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Unfolding Polyhedra
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Abstract

Starting with the unsolved “Dürer’s problem” of edge-
unfolding a convex polyhedron to a net, we specialize
and generalize (a) the types of cuts permitted, and
(b) the polyhedra shapes, to highlight both advances
established and which problems remain open.

1 Introduction

Dürer’s problem asks whether every convex polyhe-
dron may be cut along edges and unfolded to a sin-
gle non-overlapping simple polygon in the plane, a
net [DO07] [O’R13]. This is attributed to Dürer be-
cause he drew many such unfoldings ca. 1500, although
the question was not formulated mathematically until
1975 [She75]. It remains open, although there has been
recent (minor) progress [O’R18] [O’R17]. Here we sur-
vey several generalizations and specializations of this
central problem, emphasizing what is settled and what
remains unresolved.
Unfolding the surface of a polyhedron to a single, flat

piece in the plane requires that the cuts form a spanning
tree of the vertices. We classify cuts in four types C:

1. edge-unfold : All cuts are polyhedron edges, as in
Dürer’s problem.

2. anycut-unfold : The cuts may be generalized to any
curve on the surface that form a spanning tree of
the vertices.1

3. edge-unzip: The cut edges form a Hamiltonian path
of the 1-skeleton. This natural specialization was
introduced by Shephard [She75] and explored as
“unzipping” in [DDL+10].2 Most classes of poly-
hedra do not admit edge-unzippings [DDEO19].

4. anycut-unzip: The cuts form a simple curve on the
surface that includes every vertex. So a generaliza-
tion (anycut) of a specialization (unzipping).

The second classification we explore varies the shapes
P of the polyhedra:

1. convex polyhedra: All faces convex, all dihedral an-
gles ≤π, as in Dürer’s problem.

∗Smith College, jorourke@smith.edu
1 “Anycut” is new terminology, intended to replace the “gen-

eral unfoldings” in [DO07].
2 “Unzipping” is my slight variation on their “zipper unfold-

ings.”

2. spherical polyhedra: Specializing that all vertices
lie on a sphere [O’R15].3

3. nonconvex polyhedra. A broad generalization, and
where most applications lie.

4. orthogonal polyhedra form an important subclass of
nonconvex polyhedra [BDD+98] [O’R08] [DFO07]
[DDFO17]. All faces meet at right angles.

5. polycubes : Polyhedra built by gluing unit cubes
whole-face to whole-face. Here all cube edges, even
those with dihedral angle π, are available for cut-
ting. So these are potentially easier to edge-unfold
than are orthogonal polyhedra [RALSZ19].

For each class of polyhedra P , and each type of cuts
C, we can ask:

Can every polyhedron in P be C-unfolded to a net?

The status of these 4× 5 = 20 questions is summarized
in Table 1: 6 are unresolved.
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(Specialize) (Generalize) (Gen/Spec)
Shapes Edge-Unf Edge-Unzip Anycut-Unf Anycut-Unzip

Convex Polyh ? ✗ ✓ ?

Spherical ? ✗ ✓ ?

Nonconvex Polyh ✗ ✗ ? ✗

Orthogonal ✗ ✗ ✓ ✓

Polycubes ? ✗ ✓ ✓

Table 1: Open Problems: ?=open, ✓=proven true, ✗=counterexamples.
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