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ABSTRACT

The problem of covering an orthogonal polygon with a minimum number of squares is shown to
be solvable in polynomial time for simply-connected polygons, making this one of the few minimum
covering problems known to be tractable. The polynomial algorithm is based on establishing that a
particular graph associated with the problem is chordal, a subclass of perfect graphs for which
efficient clique covering algorithms are known, For polygons with holes, the minimum covering prob-
lem is shown to be NP-complete. The square cover problem finds application in image processing,
where maximal squares are used to compress pictures into efflicient data structures.

1. INTRODUCTION

We consider the problem of finding a minimum square cover of an orthogenal pelygen. An
orthogonal polygon is a polygon having all its edges paralle]l to either of Lwo given orthogonal direc-
tions. It may contain holes that are themselves orthogonal polygons. We restrict our consideration to
orthogonal polygons having all vertices at integral coordinates. These orthogonal polygons are also
referred to as boards. A unit square with vertices at integral coordinates is called a block *. A square
is a square subset of the blocks of a given board. A aguare cover of a board is a collection of squares
each of which is a subset of the board and such that the set union of the collection of squares is equal
to the board.

In this paper we analyze the complexity of the minimum square cover problem first for simply
connected boards and then for boards containing holes. Given a board B, we associate with it a
graph G (B) as follows. Each block in the board B corresponds to a node in the graph G (B). There
is an edge between two nodes in & (B) iffl the corresponding blocks in B belong to a square of B.
We show that the graphs associated with simply-connected boards are chordal graphs. This is a
strengshening of a result due to Albertson and O°eefe. In (2] they showed that these graphs are per-
fect graphs. Chordal graphs form a subclass of perfect graphs, and using a known algorithm for
finding & minimum clique cover of a chordal graph [4], we can find a minimum square cover of a
board with no holes in polynomial time, O {N*®) for boards with NV blocks.

In {1| Aupperle improves the complexity of the algorithm to O (re min(r ,c)), where r and ¢
are the number of rows and columns of blocks in the board. This camplexity is O (N'%) in the worst
case

When a board is allowed to contain holes, we show that the problem of finding a minimum
square cover is NP-complete.

This problem is interesting for two reasons, one theoretical and one practical. On the theoreti-
cal side, there has been considerable interest in geometric minimum covering problems, but unfor-
tunately most of the most natural problems are NP-complete [7]. Just recently it was shown by
Culberson and Reckhow [3] that one of the more interesting unsettled cases, minimum covers of sim-
ple orthogonal polygons by rectangles, is also NP-complete. Thus minimum coverage by squares
turns out to be one of the few of these covering problems that can be solved in polynomial time.

Coverage by squares also has practical applications. The medial azis (also called the symmetric
axis or akeleton) of a polygon is the locus of centers of maximal disks contained in the polygon. When

* For image processing applicalions, = board is a picture or an image, and a block is & pixel.
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specialized to the L , metric for applications to digital images, the medial axis is the locus of centers
of maximal squares of odd side length [8]. The digital medial axis transform (MAT ) is used for pic-
ture compression: simple images may be covered by few squares, and easily reconstructed [rom the
MAT [10]. The image processing literature has assumed that the NP-completeness results for cover-
age by rectangles obviated any fast algorithm for coverage by squares [10]; thus no attempt was
made to find minimum covers. Our results show that in the important special case of a connected
image region, pessimism was unwarranted: a minimum cover can be found quickly.

