner coordinates (±200,±200). Guard locations
g6, . . . , g14 are symmetrical placements of g3, g4, g5.

gi x, y

1 −65, −120
2 65, 120
3 −180, −180
4 −198, −137.7
5 −200, −135

Coordinates for 10 guards in a wedge, Figs. 15 and 16.
Apex at (0, 200), apex angle π/3. Guard locations
g4, g6, g8 are symmetrical placements of g3, g5, g7.

gi x, y

1 0, −600
2 −9, −270
3 −70, 50
4 70, 50
5 −41, 120
6 41, 120
7 −38.1, 134
8 38.1, 134
9 8, 150
10 0, 180
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