
A Geometric Approach to Music Pattern Matching

for “The Algorhythmics”

Anna Lubiw and Luke Tanur
School of Computer Science

University of Waterloo

August 6, 2004

Abstract

The music pattern matching problem is to find occurrences of a small fragment of
music called the “pattern” in a larger body of music called the “score”. For symbolic
(rather than audio) representation of music, a geometric approach models this as a
problem of translating a set of horizontal line segments in the plane to find the best
match in a larger set of horizontal line segments. We report on our algorithm to do this;
it uses fairly general weight functions to measure the quality of a match, thus enabling
approximate pattern matching. The algorithm’s running time is O(nm logm), where n

is the size of the score and m is the size of the pattern. We show that the problem, in
this geometric formulation, is unlikely to have a significantly faster algorithm because
it is at least as hard as a basic problem called 3-SUM that is conjectured to have no
subquadratic algorithm. We apply our algorithm to measure similarities and differences
among a collection of seven rock/blues pieces played by The Algorhythmics, a band
composed of computer scientists from McGill.

1 Introduction

Music information retrieval is a rapidly evolving, multi-disciplinary research area [7, 5]. One
of the problems at its core is the “music pattern matching problem”—to find occurrences of
a small fragment of music (the “pattern”) in a larger body of music (the “score”).

The techniques required for this problem differ depending on whether the music is rep-
resented symbolically or as audio. This paper focuses on the former; for literature on audio
representations and the pattern matching problem in that context, see [11].

With music represented symbolically, there are still a variety of approaches to the music
pattern matching problem. Efforts are underway to compare these approaches on large
data sets, see Downie [8]. Techniques based on string matching have been most heavily
explored [15]. These include edit distance [20] and n-gram [9] techniques. Since these
algorithms work on sequences, polyphonic music poses a great challenge, though there have
been attempts to handle polyphony in this framework [16, 6].

1

For polyphonic music, the pattern matching problem is more tractable when music is
represented in a richer, more geometric format than as a 1-dimensional string—when it is
represented as line segments in the plane [23], weighted point sets in the plane [22], or
multi-dimensional point sets [24].

Our work explores the possibilities of a particular geometric approach to music pattern
matching. We model each note as a line segment in the plane—see Figure 1. The vertical
axis corresponds to pitch and the horizontal axis corresponds to time; in particular, the
length of a line segment indicates the duration of the note. This representation is a natural
one and has been used by many others, for example in the Music Animation Machine [19]
and by Brinkman and Mesiti [4].

got a black mag-ic wom-an got a black mag-ic wom-an

Figure 1: The main theme from “Black Magic Woman” by Santana, and the representation
as line segments. If you are viewing this with Acrobat Reader, click on the sound icon.

Matching the pattern into the score means translating the pattern relative to the score,
where “translation” is used in its mathematical sense. Imagine the pattern drawn on a
transparent sheet that can be shifted horizontally and vertically over the score to find the
best position. The vertical shift corresponds to transposing the pattern. The horizontal
shift corresponds to locating the pattern in time. Some matches are better than others.
An exact match is a translation of the pattern so that each line segment of the pattern
exactly matches a line segment of the score. Exact matches have limited applicability—they
encompass transposition, but allow no other variation. For a richer set of possibilities, we
introduce weight functions and we search for matches of optimum weight.

Algorithms using this approach have been developed for some specific weight functions.
Ukkonen, Lemström, and Mäkinen [23] define the weight of a match to be the sum of the
lengths of the overlaps of pattern and score line segments. They give an algorithm to find
maximum weight matches of a monophonic pattern in a polyphonic score.

A weight function that measures the area between a monophonic pattern and a mono-
phonic score was used in a series of papers. The first paper, by Ó Maid́ın [18], introduced
the weight function. The second, by Francu and Neville-Manning [12], gave an algorithm to
find maximum weight matches. The algorithm is straightforward, and assumes the notes are
expressed in terms of equal time steps (effectively the running time depends on the lengths
of the notes, not just their number). The third paper was by Aloupis, Fevens, Langerman,
Matsui, Mesa, Rappaport, and Toussaint [1]. They concentrated on the problem of match-

2

black1

null

6.556752

eng - iTunNORM
 0000002D 00000002 000000D2 00000028 00001397 00001314 00000F77 00000F15 00001292 000007DB�

ing a repeated or circular melody against itself, though the results apply more generally.
Their algorithm uses a more sophisticated and efficient method of finding maximum weight
matches.