Additionally, Scott and Iyengar [9] have defined the T/D, Translation Invariant Data Struec-
ture, a method for representing images. The T/D for a given image consists of a list of maximal
squares covering all pixels within the image, sorted by certain position and size criteria. In order to
reduce the cost of storing and manipulating a TID, the underlying list of maximal squares should be
as small as possible,

2. COVERING A SIMPLY-CONNECTED BOARD

In this section we prove that if B is a simply connected board, then G (B) is a chordal graph.
A graph is said to be chordal if it has the property that every (simple) cycle of length strictly greater
than 3 possesses a chord. Before proceeding with the proof, some definitions and a lemma from 12]
are needed. Given a board B and a square 5 in that board, S is said to be maximal if it is not con-
tained in any larger square of the board B. A maximal square § is said to be disconnecting if the
interior of B-5 is not connected. A block of B is a boundary block il it intersects the boundary of
B in at least one edge. A block in a square 5 is a border block of S if either: (a) it shares an edge
with a block of B-S, or (b} it is a boundary block. A 1Xp rectangular subset of the blocks of a
given board having three sides coincident with the boundary of the board is called a knob.

Lemma 1: [2] Let § be a maximal square in a simply-connected board B. Then either § is a
disconnecting square or 5 contains a knob of B.

Theorem 1: Let B be a simply-connected board. Then the associated graph G {B) is chordal.

Proof: By induction on the number of blocks in a board. As the induction hypothesis, assume the
claim is true for simply-connected boards having fewer than m blocks. Let B be a simply-connected
board having m blocks. Let § be a maximal square in B, and let C = {¢,64,* - &, }.n 24, be
the set of blocks in B corresponding to the nodes of a simple cycle of length at least 4 in G (B). By
Lemma 1, there are two cases to consider.

Case I 5 is disconnecting. Let B, ..., B;, j >2, be the components of B-§.

Observation 1: Two blocks are in a square of B iff they are in a square of SUB; for some i <.
{Because 5 is disconnecting.)

Suppose the blocks of € are all contained in SUB; for some i. Then by Observation 1, the
subgraphs induced by C in G(B) and in G {SUHE;) are identical. Since the board SUB; has lewer
than m blocks and is simply-connected, apply the induction hypothesis and conclude that ¢ has a
chord in G (SUB; ), and thus also in G (B).

Otherwise, suppose that some blocks of €' are in different components of B-§, say B, and
B, . By Observation 1, any path from 5, to B, must pass through a block in the square 5. Since ¢
is a cycle, there are two distinct paths from any of its blocks in B, to any of its blocks in B, . Since
C is vertex-simple, there must be two distinct blocks of € in 5. The nodes in & (B ) corresponding
to these two blocks in § are connected by an edge, and thus the cycle must have a chord.

Case I § is not disconnecting. Then, by Lemma 1, § contains a knob of B. Call the knob JC.

Observation 2: Any block in a knob contained in"$ can only be connected (in G(B)) to some
other block in §.

If some block in €, call it ¢;, is contained in any knob in §, then ¢; is connected to two other
blocks in 5. These blocks are connected, so ¢ has a chord.

Suppose no block of ¢ is contained in any knob in the square §. Assume that K isa 1Xp
knob in a p Xp square §, and that the board is oriented as shown in Figure 1. Then there are two
cases to consider: either {A) each block in K has at least p blocks of B beneath it, or (B) some
block of I, say &, has exactly p -1 blocks beneath it.

Case A: Each block in K has at Teast p blocks beneath it.
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Figure 1

Consider the board B-K . By Observation 2, any block in /{ can only be connected to some
other block in §. Thus, except for 5, every square of B is also a square of B-K . So il two blocks of
C are connected by a square of B other than §, they are connected by that same square in 8 -K .

Now suppose two blocks of € are connected by S in B . Since these blocks are not in K, they
are connected by the p Xp square consisting of rows 2 through p of § and the p blocks immedi-
ately below vow p of 5. ’

So two blocks of C that are not in A are in a square of B iff they are in a square of B-/ .
Thus the subgraphs induced by € in G(B) and in G (B-K) are identical. Since B~K is simply
connected and has fewer than m blocks, the induction hypothesis may be applied to conclude that
C has a chord in G (B-K) and thus alse in G (B).

Case B: Some block of K, call it b, has exactly p -1 blocks of B beneath it. The last of these
must be a boundary block, call it 4. See Figure 2.

