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Abstract

A flipturn on a polygon consists of reversing the order of edges inside a pocket of
the polygon, without changing lengths or slopes. Any polygon with n edges must be
convexified after at most (n − 1)! flipturns. A recent paper showed that in fact it will
be convex after at most n(n−3)/2 flipturns. We give here lower bounds. We construct
a polygon such that if pockets are chosen in a bad way, at least (n − 2)2/4 flipturns
are needed to convexify the polygon. In another construction, (n − 1)2/8 flipturns
are needed, regardless of the order in which pockets are chosen. All our bounds are
adaptive to a pre-specified number of distinct slopes of the edges.

1 Background

A polygon is a set of distinct points v0, . . . , vn−1 such that its edges (the open line segments
(vi, vi+1) for 0 ≤ i < n, addition is modulo n) are disjoint. A polygon is called convex if the
interior angle at each vi is not more than π. If a polygon P is not convex, then it can be
made convex with the help of some transformation. One simple way to do so is to compute
the convex hull, i.e., the smallest polygon that contains P and is convex. Another approach
to convexify a polygon is to move the location of its points, without changing edge lengths.
That this is always possible is not at all trivial; see [CDR03].

Another approach is to change the polygon only in the vicinity of the convex hull. In
particular, two operations are flips and flipturns, which are defined as follows. A pocket of
P is a set of contiguous edges such that none of them intersects the convex hull, but the
two endpoints are on the convex hull. A flip of a pocket consists of reflecting the pocket
along the line through the two endpoints of the pocket (also called the lid of the pocket).
A flipturn instead rotates the pocket by 180◦, and thus reverses the order of edges in the
pocket. See Figure 1 for an example.

Flips have a long and intricate history; see the overview paper by Toussaint [Tou99]. We
study here flipturns, which were mentioned for the first time in a paper by Grünbaum [Grü95].
The question studied is: how many flipturns are needed until the polygon is convexified?
This number may depend on the order in which pockets are chosen; we thus consider both
the shortest flipturn sequence (which is the shortest sequence of flipturns needed until a given
polygon is convexified), and the longest flipturn sequence.
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Figure 1: An example of a flipturn.

Joss and Shannon (unpublished, but reported in [Grü95]) observed that any flipturn se-
quence has length at most (n − 1)!. This holds because every flipturn creates a different
permutation of the edges, and no permutation can repeat. Also, Joss and Shannon conjec-
tured that the shortest flipturn sequence has length at most n2/4 flipturns for any polygon.

While this conjecture is still open, Ahn et al. showed at least that a quadratic upper
bound is correct: any polygon can be convexified with n(n − 3)/2 flipturns [ABC+00]. In
fact, their bound holds for any flipturn sequence, and thus the longest flipturn sequence has
length at most n(n−3)/2. The bound by Ahn et al. depends on using “modified flipturns” in
case of degeneracies. Aichholzer et al. [ACD+02] studied the case when such flipturns are not
allowed, and give larger (but still quadratic) upper bounds. The special case of orthogonal
polygons (where all edges are horizontal or vertical) was studied even earlier; see [DORS88].

In this paper, we give lower bounds on the length of the longest and the shortest flipturn
sequence, and show that both may be quadratic in the number of vertices of the polygon.
More precisely, we first construct a polygon that – with a bad sequence of flipturns – needs
(n−2)2/4 flipturns to convexify. Note that this lower bound is very close to the (conjectured)
upper bound by Joss and Shannon.

The upper bounds of [ABC+00] and [ACD+02] are adaptive in the number of slopes s of
edges of the polygon. Motivated by this, we also make our lower bounds adaptive in s, and
establish that the length of the longest flipturn sequence is θ(ns). In fact, our lower bound
is quite close (for small s) to the upper bound of Ahn et al.

Then we turn to lower bounds on the shortest flipturn sequence. We give a polygon that
requires (n − s)(s − 1)/2 (or (n − 1)2/8 for s = n − 2) flipturns to convexify, and that only
has one pocket at any given time. Table 1 summarizes our results.