1.1 Results

Our results are being presented at the International Symposium on Music Information Re-
trieval [17] and in the Master’s thesis of the second author [21]. In the present paper we
give a brief version of our results, and we apply our music pattern matching algorithm to
measure the similarities and differences between the main themes of some pieces played by
Godfried Toussaint’s band, “The Algorhythmics” [2].

Our approach is to use the geometric model described above. We introduce a weighting
scheme that encompasses both of the measures mentioned above, and many more. We can,
for example, assign weights depending on the interval between a note of the pattern and
a note of the score; for example, matching notes an octave apart could contribute more
weight than matching notes an augmented 4th apart. Mongeau and Sankoff [20] used such a
weighting scheme in their edit distance algorithm.

In Section 2 we describe our algorithm to solve the music pattern matching problem in
time O(nm logm) where m is the size of the pattern and n is the size of the score. This is
the same running time as that achieved by Ukkonen, Lemström, and Mäkinen [23] in their
algorithm to maximize the length of pattern-score overlap. It is also the same running time
as achieved by Aloupis, Fevens, Langerman, Matsui, Mesa, Rappaport, and Toussaint [1] in
their algorithm to minimize the area between pattern and score. The running time of our
algorithm is also competitive with other approaches to the music pattern matching problem,
such as edit distance techniques. It is, however, disappointing in the sense that string pattern
matching can be done much more efficiently, in linear time O(n + m). The quadratic time
behavior for music pattern matching is acceptable for small input sizes, but is prohibitively
slow for huge ones, such as those envisioned in google-style music query systems.

However, we argue in Section 3 that for this geometric approach, quadratic behaviour is
the best that can be achieved without a significant breakthrough in some basic algorithm
design problems. In particular, our model of the music pattern matching problem includes as
a special case a problem about containment of points in line segments. This latter problem is
known to be equivalent, in terms of computational complexity, to other problems for which
no one has a subquadratic algorithm, and for which it is conjectured that no such algorithm
exists [3]. This is not a proved lower bound, but it is evidence towards a lower bound, which,
given the dismal state of lower bound techniques, is something. We know of no previous
lower bound arguments in music pattern matching.

In Section 4 we apply our algorithm to measure similarities and differences between some
rock/blues pieces played by “The Algorhythmics”. Applications of our algorithm to pattern
matching in classical music, both monophonic and polyphonic, can be found in the full
version [17, 21].

3

2 Algorithm

In this section we give an overview of our algorithm. Further details can be found in the full
version [17, 21].

2.1 Overview

For the music pattern matching problem, we are given a pattern of m notes and a score of
n notes, represented as line segments. We are also given a weight function with which to
evaluate a translation of the pattern in the score. We wish to find the translation of the
pattern in the score that has maximum weight. More generally, we want not only “the best”
match, but a number of good matches.

Our algorithm is an efficient version of the most basic approach to this music pattern
matching problem: to try all possible translations of the pattern in the score, and compute
the weight of each, in order to find the translations that have maximum weight. The algo-
rithm of Ukkonen et al. [23] uses this same approach, and our algorithm can be viewed as
an extension of theirs to more general weight functions.

There are two main ingredients for an efficient implementation. One is to identify a
bounded-size set of candidate translations that includes all possible optimum solutions to the
music pattern matching problem. We show a bound of O(nm) on the number of candidate
translations. The other ingredient is to avoid computing the weight of each translation
from scratch, but rather to go through the translations in an appropriate order and update
efficiently from one translation to the next. This is possible for many, though not all,
weight functions. We discuss the allowable weight functions in Section 2.3, and show how
to preprocess the score in time O(n) to achieve an update time of O(logm) to find the next
translation and O(1) to compute its weight.

Putting these together, we obtain an O(nm logm) algorithm for the music pattern match-
ing problem.