‘iblock not in B

Figure 2

Since § is not disconnecling, one of the paths of border blocks of § [rom &, to b, must consist
entirely of boundary blocks. Thus one of the vertical sides of § must be the boundary of ancther
knob, call it K *, as shown in Figure 2.

Let L = K UK ". Consider the board B-L . Twao blocks of C not in L are in a square of B ifl
they are in a square of B-L . The board B -L is simply-connected and has fewer than m blocks, so
the induction hypothesis may be applied to conclude that € has a chord in G(B-L) and thus ¢
also has a chord in G(B). ]
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Using an algorithm due to Gavril 4], we can find a minimum clique cover of G (B)in O(N%H
time, where NV is the number of blocks in the board B. Then the following lemma due to Albertson
and O'Keefe allows us to use the minimum ¢lique cover of G (B) to find a minimum square cover of
B.

Lemma 2: [2] Given a clique in G {B), the set of corresponding blocks in B is entirely contained in
a single square of B .

The complexity of the algorithm can be improved by exploiting the geometrie setting in which
G({B) is defined by employing a procedure due to Scott and Iyengar [9] for finding all maximal
squares in B. In [1] Aupperle uses this approach to develop an algorithm for minimum square cover
of a simply-connected board. The algorithm runs in time and space O(re min{r,c)), where r and
¢ are the number of rows and columns of blocks in the board. This complexity is O (N") in the
worst case.

3. BOARDS WITH HOLES

In this section we show that the problem of finding 2 minimum square cover of an arbitrary
board containing holes is an NP-complete problem. For a discussion of the theory of NP-
completeness see [5].

Our proof uses a transformation from the NP-complete problem of Planar 3-Satisfiability
(P3SAT). An instance of P3SAT is an instance of 3-Satisfiability with the additional property that a
graph associated with the instance is a planar graph. The associated graph consists of a set of nodes
corresponding to the variables and clauses, and with an edge between any variable and any clause in
which that variable (or its negation} appears. See [6] for 2 more detailed discussion of P3SAT.

The transformation involves constructing an orthogonal polygon that simulates an arbitrary
instance of P3SAT. The polygen must have the property that caleulation of the size of a minimum

square cover of the polygon will answer the question of satisfiability of the corresponding instance of
P3SAT.

The polygon is built up from three types of components: variable loops, wires, and junctions.
Variable loops allow the gencration of an arbitrary number of copies of a variable and an arbitrary
number of copies of the negation of that same variable, Wires allow the propagation of truth values
from variable loops to junction figures. Junctions represent the logical AND of the three input values.
The individual components are described in more detail below.

The orthogonal polygon is assembled from component pieces laid out on a grid of unit squares.
For reference purposes when describing the component figures, it is useful to label alternating grid
lines as “odd” and ‘“‘even’ in both the horizontal and vertical directions. All the squares needed for
a minimum cover of the orthogonal polygon are 2X 2 squares of 4 blocks.

8.1 Variable Loop Figures

Variable loop figures provide the capability of generating an arbitrary number of copies of a
variable and an arbitrary number of copies of the negation of that same variable. Variable loop
figures are positioned so that wires may be attached to them at “even'-labeled vertical grid lines. A
variable loop figure may be arbitrarily high to accommodate as many copies of a variable or its nega-
tion as are required by the instance of P3SAT. Wires representing non-negated variables are attached
to the variable loop in such a way that they are centered on “even”-labeled horizontal grid lines.
Wires representing negated variables are centered on “‘odd’-labeled horizontal grid lines.

A variable loop figure has iwo minimum covers. In one of these, squares protrude out from the
variable loop figure and into the attached wire figures that represent non-negated variables, This
cover corresponds to the assignment of TRUE to that variable. In the other cover, squares are flush
with wires representing non-negated copies of the variable, and protrude out into the wires represent-
ing negated copies of the variable. This cover corresponds to the assignment of FALSE to that variable.