In terms of n In terms of n and s

Lower bounds Shortest Longest Shortest Longest
(n−1)2/8 (n−2)2/4 (n−s)(s−1)/2 (n−s)(s−1)/2 + (s−2)2/4

Upper bounds n(n − 3)/2 [ABC+00] n(s−1)/2 − s [ABC+00]
n2−4n + 1 [ACD+02] ns−�(n+5s)/2�−1 [ACD+02]

Table 1: Bounds on the length of the shortest and longest flipturn sequence to convexify
any polygon with n edges and s slopes. Upper bounds are for the longest flipturn sequence
and hence also hold for the shortest flipturn sequence. Bounds from [ABC+00] use modified
flipturns whereas the ones from [ACD+02] do not.

For ease of understanding, we only give the ideas in the main part of the paper; the
precise coordinates and argumentation why they suffice are left to the appendix.
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2 Lower bounds for the longest flipturn sequence

In this section, we construct polygons for which the longest flipturn sequence has quadratic
length. The crucial idea is as follows: Assume k consecutive edges e1, . . . , ek are sorted by
slope, and followed by an edge e∗ whose slope is smaller than all other slopes. Then e∗

belongs to a pocket that also contains ek. If e∗ is short enough (relative to the length of ek

and the slopes of e∗, ek and ek−1), then this pocket will consist of e∗ and ek only.
Now flipturn the pocket; then e∗ belongs to a pocket which (if e∗ is short enough) consists

of ek−1 and e∗ only. Flipturn this pocket; if e∗ is short enough, we now have a pocket with
ek−2 and e∗. This continues, until after k flipturns we exchange e∗ and e1, and the edges are
sorted by slope. See Figure 2 for an illustration.

ek

e∗

e1

Figure 2: Edge e∗ is sliding past e1, . . . , ek with k flipturns.

Now we apply this idea repeatedly. Assume that we are given some slopes c1 < c2 < . . ..
In what follows, ei is an edge of slope ci; there will be only one such edge per slope. For �
even, we will construct a polygonal chain C� with � edges such that some flipturn sequence
(applied to a polygon that contains C� as part of it) has length �2/4 before C� is convexified.
For � = 2, C1 consists of two edges e2 and e1 (in this order), which need 1 = �2/4 flipturns.

For � > 2, we construct the polygonal chain C� by taking the polygonal chain C�−2

(applied to slopes c2, . . . , c�−1), and attaching to it two edges e� and e1. See Figure 3(a). By
induction, there are (�−2)2/4 flipturns before C�−2 is convexified. If e1 is short enough, then
the pocket formed by e� and e1 will not interfere with the flipturns for C�−2. Once C�−2 is
convexified, edge e1 slides down with �−1 flipturns. This yields a total of (�−2)2/4+(�−1) =
�2/4 flipturns for C�. See Figure 3(b) and (c).

e1

e�

C�−2

(a) (b) (c)

Figure 3: (a) A polygonal chain that may need �2/4 flipturns. (b) Chain C�−2 is convexified.
(c) The last pocket is removed with � − 1 flipturns.
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Since Cn−2 can be completed to a polygon after adding two more edges, this yields the
desired lower bound of (n − 2)2/4 flipturns for a polygon. However, we will now slightly
change the construction to accommodate a limited number s of slopes. We assume for now
that the number of slopes s is even and s ≥ 6.

Let Cs−2 be the polygonal chain with s − 2 edges (applied to slopes c2, . . . , cs−1) that
needs (s − 2)2/4 flipturns to convexify. Add k pairs of edges, alternatingly of slope cs and
of slope c1. All edges of slope c1 have the same length while the edges of slope cs become
increasingly longer. Thus the k pairs form k pockets. See Figure 4(a).

We first convexify Cs−2 with (s− 2)2/4 flipturns. Then we slide down the edges of the k
pockets, starting with the lowest pocket. Each such edge needs s− 1 flipturns, for a total of
(s − 2)2/4 + k(s − 1) flipturns. See Figure 4(b) and (c).

(b) (c)

Cs−2

(a)

Figure 4: Lower bound construction for a limited number of slopes.

We close the polygon with two more (potentially very long) edges; one of slope cs and
the other of slope cs−1 (but in the other direction.)1 Chain Cs−2 uses s − 2 edges, so the
number k of pairs is k = (n − 2 − (s − 2))/2 = (n − s)/2, and the total number of flipturns
is (s − 2)2/4 + (n − s)(s − 1)/2.

