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Every Combinatorial Polyhedron Can Unfold with Overlap

Joseph O’Rourke∗

Abstract

Ghomi proved that every convex polyhedron could be
stretched via an affine transformation so that it has an
edge-unfolding to a net [Gho14]. A net is a simple pla-
nar polygon; in particular, it does not self-overlap. One
can view his result as establishing that every combinato-
rial polyhedron P has a metric realization P that allows
unfolding to a net.

Joseph Malkevitch asked if the reverse holds (in some
sense of “reverse”): Is there a combinatorial polyhedron
P such that, for every metric realization P in R3, and
for every spanning cut-tree T of the 1-skeleton, P cut
by T unfolds to a net? In this note we prove the answer
is no: every combinatorial polyhedron has a realization
and a cut-tree that edge-unfolds the polyhedron with
overlap.

1 Introduction

Joseph Malkevitch asked1 whether there is a combinato-
rial type P of a convex polyhedron P in R3 whose every
edge-unfolding results in a net. One could imagine, to
use his example, that every realization of a combina-
torial cube unfolds without overlap for each of its 384
spanning cut-trees [Tuf11].2 The purpose of this note
is to prove this is, alas, not true: every combinatorial
type can be realized and edge-unfolded to overlap: The-
orem 2 (Section 5). For an overlapping unfolding of a
combinatorial cube, see ahead to Figure 12.

An implication of Theorem 2, together with [Gho14],
is that a resolution of Dürer’s Problem [O’R13] must
focus on the geometry rather than the combinatorial
structure of convex polyhedra.

2 Proof Outline

We describe the overall proof plan in the form of a multi-
step algorithm. We will illustrate the steps with an
icosahedron before providing details.
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1Personal communication, Dec. 2022.
2Burnside’s Lemma can show that these 384 trees lead to 11

incongruent non-overlapping unfoldings of the cube [GSV19].

Algorithm. Realizing G to unfold with overlap.
Input : A 3-connected planar graph G.
Output : Polyhedron P realizing G and a cut-tree T that
unfolds P with overlap.

(1) Select outer face B as base.

(2) Embed B as a convex polygon in the plane.

(3) Apply Tutte’s theorem to calculate an equilibrium
stress for G.

(4) Apply Maxwell-Cremona lifting stressed G to P .

(5) Identify special triangle 4.

(6) Compress P vertically to reduce curvatures (if nec-
essary).

(7) Stretch P horizontally to sharpen the apex of 4 (if
necessary).

(8) Form cut-tree T , including ‘Z’ around 4.

(9) Unfold P \ T → Overlap.

We are given a 3-connected planar graph G, which
constitutes the combinatorial type of a convex poly-
hedron. By Steinitz’s theorem, we know G is the 1-
skeleton of a convex polyhedron. Initially assume G is
triangulated; this assumption will be removed in Sec-
tion 3.1.

(1) Select outer face B as base. Initially, any face suf-
fices. Later we will coordinate the choice of B with
the choice of the special triangle 4.

(2) Embed B as a convex polygon in the plane. Select
coordinates for the vertices of B, which then pin B
to the plane. B must be convex, but otherwise its
shape is arbitrary.

(3) Apply Tutte’s theorem [Tut63] to calculate an equi-
librium stress—positive weights on each edge of
G—that, when interpreted as forces, induce an
equilibrium (sum to zero) at every vertex. This
provides explicit coordinates for all vertices inte-
rior to B. The result is a Schlegel diagram, with
all interior faces convex regions. Figure 1 illustrates
this for the icosahedron.3

3Here the drawing is approximate, because I did not explicitly
calculate the equilibrium stresses.
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Figure 1: Icosahedron Schlegel diagram.

(4) Apply Maxwell-Cremona lifting to P . The
Maxwell-Cremona theorem says that any straight-
line planar drawing with an equilibrium stress has
a polyhedral lifting via a “reciprocal diagram.” The
details are not needed here;4 we only need the re-
sulting lifted polyhedron. An example from [Sch08]
shows the vertical lifting of a Schlegel diagram of
the dodecahedron: Figure 2. A lifting of the ver-
tices of the icosahedron in Figure 1 is shown in
Figure 3.5

Figure 2: Maxwell-Cremona lifting to a dodecahedral
diagram. [Sch08], by permission of author.

