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Abstract. We say that a sequence ai,as,...am over n element set ¥
has the k-radius property (or, simply, has radius k) if every pair of differ-
ent elements in X' occurs at least once within distance at most k; where
the distance d(a;,a;) = |i — j|. Recent paper [JL04] presented construc-
tions of k-radius sequences for arbitrary values of k and n. This paper
elaborates on sequences constructed with finite geometries. For example,
sequence 142536475162731 of radius 2 is based on the Fano projective
plane P, (7).

1 Introduction

Let aq,as,...,an be a sequence over an n-element set X, such as a set [n] of n
integers. We say that a sequence ay, as, . . . a,, has the k-radius property if every
pair of different elements in X' occurs at least once within distance at most k;
distance d(a;,a;) = |i — j|. In other words, each pair of objects will appear at
least once inside a window of size k£ + 1 that slides along the sequence.

The problem of finding short k-radius sequences originated in the context of
computing a two-argument function for all pairs of n large objects, such as im-
ages or matrices or bitmaps [GJ02]. The restriction is that the limited memory
size, which is a constant k + 1, prohibits us from storing all the objects at the
same time. The goal is to schedule the shortest possible sequence of read opera-
tions that will ensure that, for all pairs 4, j, there is some point in time when both
a; and j; will reside in memory. Such a scenario may also appear in processing
a large quantity of huge objects located in a remote database when locally stor-
ing fetched data may be either impossible or impractical and where the limited
bandwidth and time require efficient scheduling of the data requests. Addition-
ally, k-radius sequences may be viewed as a method for efficient scheduling for
the caching process [SChD02] for some computations. Clearly, for a given n and
k sequences differ in the order of elements as well as in the length. It is possible
to construct sequences that begin with a predefined sequence of elements, as in
the following examples for n = 26 and k equal 3, 4 and 5, respectively:
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We are interested in the question: How to construct short sequences with the
k-radius property?

Various methods have been presented in [JLO04]. In this paper we focus on con-
structing k-radius sequences using finite geometries. For example, 142536475162731
for n = 7 of radius 2 is constructed using the Fano projective plane of order 2.

2 Review of known results, lower bounds

A related result, formulated in the context of the consecutive 1 property for
data bases and asking for all pairs appearing consecutively in a sequence, was
obtained by Ghosh [G75]; see also [LT'T81]. In our terminology the sequence has
1-radius property.

Theorem 1. (Ghosh 1975)

_J(G)+1,  forn odd;
fi (n) = {(rjz) + %n, for n even.
)

For n objects, the length fi(n) of the shortest sequence for n elements with
the k-radius property is bounded from below as follows:

Theorem 2. ([JL04))
fe(n) > E (Z) + %W

or even slightly stronger

Theorem 3. ([JL0/])
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For sequences of radius 2 we have the following:

Corollary 1.

HE) + i1, n=0 (mod 4
l(n)+2 n=1 (mod 4)

s 22 ’
fa(n) > LM + 3n, n=2 (mod 4)
H)edn n=3 (mod

Specific lower bounds for k¥ = 2 and the length of the best sequences we have
constructed (not based on finite geometries) for small values of n are listed in
the following table:

n 23456 7 8 9101112131415161718
f2(n) (235712141720 30 33 37 41 56 60 65 70 90
best found|2 3 57 12 14 20 24 31 34 44 50 58 66 73 83 94

The lengths of the best found are not necessarily optimal and sequences as we
used non-exhaustive ad-hoc search algorithms. Example optimal sequences for
k =2 and n equal 2,3,4,5 and 6 are 12, 123, 12341, 1234512 and 123456124536,
respectively.

3 Constructions based on Steiner systems and finite
geometries

Before switching to finite geometries [D68,HP73], we will look at Steiner systems
[GGL95,CRY9]. Sequences with the k-radius can be constructed with Steiner
systems. The construction applies, however, only to the values of n for which
the Steiner systems exist.