Theorem 1 There exists a polygon with n edges and s distinct slopes (s ≥ 6, n and s even)
for which the longest flipturn sequence has length at least (s − 2)2/4 + (n − s)(s − 1)/2.

Note that our lower bound equals n(s−1)
2

− s2

4
− s

2
+ 1, which is close (if s is small) to the

upper bound of n(s−1)
2

−s given by Ahn et al. [ABC+00]. Also, it is maximized for s = n−2,
and then evaluates to (n − 2)2/4.

We briefly touch on the other cases of s and n: For s odd and s ≥ 5, the base case for the
construction of C� changes to using just one edge, which needs 0 = (�2 − 1)/4 flipturns. The
lower bound hence reduces by 1

4
. For s = 3, 4, we need to add one more edge to complete

the polygon, and for s = 2 we need to add two more edges. To cover the other parity of n,
we can add one more edge. The lower bounds in these cases can be obtained by replacing n
with n + a, where a is the number of added edges.

1Here we use s ≥ 6; for s = 2, 4 the first edge of the chain has slope cs−1 and would overlap the new edge.
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2.1 Order matters

The lower bound for our polygon critically depends on the order in which we choose pockets
for executing flipturns. In our construction we always chose the lowest pocket to flip; if
instead we choose the topmost pocket, then the polygon is convexified after k+s = (n+s)/2
flipturns. Similar as done in [ACD+02] for orthogonal polygons, we can therefore observe
the size of the gap between the longest and the shortest flipturn sequence.

Theorem 2 For infinitely many n, and any s ≥ 6 and even, there is a polygon with n
vertices and s slopes where the shortest and longest flipturn sequence differ in length by
ns/2 − n − s − s2/4 + 1.

3 Lower bounds for the shortest flipturn sequence

In this section, we construct another polygon which needs quadratically many flipturns and
has only one pocket at any given time; the lower bounds polygon hence hold for the shortest
sequence, which settles an open question in [ACD+02].

The idea is the same as before: Repeatedly some edge is “sliding down” a chain of edges
that are sorted by slope. The difference is that the next edge to slide down will be hidden
inside the edge that is sliding down, and so on recursively. Thus, we thus first study how to
slide down a parallelogram, where the parallelogram shape hides all later edges.

Assume that one edge e of the polygon has been replaced by a parallelogram R with two
opposite corners at the endpoints of e. Assume furthermore that at most one point of R is
on the convex hull of P . Then we can define pockets just as before, and apply flipturns just
as before; this rotates the parallelogram (and may bring it to the convex hull.) See Figure 5.

Figure 5: Flipping a pocket with a parallelogram.

The parallelogram can “slide down” similar as an edge. Let c1 < c2 < . . . < cs be a set of
slopes; for ease of description we assume c1 = 0 and cs = ∞. Let e2, . . . , es be edges of slope
c2, . . . , cs, followed by a parallelogram R (Figure 6(a)). We may have additional horizontal
edges before e2 and additional vertical edges after R. If the width of R is small enough, then
R forms a pocket with es. After a flipturn, it will form a pocket with es−1. This continues
for s − 1 flipturns; then R is before e2. See Figure 6(b).

At this point R is on the convex hull and the concept of a flipturn is not well-defined. Now
R reveals itself to consist of two horizontal edges before and after a (smaller) parallelogram
R′. Parallelogram R′ now slides back up. More precisely, R′ forms a pocket with one of the
horizontal edges of R. After a flipturn, R′ is hence before e2. Then it forms a pocket with
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e2, and after another flipturn, it is before e3. This continues for s − 1 flipturns, until R′ is
before es. At this point, R′ is on the convex hull. Now R′ reveals itself to consist of two
vertical edges plus an (even smaller) parallelogram R′′ where one pair of edges is horizontal.
See Figure 6(c).

es

R′′

e′s

es

es

e2

(c)

e2

R′

e2

R

(b)(a)

Figure 6: Sliding a parallelogram down and up.

Now we go into recursion. We are exactly in the same situation as when sliding down R,
except that edge es has been replaced by a new (shorter) vertical edge e′s. The process thus
iterates, until R is reduced to a single horizontal edge, which slides to its place with s − 1
flipturns. Note that there always is only one pocket, which is incident to the parallelogram.