Figure 3: Vertical lifting the vertices of the icosahedron
Schlegel diagram in Figure 1.

(5) Identify special triangle 4. This special triangle
must satisfy several conditions, which we detail
later (Section 3). For now, we select 4 = a1a2a3 =
6, 8, 5 in Figure 4.

4A good resource on this topic is [RG06].
5This is again an approximation as I did not calculate the

reciprocal diagram.
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Figure 4: Red: face numbers; blue: vertex indices. 4 =
5, 4′ = 6. Z-portion of spanning tree T red; remainder
blue.

(6) Compress P vertically (if necessary) to reduce cur-
vatures. Not needed in icosahedron example.

(7) Stretch P horizontally (if necessary) to sharpen
apex of 4. Not needed in icosahedron example.

(8) Form cut-tree T , including a ‘Z’-path around 4.
We think of a1 as the root of the spanning tree,
which includes the Z-shaped (red) path a1a2a3a4
around4 and the adjacent triangle4′ sharing edge
a2a3. In Figure 4, the Z vertex indices are 6, 8, 5, 11.
The remainder of T is completed arbitrarily.

(9) Unfold P \ T . Finally, the conditions on 4 ensure
that cutting T unfolds P with overlap along the
a2a3 edge. See Figure 5.

3 Conditions on 4

We continue to focus on triangulated polyhedra. In
order to guarantee overlap, the special triangle 4 =
a1a2a3 should satisfy several conditions:

1. The angle at a2 in 4 must be ≤ π/3 = 60◦, and
the edge a2a3 at least as long as a1a2.

2. The spanning cut-tree T must contain the Z as pre-
viously explained. In addition, no other edge of T
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Figure 5: Close-up views of overlap.

is incident to either a1 or a2. In particular, edge
a1a3 is not cut, so the triangle 4 rotates as a unit
about a1.

3. The curvatures at a1 and a2 must be small. (The
curvature or “angle gap” at a vertex is 2π minus the
sum of the incident face angles.) We show below
that < 20◦ suffices.

4. 4 should be disjoint from the base B: 4 and B
share no vertices.

This 4th condition might be impossible to satisfy, in
which case an additional argument is needed (Section 4).
For now we concentrate on the first three conditions.
4 is chosen to be the triangle disjoint from B with

the smallest angle α. Clearly α ≤ π/3 = 60◦. Let
4 = a1a2a3 with a2 the smallest angle. Chose the labels
so that |a1a2| ≤ |a2a3|. It will be easy to see that 4 an
equilateral triangle is the “worst case” in that smaller
α lead to deeper overlap, and |a1a2| = |a2a3| suffices for
overlap. So we will assume 4 is an equilateral triangle.

Next, we address the requirement for small curva-
tures, when the second condition is satisfied: no other
edge of T is incident to either a1 or a2. Let ω be the
curvature at both a1 and a2. Then an elementary cal-
culation shows that ω = 1

9π = 20◦ would just barely
avoid overlap: see Figure 6.

One can view the flattening of a1 and a2 when cut
as first turning the edge a2a3 by ω about a2, and then
rotating the rigid path a1a2a

′
3 about a1 by ω. For any

ω strictly less than 20◦, overlap occurs along the a2a3
edge: Figure 6(b). The basic reason this “works” to
create overlap is that the cut-path around 4 is not ra-
dially monotone, a concept introduced in [O’R16] and
used in [O’R18] and [Rad21] to avoid overlap.
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a'3
a1 a3

20°

20°
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60°
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a1 a3

60°

(a) (b)

Figure 6: (a) ω = 20◦ avoids overlap. (b) ω = 10◦

overlaps.

In the unfolded icosahedron in Figure 4, the angle at
a2 is 59◦, and the curvatures ω1, ω2 at a1, a2 are 2.4◦

and 8.1◦ respectively.

If the two curvatures are not less than 20◦, then we
scale P vertically, orthogonal to base B, step (6) of Al-
gorithm 2. As illustrated in Figure 7, this flattens dihe-
dral angles and reduces vertex curvatures (which reflect
the spread of the normals [Hor84]) at all but the ver-
tices of base B, which increase to compensate the Gsuss-
Bonnet sum of 4π. Clearly we can reduce curvatures as
much as desired.