Consider a Steiner system S(M,m, 1), i.e., a collection B of m-element subsets
of an M-element set X = {z1,zs,...,z)} such that every pair of elements in
X is contained in exactly one block in B.

Let k be an integer such that k+1=m- [1], n > M. We partition the set
[n] = {1,2,...,n} into M disjoint subsets of cardinality |1+ | or [1+]. Let these
subsets be Ay, As, ..., Ay

For every block B € B we define a subset of [n], Np = {J, cp A4;- Observe
that each pair of elements r,t € [n] is included in one of the sets Ng. Indeed, let
r € A, and t € A,. Clearly the pair {z,,z,} C B, for some block B € B. Then
r €A, C Npandt € A, C Np, by the definition of Np.

Let sp be any sequence (permutation) of elements of Np and let s be
a concatenation of all sequences sp. We claim that every pair of elements
{r,t} is within distance at most k in the sequence. Indeed, as we have al-
ready checked, r,t € Np for some block B € B. The claim follows now because

INB| = Ypyep il <m- [ =k +1.



Let us compute the length of s.
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By Fisher’s inequality [GG195,CR99] M < |B| = (2)) = %, so M >
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In the next section, we will show upper bound on |s| for finite projective and

affine planes, which are Steiner systems for specific values of m and M

3.1 Finite projective and affine planes

Finite projective geometries are finite sets of points and lines that satisfy the set
of axioms:

— Any two points are on exactly one line.
— Any two lines intersect in exactly one point.
— There are four points, not three of which are collinear.

Projective spaces are characterized by their order m and they have m?2+m+1
points and (by duality) the same number of lines. Projective plane of order m is
a S(m? +m +1,m+ 1,1) Steiner system.

Finite affine planes of order m are obtained from projective planes of order
m by removing any one line and its points. Affine plane of order is a S(m2,m, 1)
Steiner system.

There do not exist finite planes of order m for all values of m. A sufficient
condition is that m is a power of a prime number. Although it is conjectured
that prime powers are only possible orders, the strongest result to date is Bruck-
Ryser [D68] theorem that says that if m is a positive integer of the form 4p + 1
or 4p+ 2 and m is not equal to the sum of two integer squares, then m is not the
order of a finite plane. Either by virtue of Bruck-Ryser theorem or by intensive
computer search, it is for example known that there are no finite planes of order
6 and 10.

The simplest projective plane consists of seven points and seven lines and
its order is 2. Each point is on three lines, and each line contains three points.
This particular projective plane is called the Fano plane, named for Gino Fano
(1871-1952), the Ttalian geometer. If any of the lines is removed from the Fano
plane, along with the points on that line, the resulting geometry is the affine
plane of order 2. A typical drawing of Fano plane is shown in Figure 1.



Fig. 1. Fano plane: 7 lines and 7 points with 3 points per line and each pair of lines
intersecting in exactly one point

For M = |B|, i.e, for quadratic Steiner systems, by virtue of the inequalities
from the previous section, we have

ls|=m- —— m+< m>n_ 2+ )
because k + 1 =[] -m < 2EM=L .
If n is a multiple of M = m? —m + 1 then we have a stronger inequality
nM 1 n2 1 2

In particular, we have inequalities (1) and (2) if a projective plane of the
order m — 1 exists (i.e. M =m? —m+1),for k+1= "12+m+1-‘ -m.

Using an affine plane of the order m (which is a Steiner system as well, with
M = m?), we get the following inequalities.

M1 m? — 1 n+M-—1
= - p— . — 1 < n+M-—1 1 3
|S| n m—1 n m—1 n(m+)_n< Pl _+_) ()
_ne+rM-1)
C k+1
because k < MHM=L .y = ndMoL

m
When n is divisible by M = m?2 then we get a precise formula

,n2

|s|:n(m+1):k—+1+

n 4)



because k+1=[f] -m="5 -m= L.
So inequality (3) and equation (4) are satisfied in particular for those values
of n and k for which an affine plane of order m (i.e. M = m?) exists and

k+1=[2] -m. An important special case is n divisible by m and k+1 = 2.