In the analysis of our algorithm, we make crucial use of the assumption that musical
pitches come from a discrete set. Our examples use the 128 MIDI values based on semi-tones,
but our algorithm would apply to any discrete set, for example scale degrees, or the base-40
representation of Hewlett [14]. Our running time of O(nm logm) hides the dependence on
128. To put it more precisely, our running time is actually O(nm(d+ logm)) where d is the
size of the discrete pitch set. We remark that, although 128 is a constant, it is a rather large
constant, and an algorithm whose running time does not depend on d would certainly be
desirable. This is possible for specialized weight functions and/or monophonic music, as we
discuss in Section 2.7. It remains an open problem to achieve this independence from d for
polyphonic music and our general weight functions.

2.2 Notation and Input Data

A note s is represented by its starting time, σ(s), its ending time, τ(s), and its pitch, π(s).
The note s corresponds to the horizontal line segment from the point (σ(s), π(s)) to the
point (τ(s), π(s)). We assume that the notes of the score are given sorted by σ(s). This is

4

true for data coming from a MIDI file, but other data may need to be sorted at an extra
cost of O(n log n).

For the purpose of our algorithm, we need an ordered list of all the distinct σ(s) and
τ(s) values. These are called the time points of the score. There are at most 2n time points,
and they can be computed in O(n) time assuming a constant bound l on the maximum
polyphony of the score (i.e. the maximum number of notes being played at any one time).

2.3 The Weight Model

We use a weight function to measure deviations of the translated pattern from the score. Note
that translating the pattern is “free”; only the differences between the translated pattern
and the score count. Our weight functions are additive—i.e. the weight of a particular
translation of the pattern is the sum of the weights of its notes.

It seems natural that matching a long note should count more than matching a short note.
We effect this by setting the weight of a translated note to be proportional to its length. For
example, a half note that perfectly matches into the score counts twice as much as a quarter
note that perfectly matches into the score. Thus the weight of a translated note p matching
a score note s that occupies the same time interval will be (τ(p)− σ(p))f(π(s), π(p)), where
f is a function of the pitches of s and p. More generally, if s and p overlap in time, we use
the length of the overlap instead of (τ(p)− σ(p)).

When a translated pattern note overlaps in time with several notes of a monophonic
score, we allow pieces of the pattern note to match with different notes of the score. This
captures what Mongeau and Sankoff [20] call “fragmentation”, where one note is replaced
by several. The opposite transformation, “consolidation”, is captured when several pattern
notes match to the same note of the score. A portion of a translated pattern note may match
a portion of a note of the score only if they occupy the same time span. See Figure 2(a).

s1 s2

p2

p1

t 1 t 2 t 3 t 4

π1

π2

π3

π4

p

sσ

s τ

ε '

ε '

(a) (b)

Figure 2: Computing the weight function: (a) weight is (t2−t1)f(π2, π3)+(t3−t2)f(π1, π3)+
(t4 − t3)f(π1, π4); (b) the effect of a shift by ε′. Notes of the score are shaded.

Polyphonic music may have several pattern notes and several score notes occupying the
same time span. In this case we match each (piece of a) pattern note to the single note of
the score that gives the best weight.

A very simple version of such a weight function sets f(π(s), π(p)) to be 1 if π(s) = π(p),
and 0 otherwise. In geometric terms, the weight of a translation of the pattern is then the

5

sum of the lengths of the overlap of pattern and score line segments. This is the weight
function used by Ukkonen et al. [23].

A more complicated version of such a weight function sets f(π(s), π(p)) to be the differ-
ence between π(s) and π(p). Using MIDI pitches, this is the number of semi-tones in the
interval between the two notes. In geometric terms, this weight function measures the area
between the translated pattern and the score. This weight function was used for the case
of monophonic music by Ó Maid́ın [18], Francu and Neville-Manning [12], and Aloupis et
al. [1].

More generally, we can define f(π(s), π(p)) to depend on the interval between the two
notes in a more complicated way. For example, we can assign a better value to an interval
of 7 semi-tones (a perfect 5th) than to the smaller interval of 6 semi-tones. Mongeau and
Sankoff [20] use a scheme like this in their edit-distance algorithm, assigning weights to
intervals in increasing order of dissonance. The particular weighting of intervals that we use
in our examples is shown in Table 1. We make no claim about these weights being ideal;
further experimentation would be good.

