You may use one single-sided 8.5"x11" sheet of notes on this exam. You may not consult other sources of information. You will have the entire period (110 minutes) to complete your work. All work should be written in the exam booklet. Partial credit will be granted where appropriate if intermediate steps are shown.

Vocabulary (16 points)
Define all of the bolded terms below, making sure to explain the differences within each pair.

a.) field vs. method
b.) public vs. private
c.) extends (a parent class) vs. implements (an interface)
d.) javadoc comment vs. block comment
e.) s1 == s2 vs. s1.equals(s2) (assuming s1 and s2 are strings)
f.) int vs. Integer
g.) empty LinkedList vs. null LinkedList (draw a picture showing the difference)
h.) array vs. ArrayList

Data Structures (16 points)
Consider the Java class defined below, which implements a data structure we have studied. Answer the questions that follow.

import java.util.*;
public class DataStructure<E> {
 private Stack<E> A;
 private Stack<E> B;

 public DataStructure () {
 A = new Stack<E>();
 B = new Stack<E>();
 }

 private void to(int i) {
 for (int j = 0; j < i; j++) {
 B.push(A.pop());
 }
 }

 private void from(int i) {
 for (int j = 0; j < i; j++) {
 A.push(B.pop());
 }
 }

 public E get(int i) {
 E answer;
 to(i);
 answer = A.pop();
 A.push(answer);
 from(i);
 return answer;
 }

 public void set(E x, int i) {
 to(i);
 if (!A.isEmpty()) {
 A.pop();
 }
 A.push(x);
 from(i);
 }
}

a.) Which methods of this class may be called by a different class?
b.) Which abstract data structure is this class implementing?
c.) How does this implementation compare to the usual implementation in efficiency?
d.) Looking just at the public fields of this class, is there any way for a programmer to tell that it is implemented using stacks? Explain.
Linked Lists (16 points)
Consider the diagram below, showing two linked lists. Answer the questions that follow, assuming that each one begins with the configuration shown below. An example is done for you.

![Diagram of linked lists](image)

a.) [Example] Write code to update the links as necessary to remove B from list1.

 Answer: list1.head.next = null; list1.tail = list1.head;

b.) Write code to make list2 a shallow copy of list1. Draw a diagram showing the link structure after this operation.

c.) Write code to swap the order of the elements in list1. Draw a diagram showing the link structure after this operation.

d.) Write code to update links as necessary to append list2 at the end of list1, leaving list2 empty. Draw a diagram showing the link structure after this operation.

e.) Write code to update links as necessary to insert list2 within list1 between A and B, leaving list2 as a shallow copy of this part of list1. Draw a diagram showing the link structure after this operation.

Stacks (16 points)
Consider the input stream ABCDEFGHIJKLM, where each letter is a token. (A is the first and M is the last.) Suppose that you want to write code that will convert this to a new stream in a different order, using a single stack. Using three operations, `push`, `pop`, and `pass`, write pseudocode that would transform the stream above into the new sequence DGFHCJLKIBMA.

(Note: In this context, `push` takes an input token and adds it to the stack, `pass` takes an input token and sends it to output, and `pop` takes a token off the stack and sends it to output.)

Example: If the input was ABC and the desired output was BCA, the answer is `push; pass; pass; pop`.

Class Design (8 points)
Briefly describe the Model-View-Controller paradigm, describing the duties of each role and how they interact with each other. Give an example from a homework or lab that fits into this paradigm, and identify for this example which class takes on each role.
Java Language (16 points)
Consider the program shown below. Draw a diagram showing the state of memory at the point where the statement labeled NOW has just been executed. Your diagram should follow the style of the ones drawn in class. It should show all local variables, with the regions corresponding to the call stack and the heap clearly denoted. The value currently stored in each variable should be shown. StAny memory that was previously allocated but is now eligible for garbage collection should be shown in a separate section of the heap, labeled GC. You need not show any static variables, and you may assume that the args parameter to main is an empty array.

Ck

```
public class Diagram {
    private int a;
    public Diagram d;
    public Diagram() {
        a = 0;
        d = null;
    }
    public int method(int x) {
        int b = a+x;
        d = new Diagram();
        d.a = b;                  // NOW
        return b;
    }
    public static void main(String[] args) {
        Diagram d = new Diagram();
        d.a = 7;
        d.d = new Diagram();
        d.d.d = d.d;
        d.method(13);
    }
}
```

Graphical User Interfaces (12 points)
Suppose that a GUI interface window consists of two side-by-side JButton elements (called left and right) as shown in the illustration. Several listeners have been registered, as shown below:

```
right.addMouseListener(new MouseListener1());
left.addMouseMotionListener(new MouseMotionListener2());
left.addActionListener(new ActionListener3());
```

Suppose further that the mouse begins at the point labeled A. The user moves it to point B and clicks once, then moves it to point C, clicks again, and finally moves it to point D. List the sequence of event handler methods that will potentially be called, in the order they will be called. If a handler might be called more than once in a row, indicate the number of times if it is known.

```
A → B → C → D
left: right
```