3.2 Constructions

The above results for finite geometries suggest a simple construction for k-radius
sequences if a number of elements and k allow for the existence of finite geometry
of the adequate order. Take a finite geometry of order m. Divide n elements into
the number of groups equal to the number of points in the geometry; m? for
affine and m? + m + 1 for projective plane, assuming that n is a multiple of the
number of points. Than assign each group to a point and list all the lines in any
order substituting points on each line with their corresponding group of elements.
Clearly, the length of the sequence is equal to the product of the number of lines,
times the number of points per line, times the number of elements in each group.
The radius of the sequence is one less than the number of points per line (which
is m + 1) multiplied by the number of elements associated with each point.

Fig. 2. Graphs illustrating lines and their points based on the Fano plan e. Vertices
labeled with three letters correspond to the seven lines of the Fano plane and are
connected in the graph with the vertices corresponding to the points that these lines
contain. The labels for the lines in the left and right picture differ only by the order of
the letters.

A number of examples for projective planes of order 2 and order 3 will il-
lustrate this construction. Let us start with the Fano plane. Figure 2 show the
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Fig. 3. Projective plane of order 3

vertices corresponding to lines in Fano plane with edges connecting with the cor-
responding points. As mentioned above, a list of the lines and the points on them
gives us a sequence of length 3-7 where each letter can be replaced with a group
of elements. If we read the points from Figure 2 (left) in the clockwise direction
starting from the top, we obtain GAC  ABD BCE CDF DEG EFA FGB.
Since the order of the points on a line is not important for the construction,
with a different permutation of them, as presented in Figure 2 (right), we ob-
tain GCA ADB BEC CFD DGE EAF FBQG. Clearly, without breaking the
2-radius property, one element from each of 6 pairs of the adjacent identical ele-
ments can be removed, resulting in a sequence of the length 15 rather than 21. In
the above sequence element G does not appear back to back (it does if we look
at the sequence as circular) so it cannot be replaced with one occurance. Note
from the lower bounds that for ¥ = 2 and n = 7 the sequence is not shorter than
14 and therefore the following sequence CEGADBEGFADCF'B is optimal.

Similarly, we can construct k-radius sequences for specific values of k£ and n
based on the projective plane of order 3; see Figure 3.

Based on this list, we can construct, for example, a 7-radius sequence for
n = 26. Figure 4 shows this sequence of length 104, the number of times each
pair occurs in distance less than k& + 1 and the closest distance for each pair of
distinct elements.
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Fig. 4. Sequence based on P;3(26), the number of occurrences at distance less than 8

for each pair, and the smallest distance for each pair. Out of 325 pairs, 62 are at the

minimal distance 1, 98 at distance 2, 88 at distance 3, 52 at distance 4, 16 at distance

5, 6 at distance 6 and 3 at distance 7.



The below table shows lengths of k-radius sequences for various values of
n and k constructed with an ad hoc search algorithm, constructed with the

projective plane of order 3, and the corresponding lower bound based on Theorem
2.

k|3 7 11 15 19 23 27 31 35 39
n |13 26 39 52 65 78 91 104117130
search|39 81 121 165 201 245 287 328 368 407
Py (n) |52 104 156 208 260 312 364 416 468 520
fe(n) |29 56 83 110137 164 191 218 245 272

4 Conclusions

Sequences of radius k can be constructed in a number of ways, including methods
based on radius 2 and radius 3 sequences, as presented in [JL04]. The construc-
tion based on the Steiner systems, in particular on finite geometries, as presented
on this paper, are characterized by their high regularity as the proximity between
elements occurs in blocks of a fixed size. By permuting the blocks and elements
in each block and removing adjacent identical elements, we can shorten the se-
quence, as we demonstrated in the Fano projective plane case. However, for some
applications, e.g., where caching based on blocks of the same length is desired,
regularity offered by the finite geometries may be beneficial. A natural exten-
sion of our construction is to consider sequences where each combination of r
elements, r > 2, occurs within a distance of not more than k.
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