Figure 3 illustrates these concepts regarding variable loops and their covers. In the figure,
shaded squares indicate those that must be present in any minimum cover. Dotted lines represent
“even’-labeled grid lines; dashed lines represent “odd”-labeled grid lines.

8.2 Wire Figures

A straight wire figure consists of a 2Xn rectangle, where n is the number of unit squares
traversed by the figure in 2 horizontal direction, and is always an even number. Wires are always
attached to variable loops and junctions at “‘even’-labeled vertical grid lines. A wire is considered to
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] TRUE cover. FALSE cover,
. : Variable loop generating & single variable.

Wariable loop generating
a varnable and its negation.

Figure 2

be sarrying & TaUE value when the first 231 rectangle on its left hand side (aource) is covered by a
square that protrudes out frem & variable loop, Consequently, in & minimum cover, the right hand
side of the wire | destination} has hell a square protruding out from it and into & junction figure,

Wires can be bent at 90 ° angles as shown in Figure 4. When a wire s bent, it may no longer
poss=ss the desired behavior with respect to minlmum covernge by squares. We say that 2 wire figure
iz wafid with respest to propagation of treth values if it has exactly two minimum covers: one with
squares flush at both the source and destination of the wire, and the other with half a square pro-
truding from the destination of the wire into the attached junction figure. (In the lntter case, cover-
age of the first 21 rectangular area at the source of the wire is provided by a square that protrudes
from the attached varinble loop.) The following lemma guarantees thas the wires used in constructing
the srthogonal pelygon are valid,

Lemma 3: If a wire Bgure has its source and destination centered on honzontal grid lines having likee
labels (both “even™ or both “odd™), then that figure s valid with respect to propagation of truth
values.
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Froal: By industion on the number af bends in & wire, m]

In the construction of the orthogenal polvgon simulaling an instance of PISAT, wires wili
always be attached to variable loops and junctions in such & way that their sourees and destinations
are centersd on honzontal grid Hnes having like labels

Figure 4 illustrates these concepts regarding wire figures and their covers. In the Agure, shaded
squares indicate those thal must be pressnt in every minimum cover of the figure
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cesisinl o SOUCCE destination

PR e S a

e o Wire figure requiring 12
squares [or minimum cover,

- B e . - - : - - el <

et TRUE cover - hall square protrodes out destination.

W e el e el

B e e e

..... = L : 1 ; i H : H . 1 2
e FALSE cover - squares fush ot both ends,

! Walid wire figure with bends -
: source and destination centered on
horizontal grid lines having like labels.

Figure 4

2.8 Junctions

Junction figures provide the capability of testing the value of the logical AND of the three input
variables. They are positioned with their left boundary aligned on an “even’-labeled vertical grid
line. Inpui wires representing non-negated variables are centered on “even’-labeled horizontal grid
lines, and input wires representing negated variables are centered on “‘odd”-labeled horizontal grid
lines. Two slightly different junction figures are used: one for clauses in which all the variables are
either negated or non-negated, and one for clauses in which there are two negated variables and one
non-negated or vice versa. Since the order of appearance of the literals {variable or negation of a
variable) in a clause does not affect the truth value of the clause, assume that the odd literal appears
first. Figure 5 displays the two types of junction figures and the various combinations of inputs.

Lemma 4: A junction figure can be covered with 12 squares iff all three input wires carry a value of
TRUE . Il any input wire carries a value of FALSE , then 13 squares are required to cover the junction.

Prool: Omitted.
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i even

Ti ewem

T even

i inputs centered on even lines All input variables negated -
H inputs centered on odd lines.

------- : One variable negated -
- two non-negated.

Two variables negated -
one non-negated.