We compute the number of flipturns as follows. In the outermost recursion, we have s−1
edges e2, . . . , es, the parallelogram R, and two more edges (of slope cs and cs−1) to close off
the polygon.2 For each recursion, we remove 4 edges from the parallelogram and do 2(s− 1)
flipturns. In the final recursion, we have one edge and s − 1 flipturns. If k is the number of
recursions, then the number of edges is (s− 1) + 2 + 4k + 1, so k = (n− s− 2)/4. The total
number of flipturns hence is k·2(s−1)+(s−1) = (n−s−2)(s−1)/2+(s−1) = (n−s)(s−1)/2.

Theorem 3 There exists a polygon with n edges and s distinct slopes (s ≥ 4, n − s = 2
(mod 4)) with a unique convexifying flipturn sequence that has length (n − s)(s − 1)/2.

Note that this bound is maximized for s = (n+1)/2, and then yields (n−1)2/8 flipturns.
Very similar lower bounds can be derived for s ≤ 4 and all other values of n − s (mod 4),
by adding one more edge to close the polygon if needed, and/or by stopping the recursion
by letting one vertical edge slide up.

2The first edge has slope c2, hence this construction works for s ≥ 4.
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A Suitable edge-lengths

In this appendix, we fill in details of how to choose integer coordinates such that all edges
are sufficiently short to create pockets (and flipturns) as desired.

A.1 The construction for Theorem 1

We first study the construction for the longest flipturn sequence, which consists of a polygonal
chain Cs−2 which needs (s − 2)2/4 flipturns, followed by k pairs of edges with alternatingly
the largest and the smallest slope. We know k = (n − s)/2, but will write k for simplicity.

We describe coordinates via the x-extent of each edge, which is the length of the projection
of the edge onto the x-direction. We choose slopes and x-extents as follows:

• We set ci = i for i = 1, . . . , s − 1. 3

• An edge of slope ci, 1 ≤ i ≤ s − 1 has x-extend 2i.

• The x-extent of the k edges of slope cs are 2s, 2s + 1, 2s + 2, . . . . In particular, these
edges are increasingly longer, as required.

• To close the polygon, draw a line of slope cs−1 above the polygonal chain. Connect to
this line by extending the first edge of Cs−2 (which has slope cs/2+1), and by adding an
edge of slope cs at the other end of the polygonal chain. Neither of these new edges
adds any pockets; we will not give precise coordinates for the vertices, since choosing
the edges long enough will clearly suffice to make the polygon simple.

See Section A.4 for the full construction. Now we verify that every edge slides down
correctly. Say edge ej is sliding down and forms a pocket with ei, where 2 ≤ j < i ≤ s. The
lid of the pocket of ej and ei must have slope greater than the one of the edge before, which
is ci−1. If xj and xj are the x-extents of ej and ei, then this becomes (see also Figure 7)

xici + xjcj

xi + xj

> ci−1, or
xi

xj

>
ci−1 − cj

ci − ci−1

(1)

For our slopes and x-extents, this evaluates to 2i−j > i − 1 − j, which holds for all i > j.

ei

ej

xi xj

ei−1

Figure 7: Slope considerations.

3We preferred simplicity of description over smallest possible coordinates. Smaller (but still exponential)
coordinates could be achieve by setting c1 = 0, cs = ∞ and ci = i − 1 for all other i.
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A.2 A polynomial construction

Note that our coordinates are exponential in the number of vertices of the polygon, and we
have not been able to find x-extends and slopes that avoid this and satisfy Equation (1).
However, at a slight loss in the lower bound, we can obtain polynomial coordinates. Replace
Cs by a polygonal chain that contains e2, . . . , es−1 in order sorted by slope, and then keep
k pairs of edges of slope es and e1. Now only edges of slope c1 slide down, so Equation (1)
only needs to hold for j = 1 and simplifies to xi > i − 2. With xi = i − 1, the coordinates
are then polynomial in n. The length of the longest flipturn sequence of this polygon is
k(s − 1) = (n − s)(s − 1)/2.