Our method can extend to functions f(s, p) that depend on other properties of the notes
s and p than pitch—for example stress, dynamics, relative position in the bar, etc.

Interval apart (in semi-tones) Weight

perfect unison (0) 0
minor 2nd (1) 0.1
major 2nd (2) 0.4
minor 3rd (3) 0.6
major 3rd (4) 0.6
perfect 4th (5) 0.8
perfect 5th (7) 0.4
minor 6th (8) 0.7
major 6th (9) 0.7
major 7th (11) 0.3
perfect octave (12) 0.2
minor 9th (13) 0.3
all other intervals 1

Table 1: The weighting scheme used for our experiments

2.4 The Set of Candidate Translations

We can think of the score as lying in a grid formed by the 128 MIDI pitches along the vertical
axis, and the time points of the score along the horizontal axis. This grid has size at most
2n× 128.

Claim 1 With any weight function as described above, there will be an optimum match of
the pattern into the score that has some line segment of the pattern starting or ending at one
of these grid points.

6

The proof of this claim can be found in the full version [17, 21]. Thus, for any weight
function as described above, there are at most 128 · 4 · nm candidate translations.

2.5 Preprocessing

In order to quickly determine the weight of a translated note, we precompute a weight matrix
W based on the score and the given weight function. Matrix W has a row for each of the
128 MIDI pitches, and a column for each of the time points of the score, of which there are
at most 2n. Thus it has size at most 128× 2n, which is O(n).

For pitch π and time point t, the corresponding matrix entry, W (π, t), contains the weight
factor to be applied to a note of the pattern translated to pitch π, and going from time point t
to the next time point t′. Thus such a translated pattern note contributes (t′−t)W (π, t) to the
weight of a match. In terms of the function f described above, W (π, t) = max{f(π(s), π) : s
is a score note that includes the time interval (t, t′)}.

We compute W by iterating through the notes s of the score, and updating W (π, t) as π

ranges through the 128 pitch values, and t ranges through the time points from σ(s) up to,
but not including, τ(s). Each of the O(n) matrix positions will be updated at most l times,
where l is the maximum polyphony of the score. The total work is thus O(n).

2.6 The Main Matching Algorithm

We try each possible candidate translation (t, π), where t is the translation applied to the
time coordinate, and π is the translation applied to the pitch coordinate.

We try each value of t, in order. We call it an event when the start or the end of a
translated pattern note lines up with a time point of the score. We go through the events in
order of their translation values. Note that several events may occur at the same translation
value, but for book-keeping purposes we handle them one at a time. The number of events
is at most 4nm. Using a heap we can find the next event in O(logm) time.

As we go through the events—i.e. the values of t—we maintain information for each
value of π—i.e. each transposition of the pattern. There are at most 2 · 128 values of π. The
information we maintain includes the weight for the candidate translation (t, π), but also
other information that allows us to update each of these weights in O(1) time. Details can
be found in [17, 21].

2.7 Running Time

We analyze the running time in terms of n,m, d. We go through O(nm) events. Finding the
next event takes O(logm) time. Updating the information for each of the O(d) values of π
takes O(1) time. The total is O(nm(logm+ d)). The space used is O(n+ d). Finding the k

best matches adds O(k) to the time and space, using linear time median finding.
Previous algorithms for specialized weight functions—the total overlap length of Ukkonen

et al. [23], and the area-between of Aloupis et al. [1]—do not have the bad dependence on
d that our algorithm has. In essence, this is because the number of candidate translations
is reduced in these cases from our bound of O(dnm) to O(nm). The crucial property is

7

that there will be an optimum match in which some line segment of the pattern starts [or
ends] exactly where a line segment of the score starts [or ends]. This happens if the weight
function only measures exact overlap of pattern and score line segments. It also happens for
the distance weight function if the score and pattern are monophonic. With a polyphonic
score and the distance weight function this property fails, and we need the larger bound. In
the next section we consider the biggest factor in the running time, the quadratic O(nm)
behavior.