Figure 5

Figure 6 displays minimum covers of a junction figure for representative combinations of input
values. Covers of the other type of junction figure and other combinations of inputs are similar,

An instance of P3SAT consists of the conjunction of a set of clauses, where each clause is the
disjunction of three literals. In testing the satisfiability of such an instance, it would be uselul to
have a junction figure that simulates the logical or of three input literals. Such a junction figure is
presented in [1}. However, the AND junction figure described here is somewhat simpler, and can also
be used to test the satisAability of an instance by applying DeMorgan’s law as follows. Negate each
literal in the instance and let each oR ¢connective in each clause be replaced by an AnD connective.
Now if every assignment of truth values to the variables in the instance results in every clause hav-
ing value FALSE , then this is equivalent to each of the original clauses being made TRUE , and the
instance is satisfiable.

8.4 Overview of Conslruction

Given an instance I of P3SAT, examine the literals in each clause. I any clause consists of
one negated variable and two non-negated variables, rearrange the order of appearance of the literals
{if necessary) so that the negated variable appears first in the clause Il any clause consists of two
negated variables and one non-negated variable, rearrange the order so that the non-negated variable
appears first. After this rearrangement, every clause has its literals in an order that is compatible
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- All inputs TRUE - Al inputs FALSE -
"""" 12 squares required. 13 squares required.

Two inputs TRUE - One input TRUE -
13 squares required. 13 squares required.

Figure 6

with one of the two junction types. The rearrangement process does not affect the satisfiability or the
planarity of the instance of P3SAT.

Next apply DeMorgan’s law as previously described te convert oR connectives into AND connec-
tives. During this process all literals will be negated.

For every variable, scan the ¢lauses counting all appearances of that variable and all appear-
ances of its negation. Set up a variable loop with the required number of copies of the variable and
its negation. Count the number of squares required to cover all such variable loops. Let this number
be V.

Run wires from the variable loops to junction figures representing the clauses. Count the
number of squares required to cover the wires. Let this nurabet be W, and let the number of junc-
tion figures be J.

The preceding construction can be done in polynomial time. Now, find 8 minimum square
cover of the orthogonal polygon just constructed. Let the number of squares in the minimum cover
be . If C=V+W+13*J, then [ is satisfable. Il C <V +W +1347, then [ is not satisfiable.

Thus if the minimum square cover could be found in polynomial time, we would also have
determined the satisfability of / in polynomial time, so finding the minimum square cover must be
NP-hard. Clearly the minimum square cover problem is in NP, so we have the following thecrem:

Theorem 2: The problem “are there £ squares that cover an arbitrary orthogenal polygon?” is INP-
complete.

104



4. DISCUSSION

The algorithm for simply-connected boards is polynomial in the number of blocks in the board.
An interesting open problem is to find an algorithm that is polynomial in the number of vertices in
the board. The number of squares needed to cover a board can be arbitrarily high in relation to the
number of vertices, as in an elongated rectangle. So any such algorithm would have to have some of
the output squares encoded instead of explicitly output.

The results presented here can be extended to minimum coverage of boards by fixed aspect

ratic rectangles of a given aspect ratio. A rectangle's aspect ratio is the ratio of its height to its
width,

In (1) Aupperle considers coverage by fixed aspect ratio rectangles having side lengths that are
an integral multiple of one block. He shows that for multiply-connected boards, minimum coverage is
an NP-complete problem. For simply-connected boards, he shows that the graphs associated with the
boards are not perfect, and thus not chordal.

Using rectangles of a fixed aspect ratio with side lengths an integral multiple of one block, there
exist boards that cannot be covered. Another approach is to allow side lengths to be a rational mul-
tiple of one block. Then ail boards can be covered, and both the results presented here extend:
simply-connected boards have associated graphs that are chordal, and minimum coverage of
multiply-connected boards is NP-complete. This can be seen by performing a transformation on the
board to be covered, If the board is to be covered by rectangles with aspect ratio A fw , then increase
the height of the board by a factor of w and the width of the board by a factor of & . Then the prob-
lem is reduced to one of coverage by squares.
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