Analysis and Representation for Automatic Comparison and Retrieval of Digital Images

Nicholas R. Howe
May 7, 2001
Why Image Retrieval?

• Many applications:
 – Video libraries.
 – Digital photography.

• Appealing research:
 – Image segmentation.
 – Object recognition.
 – Image understanding.
Road Map

• Motivation
 – Pushing the abstraction barrier
• Vector method (Stairs)
 – Representation & comparison
 – Evaluation
• Partial-image (object) queries
• Conclusion
Image Retrieval Framework

User supplies a query image.

System ranks images
– Returns most similar images from collection.

Diverse collection of images.
Levels of Similarity

• Similarity can occur at different levels of abstraction:
Motivation & Approach

• Image Similarity ⇒ Retrieval.
• Area Matching Approach:

• Compare regions in terms of color, crude texture, and location.
A Region-Based Representation

• Begin with segmentation. (Provides locality.)
• Describe each patch using multiple features.
 – Color
 – Texture
 – Location
• Combine such that each piece is preserved.
Stairs: Parts Describe the Whole

• Discretize the range of each feature. (Color, texture, and location)
• Count patches in image described by each combination of features.
 – Blue-Smooth-TopLeft: 5,
 Blue-Smooth-TopMiddle: 1,
 ...
 Green-Smooth-TopLeft: 0, etc.
Discretization

- Color: 28 bins
- Texture: 3 bins (smooth, textured, rough)
- Location: 25 bins

Total: $28 \times 3 \times 25 = 2100$ combinations
Vector Representation (Stairs)

• Final representation of image is a vector with 2100 dimensions.

\[\mathbf{v} = \langle v_{c_1t_1l_1}, v_{c_1t_1l_2}, \ldots, v_{c_1t_1l_{25}}, v_{c_1t_2l_1}, \ldots, v_{c_28t_3l_{25}} \rangle \]

• Each dimension records how much of a particular type of material is present.
 – e.g., how much smooth blue in the top left corner?
Comparison

- Vectors are points in space.
- Images with similar composition will have similar (normalized) vectors.
- Angle between similar vectors will be small.
Comparison (2)

• Compare two images using a cosine metric:

\[
D(v_1, v_2) = \cos^{-1}\left(\frac{v_1^T Sv_2}{\sqrt{(v_1^T Sv_1)(v_2^T Sv_2)}}\right)
\]

• Note generalization using S matrix:
 – \(S = I \) is standard cosine metric.
 – Other values of S allow adjustments to metric.
Comparison: Match Coefficients

• Discretization of features loses some similarity information.
 – e.g., Blue is closer to Green than to Orange.

• Such partial matches may be encoded in off-diagonal terms of S.
Evaluating the Vector Method

- Evaluations should test realistic conditions.
- Traditional method: Classification set.
 - 12 & 16 categories of ~100 images each.
- New method: Altered-image queries.

Closest image

Classify unknown as tiger
Comparison Methods

- Statistical methods in common use:
 - Color Histograms
 (Swain & Ballard 1991)
 - Banded Autocorrelogram
 (Huang et. al. 1997)
Sample Categories

Airshows

Elephants

Polar Bears

Caves

Skiers

Stained Glass
Classification Results

Nicholas R. Howe
Artificial Queries

• Image \(\rightarrow\) Altered Image

- Original
- Crop
- Jumble
- Fade

• Goal: Locate original in library, using altered image as query.
Altered-Image Results

- Most images retrieved at low rank. (Good!)
- Minority of images retrieved at high rank.
Object Queries

• Something we’ve wanted to do all along:

Search for objects, not whole images.

Rank 1 (of 19,000)

Rank 60 (of 19,000)
Object Queries, Method I
(Feature-Space Division)

\[S(i, j) = \begin{cases}
S_{\text{object}}(i, j) & \text{if } i \text{ and } j \text{ appear in the target object.} \\
S_{\text{background}}(i, j) & \text{if neither } i \text{ nor } j \text{ appear in the target.} \\
0 & \text{otherwise.}
\end{cases} \]
Object Queries, Method II (Vector Components)

- **Image vector** includes components from both **object** & **background**.
- Idea: search for other vectors with similar **object** components.
Object Queries, Method III (Explicit Area Matching)

• We can explicitly match the regions in the query area, using minimum-cost flow.

Supply & Demand \propto Area

Cost \propto Quality of Match
Testing Object Queries

• 200 images of cars
 – Visual context is irrelevant.
 – Classes are colors of car.
Object Query Results

Retrieval of Red Cars (n = 66)

Retrieval of White Cars (n = 45)

Retrieval of Yellow Cars (n = 14)

Retrieval of Blue Cars (n = 9)

- Full Image
- Method I
- Method II
- Method III

Nicholas R. Howe
Object Queries in Large Libraries

• Three sets of wolf images
• One set used as query for others.
• Method III vs. other techniques:
Boosting & Stairs

- Conic separators used as base learner:

\[v_\perp \cdot v \geq k \]
Work Accomplished

- Identified need for object-conscious image representation.
- Developed Stairs representation & related algorithms.
- Assessed in comparison with existing techniques: mostly competitive.
- Flexible use of regions allows search for objects & arbitrary figures of interest.
Work Awaiting

• Region descriptions are impoverished.
 – Shape matters.
 – Texture is subtle.
 – Relative positions are important.