3 Barriers to a Faster Algorithm

Our algorithm for the music pattern matching problem takes time O(nm logm) for a score
of size n and a pattern of size m. A subquadratic algorithm with running time O(n + m),
such as is achievable for string pattern matching, or even O((n+m) log n), would be vastly
preferable, and would make the algorithm practical for use in large music databases. In this
section we show that such an efficient algorithm will be a major challenge.

More specifically, we show that the music pattern matching problem, in this geometric
formulation, includes as a very special case a problem called “Segments Containing Points”
which is at least as hard as the 3-SUM problem—and that problem is conjectured to have no
algorithm with a subquadratic running time. We expand on these points in the remainder
of this section. The two problems are as follows:

3-SUM: Given a set of n integers, does it contain numbers a, b, c with a+ b+ c = 0?

Segments Containing Points (SCP): Given a set P of m numbers and a set Q of n

pairwise-disjoint intervals, is there a translation u such that P + u ⊆ Q?

The geometric formulation of the music pattern matching problem includes SCP as the
very special case where the pattern and the score have notes only on one pitch, the pattern
notes are very short, and the 0-1 weight function is used.

Barequet and Har-Peled [3] prove that an algorithm with running time o(nm) for the SCP
problem would imply an algorithm with running time o(n2) for the 3-SUM problem. Thus
SCP is “3-SUM hard”. The class of 3-SUM hard problems was introduced by Gajentaan and
Overmars [13], who show that a number of different problems are 3-SUM hard. Although this
is not a proved lower bound (see [10]) a subquadratic algorithm for any of these problems
would be a major breakthrough.

Thus a subquadratic algorithm for the geometric version of the music pattern matching
problem would have implications far beyond music information retrieval.

Recall that in terms of d, the pitch set size, our running time was O(nm(d + logm)).
From a practical point of view, at least for small patterns, the factor of d = 128 in our
algorithm is probably more prohibitive than the factor of m. Certainly, given the above, it
is a more tractable challenge to attempt to reduce the dependence on d.

4 Applying our Algorithm to “The Algorhythmics”

In this section we describe the results of running our algorithm on some of the songs per-
formed by The Algorhythmics.

8

The Algorhythmics [2] is a band formed by David Avis, David Eu, Gena Hahn, Jörg
Kienzle and Godfried Toussaint, all computer scientists at McGill University. We concen-
trated on their first set, which consists of the following rock and blues songs: “Lay Down
Sally” by Eric Clapton; “I Got My Mojo Working” by Muddy Waters; “Crazy Little Thing
Called Love” by Queen; “Black Magic Woman” by Santana; “Fire” by Bruce Springsteen;
“Hoochie Coochie Man” by Muddy Waters; and “Gloria” by Van Morrison.

We extracted small themes from each piece and compared all pairs, but we will present
here only the results of comparing one pattern against all the themes. The pattern we chose
(because it gave some interesting results) is a 2-bar phrase from “Black Magic Woman”—the
first half of the 4-bar theme shown in Figure 1. Our results are shown in Table 2.

Song Title Value of Best Match (%)

Lay Down Sally 83.8
I Got My Mojo Working (theme 1) 89.2
I Got My Mojo Working (theme 2) 70.2
Crazy Little Thing Called Love 70.0
Fire 83.8
Hoochie Coochie Man 65.8
Gloria 66.9

Table 2: values of the best match of the “Black Magic Woman” pattern into other themes.

In the remainder of this section we show some of the actual matches, and discuss the
results. The best match found by our algorithm is a remarkable similarity between the
“Black Magic Woman” pattern and the first theme from “I Got My Mojo Working”. (This
is especially appropriate given that “mojo” means “magic spell”, which is also what “Black
Magic Woman” is about!)

C

89.2

Mojo

Black Magic

Figure 3: The first theme from “I Got My Mojo Working” (above) and the best match of the
“Black Magic Woman” pattern into that theme (below). The translated pattern is indicated
with solid line segments and the theme with shaded line segments. Clicking on the sound
icons in Acrobat Reader plays the associated parts.

