Computational Geometry Column 46

Joseph O'Rourke*

Abstract

The old problem of determining the chromatic number of the plane is revisited.

The question of the chromatic number of the Euclidean plane \mathbb{E}^{2} has been unresolved for over fifty years. Informally, the question asks: How many colors are needed to paint the plane so that no two points a unit distance apart are painted the same color? If the same question is asked of the line, the answer is 2 : Coloring $[0,1)$ red, $[1,2)$ blue, etc., ensures that no two unit-separated points have the same color. Here I report on a few new developments, and some related open problems that are perhaps easier.

One can view the question as asking for the chromatic number $\chi\left(\mathbb{E}^{2}\right)$ of the infinite unitdistance graph G, with every point in the plane a node, and an arc between two nodes if they are separated by a unit distance. Erdős and de Bruijn showed [EdB51] that the chromatic number of the plane is attained for some finite subgraph of G. This result led to narrowing the answer to $4 \leq \chi\left(\mathbb{E}^{2}\right) \leq 7$. For example, the lower bound of 4 is established by the "Moser graph" shown in Fig. 1, which needs 4 colors.

Figure 1: All edge lengths are 1. Four colors are needed to color the nodes so that no two adjacent nodes have the same color.

However, the Erdős-de Bruijn compactness argument depends crucially on the Axiom of Choice. Recently Shelah and Soifer [SS03] showed that the chromatic number of the plane

[^0]may depend on which axioms of set theory one employs. In particular, they prove that if every finite unit-distance graph can be 4-colored, then the chromatic number of the plane is 4 under the standard Zermelo-Fraenkel axioms with the Axiom of Choice (ZFC), as one would expect. But if instead one uses ZF and a weaker axiom of "dependent choices," and further assumes that every set of real numbers is Lebesgue measurable (roughly: has an area), then the chromatic number of the plane must be strictly greater than 4 .

This problem is difficult enough to have a $\$ 1000$ reward promised for its solution by Ron Graham, who is continuing the Erdős tradition of tagging open problems with monetary awards proportional to their perceived difficulty [Gra03]. Here I report on two related problems of Graham, which may be classified as "Euclidean Ramsey problems" [Gra04a] [Gra04b].

Let T be a triangle in the plane, with each point of the plane assigned a color. T is monochromatic if its three vertices are painted the same color. Now we imagine congruent copies of T moved around the plane via rigid motions, and seek a spot where T is monochromatic.

Conjecture $1 \mathbf{(\$ 5 0)}$ For any triangle T, there is a 3-coloring of the plane with no monochromatic copy of T.

Note here the coloring may depend on T.

Figure 2: Half-open strips of width $\sqrt{3} / 2$ preclude a monochromatic copy of the illustrated unit equilateral triangle.

It is especially interesting to consider the unit edge-length equilateral triangle T_{1}, which is a subgraph of the unit-distance graph G. Conjecture 1 suggests that a 3-coloring can avoid a monochromatic copy, but in fact a 2-coloring suffices. Paint the plane in half-open alternating strips of width $\sqrt{3} / 2$. As Fig. 2 shows, T_{1} has no monochromatic position, just barely failing when two vertices are placed on the lower closed boundary of a strip. The
surprising conjecture is that the equilateral triangle is very special, in that, for any nonequilateral triangle T, every 2 -coloring admits a monochromatic copy of T :

Conjecture $2(\$ 100)$ Every 2-coloring of the plane contains a monochromatic copy of every triangle, except possibly for a single equilateral triangle.

This is known to be true for several classes of triangles, for example right triangles [Sha76]. So, for example, the same strip coloring captures every right triangle; see Fig. 3.

Figure 3: Every right triangle can be positioned to have its vertices in one color class.
All these notions generalize to arbitrary dimensions. In 3D, it is known that every 3coloring of \mathbb{E}^{3} includes a monochromatic copy of any right triangle. The knowledge gap for the chromatic number of space is even wider than for the plane: it is only known to satisfy $6 \leq \chi\left(\mathbb{E}^{3}\right) \leq 15$. See [Gra04a] [Gra04b] for further results and references.

References

[EdB51] P. Erdős and N. G. de Bruijn. A colour problem for infinite graphs and a problem in the theory of relations. Indag. Math., 13:371-373, 1951.
[Gra03] R. L. Graham. Euclidean Ramsey theory, August 2003. Lecture at Mathematical Sciences Research Institute, Berkeley. http://www.msri.org/publications/video/ index07.html.
[Gra04a] R. L. Graham. Euclidean Ramsey theory. In Jacob E. Goodman and Joseph O'Rourke, editors, Handbook of Discrete and Computational Geometry (Second Edition), chapter 11, pages 239-254. CRC Press LLC, Boca Raton, FL, 2004.
[Gra04b] R. L. Graham. Open problems in Euclidean Ramsey theory. Geocombinatorics, XIII(4):165-177, April 2004.
[Sha76] L. Shader. All right triangles are Ramsey in \mathbb{E}^{2}. J. Combinatorial Theory Series A, 20:385-389, 1976.
[SS03] S. Shelah and A. Soifer. Axiom of choice and chromatic number of the plane. J. Combinatorial Theory Series A, 103(2):387-391, 2003.

[^0]: *Dept. of Computer Science, Smith College, Northampton, MA 01063, USA. orourke@cs.smith.edu. Supported by NSF Distinguished Teaching Scholar Grant DUE-0123154.