• Low-level reliability must improve.
Related Work

• Vector Representation
 – Howe & Huttenlocher, 2000; Howe, 2000; Howe 1998

• Earth Mover’s Distance
 – Cohen, 1999

• Blobworld (UC Berkeley)
 – Carson et. al., 1999; Belongie et. al., 1997

• Netra (UCSB)
 – Deng & Manjunath 1999; Ma & Manjunath, 1997
Segmentation

• Segmenting an image means dividing it into regions that “belong together.”

Q. What’s a sensible way to segment any given picture?
Characterizing Regions

• When humans segment an image, they can explain why each region hangs together.

⇒ Models motivate the grouping into regions.
Mathematical Models of Regions

• Model regions as smooth functions + noise:

\[\text{Smooth function:} + \text{Noise profile:} = \text{2D example:} \]
Models of Regions (2)

- Each model tries to predict the image.
- Successful models are rare.
Outline of Segmentation Process

1. Start with small local regions.
 (Felzenszwalb & Huttenlocher 1998)
2. Create a pool of potential models.
3. Measure fit between all models & local regions.
4. Select a small number of models that fit many local regions well.
 (Details on the next slide)
Segmentation Details

• Best segmentation found via energy minimization:

\[E(R) = \sum_{r \in R} \text{Fit}(r, M_r) + \sum_{r_1 \in R} \sum_{r_2 \in R} \Delta(r_1, r_2) \]

“The energy of a segmentation into regions \(R \) is equal to the fit of each region with its model plus a penalty to discourage excess regions.”

• Minimum energy is difficult to compute in general.
Graph Formulation

- Minimum energy = minimum graph cut
 (compare with Boykov, et. al., 1998)
Graph Formulation (2)

- Minimum graph cut = best segmentation
- Running time bound: quadratic in # of nodes
- Quality bound: Energy found is \(\leq 2 \times \text{optimal.} \)
Examples
Related Work

• Stereo Vision & Energy Minimization
 (Boykov, Vexler & Zabih, 1998)

• Normalized Cuts
 (Shi & Malik, 1997)

• JSEG
 (Deng, Manjunath, & Shin, 1999)
The Future

• Moving away from absolutism
 “OK, we can find red cars. Can we find cars?”
 – Relational encodings:
 • White fur next to red velvet
 • A piece of all the same color

• Interplay between segmentation, similarity, and compression/coding
 e.g., Color & texture from segment model
Challenges

• Assumption: parts that belong together should look alike…
 …not always true!

• More sophisticated region models may help.
Generating the S Matrix

- S assembled from matrices S_j for each feature

- Smaller matrices are determined by the similarity of the feature values.
 - e.g., Blue-Green vs. Blue-Orange.
Alternate View of S Matrix

- Cholesky factorization of S: $S = T^T T$
- Cosine metric of modified vectors:

$$D(v_1, v_2) = \cos^{-1}\left(\frac{(Tv_1)^T(Tv_2)}{\left((Tv_1)^T(Tv_1)\right)\left((Tv_2)^T(Tv_2)\right)}\right)$$
Optimizations

- Similarity computation is linear in sparse vector \mathbf{v}.

\[
D(\mathbf{v}_1, \mathbf{v}_2) = \cos^{-1}\left(\frac{\mathbf{v}_1^T \mathbf{Sv}_2}{\sqrt{(\mathbf{v}_1^T \mathbf{Sv}_1)(\mathbf{v}_2^T \mathbf{Sv}_2)}}\right)
\]
Search Pruning

• Nearest neighbor search can be pruned by projection onto lower-dimensional spaces.

• β is lower bound on α.
• Images with β greater than some cutoff need not be considered.
Dividing the Color Space

- Color seeds are dispersed evenly in HSV color cone.
- Divided into Voronoi regions.
- Ensures perceptual uniformity.
Color Histograms

• Simple & reliable.
• Limited extensibility.
Color Histograms In Action

Successes...

…and Failures:

• Some related images have very different histograms.

• Some unrelated images have nearly the same histogram.

Nicholas R. Howe
Color Correlograms

- Correlograms consist of a table of probabilities.

\[C(x, y) = P(color(b) = x | color(a) = x) \land (\|a - b\| = y) \]

```
<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Orange</th>
<th>Yellow</th>
<th>etc…</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 pixel</td>
<td>0.32</td>
<td>0.0</td>
<td>0.06</td>
<td>0.14</td>
</tr>
<tr>
<td>3 pixels</td>
<td>0.16</td>
<td>0.0</td>
<td>0.04</td>
<td>0.0</td>
</tr>
<tr>
<td>5 pixels</td>
<td>0.08</td>
<td>0.0</td>
<td>0.03</td>
<td>0.0</td>
</tr>
</tbody>
</table>
```

“Given a pixel of color \(x \), the probability that a pixel chosen distance \(y \) away is also color \(x \)”

- Correlograms can be compared like vectors.