Our algorithm does not always do so well. One of matches tied for second place is
the match with the “Fire” theme shown in Figure 4. Although our algorithm gives the

9

mojo1

null

4.8326635

eng - iTunNORM
 00000053 00000003 0000012C 00000039 000010A1 00000758 00000F09 00000F8E 000010A1 000008C6�

mojomatch

null

2.089795

eng - iTunNORM
 00000059 00000004 00000103 0000005F 000005EB 0000061F 00000E3A 00000E1C 000001F0 000004E5�

blackpatt

null

2.089795

eng - iTunNORM
 0000005A 00000004 0000010C 0000004B 0000020A 0000073E 00000D8A 00000E73 000005EB 000005EB�

match a good weight, the musical similarity is not strong. Our algorithm gave this match
a good weight because each note of the pattern is very close to a note of the score under
our weighting scheme. One of the reasons this match is not musically significant is because
several different pattern notes are matched to one longer note of the score. We do know how
to fix our algorithm to lessen the weight given to matches like this: we should allocate extra
points when the start of a pattern note matches the start of a score note. This will be easy
to do.

C

83.8

Figure 4: The theme from “Fire” (above) and the best match of the “Black Magic Woman”
pattern into that theme (below). The translated pattern is indicated with solid line segments
and the theme with shaded line segments.

We now turn to some of the bad matches found by our algorithm. In all these cases,
our musical judgement agrees with our algorithm—the pieces are different enough that no
sensible match is possible. In the case of the themes from “Hoochie Coochie Man” (see
Figure 5) and “Gloria” (see Figure 6), the best matches include pattern notes that align
with rests in the theme—something that our algorithm penalizes heavily. There are also
pattern notes that differ significantly in pitch from the notes of the theme.

65.8

Figure 5: The theme from “Hoochie Coochie Man” (above) and the best match of the “Black
Magic Woman” pattern into that theme (below). The translated pattern is indicated with
solid line segments and the theme with shaded line segments.

The third example of a bad match uses as a theme a fragment of the “I Got My Mojo
Working” melody that occurs later in the piece. See Figure 7. This behaves quite differently

10

C66.9

Figure 6: The theme from “Gloria” (above) and the best match of the “Black Magic Woman”
pattern into that theme (below). The translated pattern is indicated with solid line segments
and the theme with shaded line segments.

from the first “Mojo” theme that gave us such a good match! In this case, although there are
no rests in the matched portion of the theme, the algorithm sensibly detects that the profile
of the pitch direction (whether pitches move up or down) is very different in the pattern and
the theme.

C

70.2

Figure 7: The second theme from “I’ve Got My Mojo Working” (above) and the best match
of the “Black Magic Woman” pattern into that theme (below). The translated pattern is
indicated with solid line segments and the theme with shaded line segments.

5 Conclusions

In this paper we have summarized our exploration of the possibilities and limitations of an
approach to music pattern matching that uses a very natural geometric representation of
music, and turns the problem into that of finding a “best” translation of a small set of line
segments into a larger set. This geometric approach has been used before, but has not been
explored as thoroughly as string matching techniques, even though it successfully deals with
polyphony.

Our contribution is to show how this approach can be used together with fairly general
weight functions to measure the quality of a match. This opens up the possibility of a
rich range of approximate music pattern matching techniques. Our experiments here and in

11

[17, 21] only scratch the surface of what might be achievable. It is easy to imagine a variety of
enhancements, for example: incorporating information about the key of tonal music; adding
information about dynamics and stress; weighting more heavily those matches that occur
at the beginnings of notes; allowing the user to specify which notes of the pattern are more
important, etc.

Our algorithm runs in time O(nm(logm + d)) where d is the size of the pitch set, n is
the size of the score, and m is the size of the pattern. This is fine for small patterns, but too
expensive for larger ones. We have argued that the factor O(nm) is likely to be very hard to
improve. Improving the dependence on d is perhaps more tractable, and also more relevant
for reasonably sized patterns.

6 Acknowledgements

We thank Erna Van Daele for musical discussions and advice; Ian Munro for the idea of how
to find the best k matches; and Therese Biedl, Dan Brown, and Anne-Marie Donovan for
useful suggestions.

References

[1] G. Aloupis, T. Fevens, S. Langerman, T. Matsui, A. Mesa, D. Rappaport, and G. Tou-
ssaint. Computing the similarity of two melodies. In Proceedings of the 15th Canadian
Conference on Computational Geometry, pages 81–84, 2003.