Figure 7: Dihedral angle δ flattens as z-heights scaled:
(1, 12 ,

1
5 )→ (90◦, 125◦, 160◦).

3.1 Non-Triangulated Polyhedra

If G and therefore P contains non-triangular faces, then
we employ step (7) of Algorithm 1: Scale P horizontally,
parallel to the xy plane containing B. For example, in
the dodecahedron example (Figure 2), no face has an
angle α ≤ π/3. The following lemma shows we can
sharpen any selected face angle.

Lemma 1 Any face angle ∠a1a2a3 can be reduced via
an affine stretching transformation to be arbitrarily
small.

Proof. Adjust the coordinate system so that a1a3 lies
in the yz-plane containing the origin, with a2 in the
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x-positive halfspace, wlog at a2 = (1, a2y, a2z). See Fig-
ure 8. The Tutte-embedding guarantees that 4a1a2a3
is not degenerate—the three vertices are not collinear,
and Maxwell-Corona lifting guarantees the triangle is
not vertical because each vertex of the Schlegel dia-
gram lies in the relative interior of its neighbors [RG06,
p.126,136]. Now stretch all vertices by s > 1 in their
x-coordinate. This leaves a1 and a3 fixed, while a2
stretches horizontally to a′2 = (s, a2y, a2z). Eventually
with large s the angle ∠a1a′2a3 decreases monotonically
to zero, while maintaining |a1a′2| ≤ |a′2a3|. �

So we can identify a 4 within any face, stretch its
angle below 60◦, and proceed just as in a triangulated
polyhedron: Because a1a3 is not cut, having 4 joined
to a triangle below (4 in Figure 4) is no different than
having 4 part of a face.

a1

a3

a2

a'2

x

z
y

Figure 8: Stretching ∠a1a2a3 = 108◦ to ∠a1a′2a3 = 53◦.

4 No Pair of Disjoint Faces

Finally we focus on the 4th condition that 4 should be
disjoint from the base B. If G contains any two disjoint
faces, triangles or k-gon faces with k > 3, we select one
as B and the other to yield 4. So what remains is those
G with no pair of disjoint faces.

For example, a pyramid—a base convex polygon plus
one vertex a (the apex) above the base—has no pair of
disjoint faces. However, note that a pyramid has pairs
of faces that share one vertex but not two vertices. It
turns out that this suffices to achieve the same struc-
ture of overlap. Figure 9 illustrates why. Here B is a
triangle b1b2a3 and we select 4 = a1a2a3. The small-
curvature requirement holds just for a1, a2—the start of
the Z—the curvature at a3 could be large (117◦ in this
example) but does not play a role, as the unfolding il-
lustrates. Therefore, if G has no pair of disjoint faces,

but does have a pair of faces that share a single vertex,
we proceed just in Algorithm 1, suitably modified.

a1 a3

a2

b2

b1

a1 a3

b'2

b'1

b'2(a) (b)

Figure 9: (a) B and 4 share a3. Z = a1a2a3b2. (b) Un-
folding with overlap.

For the pyramid example, two triangles sharing just
the apex would serve as 4 and base B. Consider the
square pyramid in Figure 10(a), with B and 4 marked.
Mapping4 = 145 to4 = a1a2a3 at the shared pyramid
apex, (b) of the figure shows that this is equivalent to
Figure 9(a). A hexagonal pyramid is illustrated in the
Appendix.
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Figure 10: (a) Square pyramid Schlegel diagram, apex
5, square base 1234. (b) Relablled to match Figure 9(a).

This leaves the case where there are no two disjoint
faces, nor two faces that share just a single vertex: ev-
ery pair of faces shares two or more vertices. If two
faces share non-adjacent vertices, they cannot both be
convex. So in fact the condition is that each two faces
share an edge. Then, it is not difficult to see that G can
only be a tetrahedron, as the following argument shows.

Start with Euler’s formula, V −E+F = 2. Each ver-
tex v must be incident to exactly three faces, because,
if v has degree ≥ 4, then each non-adjacent pair of faces
incident to v cannot share an edge. So 3V = 2E. Sub-
stituting into Euler’s formula yields F = 2 + E/3.

