
CSC 112 MIDTERM EXAM
FALL 2003

You will have 110 minutes to complete this exam. All work should be written in the
exam booklet. Start with the questions that you know how to do, and try not to spend too
long on any one question. Partial credit will be granted where appropriate. Good luck!

1. Argument Passing (12 points). Predict the terminal output of the following program:

#include <iostream>
using namespace std;
const int d = 1;
int myfun(int a, int &b, int *c) {
 a = a+*c;
 b = a-b;
 *c = b+*c;
 cout << a << endl;
 cout << b << endl;
 cout << *c << endl;
 cout << d << endl;
 return (b+*c-a);
}
int main() {
 int a = -1, b = 2, c = 3, d = 5;
 a = myfun(b,c,&d);
 cout << a << endl;
 cout << b << endl;
 cout << c << endl;
 cout << d << endl;
}

2. Arrays (12 points). Predict the terminal output of the following program:

#include <iostream>
using namespace std;

//**

int main() {
 int a[6] = {4, 1, 3, -7, 1, 0};
 int minval = a[0], minpos = 0;
 for (int i = 0; i < 6; i++) {
 if (a[i] < minval) {
 minval = a[i];
 minpos = i;
 cout << "Value: " << minval << endl;
 }
 cout << "Position: " << minpos << endl;
 }
}

3. Classes (20 points). You are writing the software to control a jukebox. It will store
up to 20 songs waiting to be played, using a statically allocated array. New songs to be
played can be added to the end of the array via an enterSong() method. Periodically,
another piece of software calls the nextSong() method to find out what to play next,
removing the first song in the array and moving the others downwards. The
numSongsWaiting() method reveals how many songs are currently waiting.

 a. Assuming that class Song is defined in the file Song.h, give a complete
definition (but not implementation) of class Jukebox, including required constructors,
destructor, the methods mentioned above, and any properties needed to support these
operations. Your answer should demonstrate good coding practices as taught in class.

#ifndef _JUKEBOX_H_
#define _JUKEBOX_H_
#include "Song.h"
const int MAX_SONGS = 20;

// define your class here

#endif

 b. Write an implementation for the accessor numSongsWaiting().

 c. Write an implementation for the copy constructor of the class described above,
as it would appear in Jukebox.cpp. Use at least one initializer in your implementation.

 d. Write an implementation for the enterSong() method described above, as it
would appear in Jukebox.cpp. If there are already 20 songs waiting, it should do
nothing.

4. Array Allocation (16 points). Below is a fragment of code allocating some memory.

 int **tri = new (int*)[4];
 for (int i = 0; i < 4; i++) {
 tri[i] = new int[4-i];
 }

 a. Draw the data structures in memory that would be created by this code. Show
the actual number of boxes in each array allocation, and label the indices.

 b. Write another code fragment that would properly deallocate the dynamic
memory allocated above.

5. Style (8 points). Give two reasons why keywords like const and static should be
used whenever possible.

6. Inheritance (16 points). Consider the class definitions given below.

#include <string>
using namespace std;

class Pet {
public:
 Pet();
 Pet(string n, int a);
 Pet(const Pet&);
 ~Pet();

 string getName() const;
 int getAge() const;
 void setName(string n);
 void setAge(int a);
 void printDescription();

private:
 string name;
 int age;
};

class Dog {
public:
 Dog();
 Dog(const Dog&);
 ~Dog();

 string getName() const;
 int getAge() const;
 int getLicense() const;
 void setName(string n);
 void setAge(int a);
 void setLicense(int ln);
 void printDescription();

private:
 string name;
 int age;
 int license;
};

 a. Suppose that class Dog is going to be rewritten as a subclass of class Pet.
What changes would have to be made to the class Dog definition? Eliminate any
unnecessary code.

 b. Suppose that the implementation of Dog::printDescription() includes
displaying the license number of the dog. You have a number of different pets accessible
through an array of Pet pointers, and you plan to write a loop that will call
printDescription() for each of them. How can you make the license number print out
for all the pets who are dogs? Be specific about what you would change and where.

7. Sorting (10 points). The array shown below is to be sorted into increasing order using
selection sort. Draw a diagram of the array after each swap in the selection sort
algorithm. Assume that the sorted region is grown from the left side of the array.

8 3 2 9 5

8. Program Complexity (6 points). You’ re planning a scientific data-processing
program that will perform weather simulations using data from n weather stations
scattered all over the world. The number n is large, and is expected to continue to grow
as more stations are added. You have a choice of different algorithms, with different
asymptotic complexities. Rank these choices in order from best to worst.

 a. O(3n2)

 b. O(1000n)

 c. O(1+1.1n)

