Computational Geometry Column 48

Joseph O'Rourke*

Figure 1: (a) Convex 5-gon; (b) Orthogonal polygon, $n=12$.
The stations might be angular RF, IR, or laser transmitters. A sensor at a point in the plane receives the keys from those stations that angularly cover it, and can determine if it is in P from the Boolean formula. The primary goal is to minimize g, the number of stations, or "guards" in analogy with art gallery theorems.

[^0]Aside from the connection to art gallery theorems, work on floodlights (e.g., [ST03]) and CSG Peterson formula (e.g., [DGHS93]) is relevant, but none of the related work solves the problem as posed. For example, one 180° station per polygon edge can achieve $g=$ n [DGHS93], but $g<n$ is desirable.

Tight bounds have been achieved for two special classes of polygons: $g=\lceil n / 2\rceil$ stations suffice, and are sometimes necessary, for convex polygons and for orthogonal polygons. In both cases, a station at every other vertex, broadcasting over the internal angle there, achieves the goal. For convex polygons, it is clear this suffices. Necessity of $\lceil n / 2\rceil$ for any polygon without collinear edges is established by observing that fewer stations implies that some edge e of P is not collinear with a broadcast boundary line, leaving a neighborhood of e with ambiguous in/out status. Removing station C in Fig. 1a places e in this status.

Let e be a horizontal top edge of an orthogonal polygon. Their algorithm for orthogonal polygons places a station at e 's left endpoint, and then a station at every other vertex after that; see Fig. 1b. They prove this suffices by a clever induction.

So far we have employed what they call "natural angle guards": stations at a vertex of P covering the vertex's interior angle. For general polygons, such stations do not suffice. Even

Figure 2: (a) Internal angle stations do not suffice; (b) Coverage by three stations: formula $A \cdot B \cdot D$.
one at every vertex of the pentagon shown in Fig. 2a fails to distinguish between points x and y, who both receive $A \cdot B \cdot C$. Fig. 2b shows that three stations do suffice for this pentagon, but one, D, broadcasts both inside and outside P. Indeed they establish through a nontrivial argument involving partitioning P into quadrilaterals, pentagons, and at most one hexagon, that $n-2$ stations at vertices always suffice, providing the best upper bound on the general problem. When edge collinearities are permitted, there is a lower bound of $g=\Omega(\sqrt{n})$ and orthogonal polygon examples where $O(\sqrt{n})$ stations suffice. But the best lower bound for general position polygons is the $\lceil n / 2\rceil$ necessity mentioned previously. The considerable gap between the $\lceil n / 2\rceil$ and $n-2$ bounds remains to be closed.

Finally, it is desirable not only to minimize the number of stations, but also to achieve concise formulas, those, when in DNF, have a constant number of terms in each conjunction. For then a sensor can prove it is in P with an $O(1)$-size "certificate." The formula for convex polygons is not concise, as it is a conjunction of $\lceil n / 2\rceil$ terms. Tradeoffs have been established
between the competing goals in some cases. For example, conjunctive terms for a convex polygon can be kept to $O(1 / \epsilon)$ length, for any constant $\epsilon>0$, at the cost of inflating g to $\lceil n / 2\rceil(1+\epsilon)$.

References

[DGHS93] D. P. Dobkin, L. Guibas, J. Hershberger, and J. Snoeyink. An efficient algorithm for finding the CSG representation of a simple polygon. Algorithmica, 10:1-23, 1993.
[EGS06] D. Eppstein, M. T. Goodrich, and N. Sitchinava. Guard placement for wireless localization. arXiv: cs.CG/0603057, 2006.
[ST03] B. Speckmann and C. D. Tóth. Allocating vertex π-guards in simple polygons via pseudo-triangulations. In Proc. 14th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 109-118, Philadelphia, 2003.

[^0]: *Dept. of Computer Science, Smith College, Northampton, MA 01063, USA. orourke@cs.smith.edu.