Because each pair of faces share an edge, F (F − 1)
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double counts edges:6 2E = F (F − 1). Substituting,

F = 2 + E/3

E = F (F − 1)/2

F = 2 + F (F − 1)/6

F 2 − 7F + 12 = 0

The two solutions of this quadratic equation are F = 3,
which cannot form a closed polyhedron, and F = 4.
The tetrahedron is the only polyhedron with four faces,
and indeed F = 4 implies V = 4 and E = 6.

So the only case remaining is a tetrahedron. But
it is well known that the thin, nearly flat tetrahedron
unfolds with overlap: Figure 11. And since there is only
one tetrahedron combinatorial type, this completes the
inventory.

Figure 11: Figure 28.2 [detail], p.314 in [DO07]: tetra-
hedron overlap. Blue: exterior. Red: interior. Cut tree
T = abcd. (T is a combinatorial ‘Z’.)

5 Theorem

We have proved this theorem:

Theorem 2 Any 3-connected planar graph G can be re-
alized as a convex polyhedron P in R3 that has a span-
ning cut-tree T such that the edge-unfolding of P \ T
overlaps in the plane.

So together with Ghomi’s result,7 any combinatorial
polyhedron type can be realized to unfold and avoid
overlap, or realized to unfold with overlap.

Returning to Malkevitch’s example of a combinato-
rial cube, consider Figure 12. Starting from the stan-
dard Schlegel diagram for a cube (one square inside an-
other (B), trapezoid faces between the squares), hori-
zontal stretching (step (7) of Algorithm 1) is applied to

6Similar logic is used to form Szilassi’s polyhedral torus.
7See [SZ18] for a different proof of [Gho14].

squeeze the top and bottom squares to 1×2 and 2×4 di-
amonds, so that the angle at a2 becomes small, in this
case 2 arctan(1/2) ≈ 53◦. The lifting leaves the cur-
vatures at a1, a2 to be small enough, 6.0◦, 6.5◦, so the
vertical scaling step (6) of Algorithm 1 is not needed.

a2

b3 b3b1

b4

a3

a2

b2

a1 a3 a1

B

Figure 12: Unfolding of a combinatorial cube. Diago-
nals in the left figure are an artifact of the software; all
lateral faces are planar congruent trapezoids. Base B
attached left of b1b4 not shown. Vertex coordinates:

(−1, 0, 0.5), (1, 0, 0.5), (0,−2, 0.5), (0, 2, 0.5),

(−2, 0, 0), (2, 0, 0), (0,−4, 0), (0, 4, 0)

6 Open Problem

Is there a combinatorial type P of a Hamiltonian poly-
hedron (i.e., one with a Hamiltonian path), such that,
for every metric realization P ⊂ R3, and every Hamil-
tonian path T , P \ T unfolds to a net?

This restricts Malkevitch’s question to combinatorial
Hamiltonian polyhedra P, and restricts T to a Hamil-
tonian path, producing a zipper unfolding [DDL+10].
Note: Some convex polyhedra are not Hamiltonian, e.g.,
the rhombic dodecahedron.

To rephrase the question: Is there a combinatorial
Hamiltonian polyhedron whose every metric realization
and zipper unfolding avoids overlap? Or is there instead
an analog of Theorem 2 showing that even under these
restrictions, there is always a realization and a zipper
unfolding that overlaps?

Acknowledgements. I benefitted from discussions
with Richard Mabry and Joseph Malkevitch, and three
referees. In particular, one referee suggested Lemma 1
to repair an oversight.
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A Hexagonal Prism

Figure 13 shows a hexagonal prism, following the model
of the square prism in Figure 10: no pair of faces are
disjoint, but 4 and B marked share just one vertex.
Figure 14 shows its overlapping unfolding.
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Figure 13: (a) Schlegel diagram of a hexagonal prism.
(b) Overhead view of combinatorial rearrangement. The
cut tree T is marked with red and blue paths.
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Figure 14: Unfolding of Figure 13(b). Curvature at v6
and v5 is 5.7◦. Vertices 1 and 4 are collinear with 26
and 35 respectively. Hexagon: 123456.


