
FINAL EXAMINATION – MAY 2008
CSC 112

NICHOLAS R. HOWE

This is a closed-book exam. You may use two double-sided 8.5x11 sheets of notes.

All answers to this exam should be written in your exam booklet(s). Start with the questions that
you know how to do, and try not to spend too long on any one question. Partial credit will be
granted where appropriate. You will have two hours and twenty minutes. Good luck!

1.) Graph Traversal (12 points)

At right is a diagram of a graph, with weights
shown on each edge. Simulate a run of
Dijkstra’s shortest path algorithm starting
from node A. In what order are the nodes
visited? Show all distance values that are
assigned over the course of the algorithm,
crossing out old values as they are updated.
Indicate the backpointers by an arrow.

2.) Sorting (8 points)

Consider the array of numbers below, which are to be sorted in increasing order from left to
right. Simulate the array version of the algorithms specified, and show the state of the array after
each swap performed.

 3, 1, 6, 5, 2, 4

a.) Selection sort, array implementation, growing the sorted region from left to right.

b.) Insertion sort, array implementation, growing the sorted region from left to right.

3.) Recursion (14 points)

Describe the development process we have used in class for a recursive algorithm, explaining the
purpose of each of the steps. How can we be sure a particular recursive algorithm will
terminate? Finally, draw connections between the parts of a recursive routine and the parts of a
formally developed iterative loop (again using the methodology presented in class).

A FG

D E

B C

1

9

4

1

1

3

8

6

3

1

5

2

4.) Trees (12 points)

Draw the arithmetic expression trees corresponding to the following prefix expressions. Then
write corresponding expressions using infix and postfix notation, employing parentheses only
where necessary.

a.) + 3 2

b.) + / 8 2 * 3 5

c.) - + - + 1 1 1 1 1

5.) Hash Tables (12 points)

Suppose that you create a hash table with seven entries, and use k mod 5 as your hash function.
Your table will use open adressing with linear probing, and relocation to fill gaps on deletion.
Draw the state of the table after each of the following operations, assuming it begins empty:

a.) Insert Computer Science I under key 111.

b.) Insert Microprocessors and Assembly under key 231.

c.) Insert Computer Science II under key 112.

d.) Delete key 111.

e.) Insert Computational Geometry under key 274.

f.) Insert Computer Networks under key 249.

6.) Data Structures (16 points)

For each of the following data structures and operations, fill in the table with the time complexity
of the operation, or that the specified operation is not possible with the specified data structure.
You may choose from the following values: O(1), O (log n), O (n), O (n log n), O (n2), not possible.

Array

Linked
List

Binary
Search
Tree

Hash
Table

Insert a new element after an arbitrary element in a linked
list. (Assume the element location is given to you.)

Delete an arbitrary element in an array. (Assume the
element location is given to you.)

Find the location of an arbitrary element
Produce a sorted listing of all elements

7.) Graphs (8 points)

The Graph data structure shown at
right has lost a number of
references that should be present.
Assuming that all of the structure
shown is correct, draw any
additional arrows representing
references that should be present in
a complete structure.

nodes edges

Graph

edges data

Node

data head tail

Edge

Node

Node

Node

data head tail

Edge

data head tail

Edge

data head tail

Edge

data head tail

Edge

edges data

edges data

edges data

8.) Classes & Object-Oriented Programming (18 points)

Define each of the following terms, specifying its role in a program and how/where it would
normally be created or defined in a well-structured program.

a.) Constructor

b.) Field

c.) Method

d.) Instance

e.) Accessor

f.) Static method

