
CSC 112 Fall 2008 Midterm – page 1 of 4

MIDTERM EXAMINATION -- KEY
CSC 112 ♦ FALL 2009

YOU MAY USE ONE 8.5"x11" SHEET OF NOTES ON THIS EXAM.

YOU MAY NOT USE THE TEXTBOOK, A COMPUTER, OR ANY OTHER

INFORMATION SOURCE BESIDES YOUR SINGLE PAGE OF NOTES.

YOU MUST COMPLETE AND TURN IN THE EXAM WITHIN THREE HOURS.

All work should be written in the exam booklet. Partial credit will be
granted where appropriate if intermediate steps are shown. When you are
done, please sign the statement below. Good luck!

On my honor, I certify that I have neither given nor received assistance on this exam, and
I have completed it in accordance with the instructions above and the Smith Honor Code.

Signature:

CSC 112 Fall 2008 Midterm – page 2 of 4

1. Program Comprehension (16 points)

The diagram at right shows the state of data structures in the call stack and on the heap
when the program has executed the point labeled A for the first time. Draw a similar
diagram for the program at the point when it executes B.
Be sure to include all type and variable name annotations.

public class Diagram {
 public static int method2(int x, int y) {
 int r = 0;
 if (x != y) {
 r = 0;
 } else {
 r = 1; // Point B
 }
 return r;
 }

 public static int method1(int[] d, int a) {
 int m = 0; // Point A
 for (int i = 0; i < d.length; i++) {
 m = m+method2(d[i],a);
 }
 return m;
 }

 public static void main(String[] args) {
 int[] a = {1,2,3};
 int b = 5;

 System.out.println(method1(a,b));
 System.out.println(method1(a,a[0]));
 }
}

2. Sorting (16 points)

Consider the array of numbers below, which are to be sorted in increasing order from left
to right. Simulate the array version of the algorithms specified, and show the state of the
data after each swap performed.

 4, 2, 6, 1, 5, 3

a.) Insertion sort, array implementation, growing the sorted region from left to right.
 246153, 241653, 214653, 124653, 124563, 124536, 124356, 123456

b.) Merge sort, list implementation (show lists formed after each merge).
 24, 16, 35, 1246, 123456

CSC 112 Fall 2008 Midterm – page 3 of 4

3. Iterators (10 points)

Write a simple loop using iterators to find the index of the minimum element of the
ArrayList shown below. Methods of ListIterator you may wish to use: next(),
previous(), hasNext(), hasPrevious(), nextIndex(), previousIndex().

ArrayList<Float> list = new ArrayList<Float>(); // this is the list
// assume that elements are added to the list here
float minval = Float.MAX_FLOAT; // this is the minimum value yet
int minind = -1; // this is the index where it was found
for (ListIterator<Float> mark = list.listIterator();
 mark.hasNext();) {
 float x = mark.next();
 if (x <= minval) {
 minval = x;
 minind = mark.previousIndex();
 }
}
// at end, minind should contain the index of the smallest element

4. GUI Programming (8 points).

Which of the following are allowed/feasible when creating a GUI program?

a.) Register the same ActionListener object with more than one JButton. Yes

b.) Register several ActionListener objects with just one JButton. Yes

c.) Use the same event handler method for a button and a mouse click. No

d.) Register the same listener object for a button and a mouse click. Yes

e.) Use four instances of the same listener class to produce one of four different
behaviors when each of four buttons are clicked. Yes

f.) Use one instance of the same listener class to produce one of four different behaviors
when each of four buttons are clicked. Yes

g.) Use four instances of the same listener class to produce four different behaviors when
one single button is clicked. Yes

h.) Register a non-subclass of ActionListener as a listener for a Jbutton. No

CSC 112 Fall 2008 Midterm – page 4 of 4

5. Programming Style (16 points)

"Effective program documentation requires a combination of programming techniques
and disciplines." Discuss this statement, including at least three examples of
programming techniques that can make your work easier to understand.

Many factors work together to make programs easier to read. Selecting simple
algorithms and reducing redundant or unnecessary code, while not usually considered
documentation, is one factor. The most obvious step you can take is to include Javadoc
comments before each class, field, and method, with appropriate keywords included.
Inline comments to clarify obscure commands or to identify sections of code can be
helpful. Selection of descriptive names for variables and methods can be enormously
helpful, making the code effectively self-documenting. The final act of documentation
often involves creation of a user manual or other instruction set, separate from the
program itself.

6. Stacks and Queues (12 points)

Suppose that you have an Stack<Integer> s with operations push() and pop(), and an
Queue<Integer> q with operations in() and out(). Suppose further that at some
moment in time the contents of the queue (listed from head to tail) are 1, 2, 3, 4, 5, and 6,
while the stack is empty. Write a sequence of operations using no additional storage that
would end in a configuration where the queue would contain 5, 6, 3, 4, 1, and 2 (again
listed from head to tail). For example, s.push(q.out()) would move the 1 from the head of
the queue to the top of the stack, and q.in(s.pop()) would move it back from the stack to
the tail of the queue. Hint: slow and methodical is the ticket. Be careful!
 s.push(q.out());s.push(q.out()); q.in(s.pop());q.in(s.pop());
 s.push(q.out());s.push(q.out());q.in(s.pop());q.in(s.pop());
 s.push(q.out());s.push(q.out());q.in(s.pop());q.in(s.pop());
 s.push(q.out());s.push(q.out());s.push(q.out());
 s.push(q.out());s.push(q.out());s.push(q.out());
 q.in(s.pop());q.in(s.pop());q.in(s.pop());
 q.in(s.pop());q.in(s.pop());q.in(s.pop());

7. Data Structure Selection (10 points)

Select an appropriate class from the Java core for the following tasks. Keep in mind
efficiencies in both memory and execution time, where applicable.

a.) Represent integral (x,y) coordinates of a pixel Point

b.) Parent class for a user-defined object that will create a component visible in an applet
window. JComponent

CSC 112 Fall 2008 Midterm – page 5 of 4

c.) Data structure to hold password-checking tasks. The password checker works at a
constant speed, but requests to check passwords may come in at any time, and must be
handled in the order they are received. The number of concurrent requests is expected to
be fairly small. ArrayDeque

d.) Data structure for a simulation of DNA mutation. The data structure will hold base
pairs of DNA, subsequences of which may be deleted from one region and inserted in
others. LinkedList

e.) Data structure to parse XML files. (XML has a nested tag structure similar to
XHTML.) The files in question are expected to have a very deep nesting structure,
meaning that the number of tags open may be very large. LinkedList

CSC 112 Fall 2008 Midterm – page 6 of 4

8. Linked Lists (12 points)

Suppose that a list has the contents shown below. After executing the code that follows,
what would the list contents look like? Draw the state of the list after the lines marked R,
S, and T in the code. Include the location of the mark in your diagram.

 Character c;
 ListIterator<Character> mark = list.listIterator(1);
 c = mark.previous();
 mark.set('E'); // Point R: ^EBCDEF
 mark.next();
 mark.next();
 c = mark.next();
 mark.next();
 mark.add('I'); // Point S: EBCDI^EF
 mark.next();
 mark.remove();
 mark.add(c);
 list.removeLast(); // Point T: EBCDIC (mark invalid)

