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1 Introduction

Consider a collection of discs or coins. The coins are found resting on a plane surface so that no two
overlap. We explore issues involved in moving the coins from their initial positions to some desired final
position.

To be more precise, we can move a coin centered at point a to a position centered at point b if the
trajectory of the coin along the line segment ab does not collide with another coin. We say that such a
translation in one fixed direction is one move. We are given as input a set of coins C = {c1, c2 . . . cn}
positioned at initial source locations P = {p1, p2, . . . pn} and a set of final destinations Q = {q1, q2, . . . qn},
where P and Q are sets of points. Associated with each coin ci is an agenda ai ⊆ Q a set of possible
destinations. As output we need to produce an itinerary, an ordered list of moves satisfying the agenda
for every coin. The objective is to produce an efficient itinerary. The cost of an itinerary is simply the
number of moves used.

This problem is motivated by measuring the difference between various configurations. For example one
can measure the difference between two strings of text by their edit distance [1]. The edit distance is
the minimum number of text editor operations needed to go from one string to another. A distance
with a more geometric flavour is the earth movers distance [2]. The earth movers distance measures
the minimum amount of work needed to go from one configuration to another. The notion of work is
flexible and conforms to the application. Thus our problem of moving coins is in the same vein as the
previous examples. We are interested in the minimum number ”move” operations needed to go from one
configuration of coins to another.

Our problem can also be viewed as a simplified model of multi-robot path planning. Consider a collection
of robots, whose footprints are discs, manoeuvring in a common workspace. A robot’s tasks may take it
from one destination to another. Our notion of an agenda for a coin is a simplified way to model this type
of situation. A survey paper by Hwang and Ahuja [3] discusses the general robot path planning problem
and multi-robot path planning in particular.

Erik and Martin Demaine with Helena Verrill [4] examine sliding coin puzzles, that is, moving coins from
one configuration to another subject to two coins always being in contact. They present theorems on the
solubility of such puzzles, and algorithms to produce optimal solutions when they exist. They also include
references to other similar puzzles.

We consider several different variations on our coin moving problem. We first consider the case where
ai = Q for all coins in C, that is each coin may go to any of the destinations, furthermore the coins are all
of the same radius. We show that an itinerary of cost 2n− 1 is always sufficient, and an itinerary of cost
3n/2 is sometimes necessary. When the coins are of various diameters, and the destination position of each
coin is guaranteed not to overlap with other coins in their destination positions, we obtain tight bounds.
We show that an itinerary of cost 2n is sometimes necessary and always sufficient. We then consider the
coin placement problem, that is, determining whether the set of destinations can accommodate all of the
coins without overlap. We show that deciding a non-overlapping coin placement is NP-complete.

Our algorithms for obtaining the sufficiency bounds use moves of unbounded distance. Thus we also
consider cases where the moves are confined to a small workspace. Suppose that each coin is of unit
diameter, and the sources and destinations lie within a rectangular bounding box. We want to satisfy the
agendas with an itinerary that keeps all coins within the bounding box. We show that an itinerary of cost
3n is always sufficient if one side of the rectangle is at least of length n. When the coins are of various
diameters are confined to a similarly confining workspace we show that an itinerary of cost 4n always



suffices. We then consider other confined workspace settings and show how various workspace areas and
aspect ratios affect the cost of the itinerary.

All of our lower bound algorithms make use of some type of sorting strategy to organize the moves. This
sorting step seems to be necessary because we show a variant of the coin problem is linear time reducible
to sorting.

Subsequently we consider the case where ai consists of exactly one destination for all coins in C. If the
sources and destinations don’t overlap then we can decide in O(n2) time whether there is an itinerary of
cost n. At the other end of the spectrum if we allow the agendas to consist of two or more destinations
we show that deciding whether there is an itinerary of cost n is NP-complete.
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