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Abstract

It has been shown that one triangulation of a set of points can be converted to any other
triangulation of the same set of points by a sequence of edge flip operations. In this paper
we consider a tesselation of a set of points consisting of convex cells, a convexr subdivision,
and explore the notion of flipping edges from one convex subdivision of the points to another,
where both subdivisions use the same number of edges. It is easy to construct examples of a
convex subdivision where no single edge can be flipped so that the convexity of all cells of the
subdivision is maintained. At the CCCG in 2003 Ferran Hurtado asked whether there exists a
convex subdivision for which the size of the minimal simultaneous edge flip is linear with respect
to the number of edges. In the paper we construct such a subdivision.

1 Introduction

Given a triangulation of a set of points we define an edge flip operation as replacing one diagonal
of a convex quadrilateral with the other. The edge flip operation is the basis of a simple algorithm
devised by Lawson [6] to convert an arbitrary triangulation of a set of points to a Delauney
triangulation. In the Lawson algorithm a diagonal is replaced if it is the chord of a circle
containing the fourth point of the convex quadrilateral. This operation can be repeated so that
eventually one is left with a triangulation where all triangles are circumscribed by empty circles.
One requisite for this algorithm to succeed is the fact that one can always find a sequence of flips
that transforms an arbitrary triangulation into a Delaunay triangulation. This implies that one
can flip between any two triangulations of a point set. A comprehensive survey of algorithms
for computing Delaunay and other triangulations can be found in the book by Sugihara [8].
Hurtado, Noy, and Urrutia [5] consider the question of how far apart two triangulations can
be, where the distance between them is the minimum number of flips needed to transform one
to the other. In their paper Hurtado et. al. show that ©(n?) flips are sometimes necessary,
and always sufficient. Subsequently, Galtier et. al. [2] generalize the notion of the edge flip
operation by allowing simultaneous edge flips. A simultaneous edge flip allows flipping groups
of edges in parallel, with the provision that no two of the edges can be the sides of the same
triangle. Galtier et. al. then consider the distance between a pair triangulations of a point
set as the number of simultaneous flips needed to transform one triangulation into the other.
Of course in this measure a simultaneous flip is counted as one operation independent of the
number of edges that get flipped simultaneously. Galtier et. al. show that ©(n) simultaneous
flips are sometimes necessary and always sufficient to get from one triangulation to another.



Let a convez subdivision of a set of points P in the plane be any tesselation of the points into
convex cells. A convex subdivision of a point set is an attractive alternative to a triangulation
of a point set, because it uses fewer edges and requires less storage space. A polynomial time
algorithm to compute a minimum convex subdivision, that is, a convex subdivision using the
fewest number of elements, is given for certain special cases by Fevens et. al. [1]. In general,
the complexity of computing a minimum convex subdivision is not known. Extremal values for
the number of cells in a minimal convex subdivision of a set of points has a long history. A
recent paper by Neumann-Lara et. al [7] shows that every set of points has a minimal convex
subdivision using no more than (3n — 6)/2 cells.

Let A(P) be a convex subdivision of a set of points P. Notice that if no three points in
P are colinear and if any point of P not on the convex hull of P has degree three in A(P),
then A(P) is a minimal subdivision and given any line h through a point p of P not on the
convex hull of P, there is an edge of A(P) incident on p on each side of h. Also if A(P) is a
convex subdivision without three colinear points, then any point of P not on the convex hull
of P has degree at least three. A simultaneous edge flip of size k in A(P) replaces k edges of
A(P) with k new edges, such that the result is again a convex subdivision. Note that in this
scenario we no longer require that the flipped edges be independent in any way. Given a convex
subdivision A(P) a minimal simultaneous edge flip is a simultaneous edge flip of A(P) of the
smallest size. At the Canadian Conference on Computational Geometry held in Halifax in 2003
Ferran Hurtado asked whether there were convex subdivisions A(P) and B(P) such that A(P)
could only be transformed into B(P) by using minimal simultaneous edge flips of size ©(n) [4].
In this paper we answer this question in the affirmative by providing a construction of a convex
subdivision with 3n points such that a minimal simultaneous edge flip uses n edges.

2 Construction

Lemma 2.1 For all n with n > 4, there is a set of 3n points for which there exist a minimal
simultaneous edge flip of size n.

