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Abstract

The old problem of determining the chromatic number of the plane is revisited.

The question of the chromatic number of the Euclidean plane E
2 has been unresolved

for over fifty years. Informally, the question asks: How many colors are needed to paint the
plane so that no two points a unit distance apart are painted the same color? If the same
question is asked of the line, the answer is 2: Coloring [0, 1) red, [1, 2) blue, etc., ensures that
no two unit-separated points have the same color. Here I report on a few new developments,
and some related open problems that are perhaps easier.
One can view the question as asking for the chromatic number χ(E2) of the infinite unit-

distance graph G, with every point in the plane a node, and an arc between two nodes if they
are separated by a unit distance. Erdős and de Bruijn showed [EdB51] that the chromatic
number of the plane is attained for some finite subgraph of G. This result led to narrowing
the answer to 4 ≤ χ(E2) ≤ 7. For example, the lower bound of 4 is established by the “Moser
graph” shown in Fig. 1, which needs 4 colors.
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Figure 1: All edge lengths are 1. Four colors are needed to color the nodes so that no two
adjacent nodes have the same color.

However, the Erdős-de Bruijn compactness argument depends crucially on the Axiom of
Choice. Recently Shelah and Soifer [SS03] showed that the chromatic number of the plane
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may depend on which axioms of set theory one employs. In particular, they prove that if
every finite unit-distance graph can be 4-colored, then the chromatic number of the plane
is 4 under the standard Zermelo-Fraenkel axioms with the Axiom of Choice (ZFC), as one
would expect. But if instead one uses ZF and a weaker axiom of “dependent choices,” and
further assumes that every set of real numbers is Lebesgue measurable (roughly: has an
area), then the chromatic number of the plane must be strictly greater than 4.
This problem is difficult enough to have a $1000 reward promised for its solution by Ron

Graham, who is continuing the Erdős tradition of tagging open problems with monetary
awards proportional to their perceived difficulty [Gra03]. Here I report on two related prob-
lems of Graham, which may be classified as “Euclidean Ramsey problems” [Gra04a] [Gra04b].
Let T be a triangle in the plane, with each point of the plane assigned a color. T is

monochromatic if its three vertices are painted the same color. Now we imagine congruent
copies of T moved around the plane via rigid motions, and seek a spot where T is monochro-
matic.

Conjecture 1 ($50) For any triangle T , there is a 3-coloring of the plane with no monochro-

matic copy of T .

Note here the coloring may depend on T .

Figure 2: Half-open strips of width
√
3/2 preclude a monochromatic copy of the illustrated

unit equilateral triangle.

It is especially interesting to consider the unit edge-length equilateral triangle T1, which
is a subgraph of the unit-distance graph G. Conjecture 1 suggests that a 3-coloring can
avoid a monochromatic copy, but in fact a 2-coloring suffices. Paint the plane in half-open
alternating strips of width

√
3/2. As Fig. 2 shows, T1 has no monochromatic position, just

barely failing when two vertices are placed on the lower closed boundary of a strip. The
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surprising conjecture is that the equilateral triangle is very special, in that, for any non-
equilateral triangle T , every 2-coloring admits a monochromatic copy of T :

Conjecture 2 ($100) Every 2-coloring of the plane contains a monochromatic copy of ev-

ery triangle, except possibly for a single equilateral triangle.

This is known to be true for several classes of triangles, for example right triangles [Sha76].
So, for example, the same strip coloring captures every right triangle; see Fig. 3.

Figure 3: Every right triangle can be positioned to have its vertices in one color class.

All these notions generalize to arbitrary dimensions. In 3D, it is known that every 3-
coloring of E

3 includes a monochromatic copy of any right triangle. The knowledge gap for
the chromatic number of space is even wider than for the plane: it is only known to satisfy
6 ≤ χ(E3) ≤ 15. See [Gra04a] [Gra04b] for further results and references.
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