A.3 The construction of Theorem 3

Now we give the construction for the shortest flipturn sequence, which consists of s−2 edges
with slopes c2, . . . , cs−1, followed by a parallelogram Rk that hides k recursions. (We have
k = (n−s−2)/4, but will use k for simplicity.) More precisely, Rk consists of two horizontal
edges and a parallelogram R′

k, whereas R′
k consists of two vertical edges and a parallelogram

Rk−1, and so on recursively.
The parallelograms are defined as follows (see also Figure 8):

• R0 consists of one horizontal edge of length 2.

• R′
1 consists of two vertical edges of length 4 around R0.

• Ri, i ≥ 1 consists of two horizontal edges of length 7 · 8i−1 around R′
i.

• R′
i, i ≥ 2, consists of two vertical edges of length 28 · 8i−2 around Ri−1.

28

28

4

4

R′
2

56

56

7

7

2

R2

Figure 8: The construction of Ri.
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Some easy math shows that Ri has width 2 · 8i, height 8i, and its non-horizontal edges
of Ri have slope less than 1. On the other hand, R′

i has width 2 · 8i−1 = 1
4
8i, height 8i, and

its non-vertical edges have slope greater than 2.
The remaining slopes can be chosen quite arbitrarily, as long as they are between 1 and 2;

we set ci = 1 + 1/s for i = 2, . . . , s. The edge lengths of edges e2, . . . , es have to be chosen
such that parallelogram Rk can slide down one edge at a time and R′

k can slide up one edge
at a time. All other parallelograms Ri and R′

i are even shorter than Rk and R′
k, and so will

also slide correctly if Rk and R′
k do. As we will show now, it suffices to set the x-extent of

ei to 3s · 8k (for 2 ≤ i < s), and the y-extend of es, which is vertical, to 3 · 8k.
Let Yk = 8k and Xk = 2Yk (these are the height and width of Rk), and denote the

x-extent of ei by xi; we have xi = 3sYk. For 3 ≤ i ≤ s − 1, the slope of the lid formed by ei

and Rk is then (see also Figure 9(a))

cixi + Yk

xi + Xk

=
(ci−1 + 1

s
)3sYk + Yk

3sYk + 2Yk

=
3sci−1 + 4

3s + 2
> ci−1,

since ci−1 < 2. So Rk forms a pocket with ei, but not ei−1, for 3 ≤ i ≤ s − 1. Similarly one
shows that this holds for i = s (the math changes slightly since cs = ∞.) Also, by ci−1 > 1
the lid of this pocket has slope greater than 1, so Rk (for which the non-horizontal edges
have slope less than 1) is truly inside the pocket.

Similar math shows that R′
k also slides up correctly. Let Yk = 8k and Xk = 1

4
Yk; these

are the height and width of R′
k. For 1 ≤ i ≤ s − 2, the slope of the lid formed by R′

k and ei

is then (see also Figure 9(b))

Yk + cixi

X ′
k + xi

=
Yk + (ci+1 − 1

s
)3sYk

1
4
Yk + 3sYk

=
3sci+1 − 2

3s + 1
4

=
12sci+1 − 8

12s − 1
< ci+1,

so R′
k forms a pocket with ei, but not ei+1, for 1 ≤ i ≤ s − 2. Similarly one shows that this

holds for i = s− 1 (the math changes slightly since cs = ∞.) Also, the lid of this pocket has
slope less than 2, so R′

k (for which the non-vertical edges have slope greater than 2) is truly
inside the pocket.

xi Xk

Yk

cixi

ei−1

Rk

ei

R′
k Yk

xiX ′
k

ei cixi

ei+1
(a) (b)

Figure 9: Slope-considerations for sliding a parallelogram.
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A.4 Full constructions

For convenience of the reader, and to give an idea of the size differences involved, we have
included here some full constructions to scale.

(a)
=10 units

c5

c6

c1

c6

c1

c6

c2

c5

c4

c3

c6

(b)

=10 units

c5

c1

c6

c1

c6

c5

c4

c2

c3

c4

c3

c4

c3

(c)

=100 units

c2

Figure 10: The full constructions to scale. (a) The construction of Section 2 for s = 6 and
n = 10. (b) The construction of Section A.2 with polynomial coordinates for s = 6 and
n = 10. (c) The construction of Section 3 for s = 4 and n = 14.
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