[2] D. Avis, D. Eu, G. Hahn, J. Kienzle, and G. Toussaint. The Algorhythmics.
http://www.cs.mcgill.ca/%7Ejoerg/personal/algorhythmics/.

[3] G. Barequet and S. Har-Peled. Polygon-containment and translational min-Hausdorff-
distance between segment sets are 3SUM-hard. International Journal of Computational
Geometry and Applications, 11(4):465–474, 2001.

[4] A. Brinkman and M. Mesiti. Graphic modeling of musical structure. Computers in
Music Research, 3:1–42, 1991.

[5] D. Byrd and T. Crawford. Problems of music information retrieval in the real world.
Information Processing and Management, 38:249–272, 2002.

[6] M.J. Dovey. A technique for “regular expression” style searching in polyphonic music.
In Proceedings of the 2nd International Conference on Music Information Retrieval
(ISMIR 2001), pages 179–185, 2001.

[7] J.S. Downie. Music information retrieval. Annual Review of Information Science and
Technology, 37:295–340, 2003.

[8] J.S. Downie. Toward the scientific evaluation of music information retrieval systems. In
Proceedings of the 4th International Conference on Music Information Retrieval (ISMIR
2003), pages 25–32, 2003.

12

[9] S. Downie and M. Nelson. Evaluation of a simple and effective music information re-
trieval method. In Proceedings of the 23rd Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 73–80, 2000.

[10] Jeff Erickson. Lower bounds for linear satisfiability problems. Chicago Journal of
Theoretical Computer Science, 1999(8), 1999.

[11] J. Foote. An overview of audio information retrieval. Multimedia Systems, 7:2–11, 1999.

[12] C. Francu and C.G. Nevill-Manning. Distance metrics and indexing strategies for a
digital library of popular music. In Proc. IEEE International Conference on Multimedia
and EXPO (II), pages 889–894, 2000.

[13] A. Gajentaan and M.H. Overmars. On a class of o(n2) problems in computational
geometry. Computational Geometry:Theory and Applications, 5(3):165–185, 1995.

[14] W.B. Hewlett. A base-40 number line representation of musical pitch notation.
Musikometrika, 50:1–14, 1992.

[15] K. Lemstrom. String Matching Techniques for Music Retrieval. PhD thesis, University
of Helsinki, Department of Computer Science, 2000.

[16] K. Lemstrom and J. Tarhio. Transposition invariant pattern matching for multi-track
strings. Nordic Journal of Computing, 10:185–205, 2003.

[17] A. Lubiw and L. Tanur. Pattern matching in polyphonic music as a weighted geomet-
ric translation problem. In Proceedings of the 5th International Conference on Music
Information Retrieval (ISMIR 2004), 2004.

[18] D. Ó Maid́ın. A geometrical algorithm for melodic difference. In W.B. Hewlett and
E. Selfridge-Field, editors, Melodic Similarity: Concepts, Procedures, and Applications,
volume 11 of Computing in Musicology, pages 65–72. MIT Press, 1997–1998.

[19] S. Malinowski. Music animation machine. http://www.well.com/user/smalin/mam.html.

[20] M. Mongeau and D. Sankoff. Comparison of musical sequences. Computers and the
Humanities, 24:161–175, 1990.

[21] L. Tanur. A geometric approach to pattern matching in polyphonic music. Master’s
thesis, School of Computer Science, University of Waterloo, 2004. to appear.

[22] R. Typke, P. Giannopoulos, R. C. Veltkamp, F. Wiering, and R. van Oostrum. Using
transportation distances for measuring melodic similarity. In Proceedings of the 4th
International Conference on Music Information Retrieval (ISMIR 2003), pages 107–
114, 2003.

[23] E. Ukkonen, K. Lemström, and V. Mäkinen. Geometric algorithms for transposition in-
variant content-based music retrieval. In Proceedings of the 4th International Conference
on Music Information Retrieval (ISMIR 2003), pages 193–199, 2003.

13

[24] G. A. Wiggins, K. Lemström, and D. Meredith. SIA(M)ESE: An algorithm for trans-
position invariant, polyphonic content-based music retrieval. In Proceedings of the 3rd
International Conference on Music Information Retrieval (ISMIR 2002), pages 283–284,
2002.

14