Proof: Consider the following set of 3n points P, which is illustrated in Figure 1 with
n = 12. Place n points at the corners of a regular n-gon centered at the origin with one vertex at
(z,y) = (1,0). Let Cp be this set of n points and number the points by 0,1,2,...,n—1in counter
clockwise direction starting with the point at (z,y) = (1,0). Draw a regular n-gon centered at
the origin, such that each vertex has distance r; to the origin, where r1 = cos(w/n) — &1 for
some sufficiently small positive value of €1, with one vertex at (z,y) = (cos(n/n)ry,sin(m/n)r1).
Place n points at its vertices and denote this set of points by C;. Number the points in
Ci by n,n+1,n+2,...,2n — 1, in counter clockwise direction starting with the point at
(z,y) = (cos(m/n)ry,sin(m/n)ry). Construct a regular n-gon centered at the origin, such that
each point has distance ry to the origin, where
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for some sufficiently small positive value of 2 with one vertex at (z,y) = (r2,0). Place n points
at its vertices and denote this set of points by Cs. Number the points in Cy by 2n,2n + 1,2n +
2,...,3n —1in counter clockwise direction starting with the point at (x,y) = (r2,0). The value
of €1 should be small enough such that only point 1 lies above the line through points 0 and n.
The value of €3 should be small enough such that only points {0,1,n,n + 1,2n + 1} lie above
the line through points 2n — 1 and 2n. Finally we move each point a little so that no 3 points
are colinear.

We now construct a convex decomposition of P, called Do(P). We first add the edges
(1,7 + 1 mod n) for 0 < i < n as well as edges (i,n + i) and (n + 4,4+ 1 mod n) for 0 < i < n.
Then we add edges (n + 4,2n + %) and (2n +i,2n + (1 + 1 mod n)) for 0 < ¢ < n. Since each
point in Dy(P) not on the convex hull of P has degree three and since no three points in P are
colinear, Do (P) is a minimal convex subdivision of P. This subdivision is shown in Figure 1.



Notice that we can construct another convex subdivision, called D;(P), with the same
number of edges as Do(P), by flipping the edges between Cy and Cy, i.e. the edges (n+1,2n+1)
are replaced by the edges (n + 4,2n + (i + 1 mod n)). We will show that Do(P) and D;(P)
are the only two convex subdivisions with this number of edges. That implies that in order
to transform Dy (P) into D;(P) we need to flip all n edges between C; and Cs simultaneously.
That would prove the lemma.

Assume we want to construct an arbitrary convex subdivision Ds(P) with the same number
of edges as Dy(P). First note that Ds(P) must contain the edges of Do(P) between points in
CoUC. Observe that at this moment in Dy(P) the points in Cy have degree four, the points in
C1 have degree two and the points in C> have degree zero. Since the points in Cy have degree
four in Dg(P) and since Do(P) is a minimal convex subdivision, if follows that all points in
Cy U Cy will have to be of degree three in Dy(P). We say that a point in Cy of degree four and
a point in C7 U Cs of degree three is full.

Suppose that in Dy (P) there is an edge (n,n + 1). Consider the line h through 2n + 1 such
that only points {0,1,2,n,n+ 1} lie on one side of h. The point 2n + 1 has to have an incident
edge above h. However all points above this line are already full. So D2(P) has no edge (n,n+1)
and by the same argument has no edges (n + i,n + (i + 1 mod n)) for 0 < i < n.

Consider a line h through 2n + 1 such that only points {0,1,2,n,n + 1} lie on one side of
h. The point 2n + 1 has to have an incident edge above h. Points 0,1,2 are already full. So
either there is an edge (n,2n + 1) or an edge (n + 1,2n + 1) or both. Assume we have edge
(n+1,2n + 1). Consider the line h through n + 2 and 2n + 2. Since 2n + 1 is the only non-full
point above this line visible from 2n + 2, Dy(P) contains the edge (2n + 1,2n + 2). Consider
the line A through 2n + 1 and 2n + 2. Since n + 2 is the only non-full point above this line
visible from 2n + 2, we need to have edge (n + 2,2n + 2). Continuing this argument, we arrive

If we start with edge (n, 2n+1) rather than (n+1,2n+1) we get Do(P) = D1 (P). If we start
with both edges (n,2n + 1) and (n + 1,2n + 1) the result is not a minimal convex subdivision
of P. So Dy(P) and D;(P) are the only two minimal convex subdivisions of P. O

3 Discussion

One can construct a flip graph of triangulations of a set of points P, where nodes of the graph
are triangulations and two nodes are adjacent if the triangulations differ by a single flip. In
this scenario we can say that the graph of triangulations for P is connected and it has diameter
O(n?). For the case of convex subdivisions, if we restrict ourselves to constant size simultaneous
flips a similarly constructed flip graph may not be connected. We have given a construction of
a convex subdivision that has a minimal simultaneous edge flip of size ©(n). The construction
yields only two distinct convex subdivisions with the same number of edges. Thus for our
example the diameter of the flip graph is a constant if we allow minimal simultaneous flips of
arbitrary size. It would be interesting to determine whether there is a set P with a convex
subdivision that has a large minimal simultaneous edge flip size, and also results in a flip graph
with large diameter.

Huemer et. al [3] study a graph of convex subdivisions of a convex set. When the points are
in convex position then one can always go from a decomposition to another using a single flip.
Huemer et. al. show that the flip graph obtained is Hamiltonian. They also consider a variant
of this graph where edges may be removed without replacement or added without deletion, and
show that it too is Hamiltonian. Thus it would be interesting to explore the combinatorial
properties of the flip graphs when using minimal simultaneous edge flips of convex subdivisions.
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