
FINAL EXAMINATION – DECEMBER, 2002 
CSC 112 

NICHOLAS R. HOWE 
 
This is a closed-book exam.  You may use two double-sided 8.5x11 sheets of notes. 
 
All answers to this exam should be written in your exam booklet(s).  Start with the questions that 
you know how to do, and try not to spend too long on any one question.  Partial credit will be 
granted where appropriate.  You will have two hours and twenty minutes.  Good luck! 
 
Data Structure Selection 
 
1.  (10 points)  Select the most appropriate data structure to help solve the following problems.  
Be as specific as possible; if you can supply a more specific name than a general data structure 
(“arithmetic expression tree” vs. “tree”), then you should do so. 
 

a.  Application must insert and delete quickly, and must be able to produce a sorted list 
quickly. 

 
b.  Application must insert, delete, and look up extremely quickly, but doesn’t ever need to 

produce a sorted list. 
 
c.  Expert systems work by asking a series of questions in an attempt to diagnose a situation.  

The questions asked depend upon the answers to the previous questions.  What data structure 
would you use if to store the questions for an expert system that asks only yes/no questions? 

 
d.  If outgoing e-mail must be stored temorarily by a mail server before transmission, what 

data structure should be used to store it? 
 
e.  Word processors often store the sequence of edits made to a file, so that a user can undo 

them one by one if she chooses.  What data structure might be most likely used to store the edit 
history? 
 
 
C++ Language 
 
2.  (12 points)  Why are redundancy and repetition in computer code a bad thing?  Write a few 
paragraphs on this subject, giving at least three examples of mechanisms in C++ that are 
designed to help avoid unnecessary repetition of code.



Stacks and Queues 
 
3.  (16 points)  For the following sequence of operations, give the result returned by each pop() 
and out() operation, in order, and draw the final state of the data structure specified.  Assume 
that both stacks and queues are implemented as described in class, and that the data structures are 
initially empty. 
 
a.  Stack:  push(5); push(8); push(4); pop(); push(11); pop(); push(7); push(8); pop(); pop(); 
 
b.  Queue:  in(5); in(8); in(4); out(); in(11); out (); in(7); in(8); out (); out(); 
 
 
Lists 
 
4.  (8 points)  Assume that the diagram below represents a portion of a singly linked list.  The 
variable item is a pointer to one of the nodes in the list.  Write fragments of code for the 
following operations, assuming the naming conventions given in the diagram.  You may assume 
for purposes of this problem that all the properties are declared public; i.e., they may be accessed 
directly by name without using accessors or manipulators.  Make sure that your code updates all 
pointers as necessary to leave the list in a consistent state, and allocates/deallocates memory 
properly.  (You need not put your code fragments inside functions; just list the statements 
required to accomplish the specified tasks.) 
 

item 

data next data next data next 
18 13 22 

SL ListNode SL ListNode SL ListNode  
 
a.  Delete the node containing 13. 
 
b.  Insert a node containing 8 immediately following the node containing 18. 



 Trees 
 
5.  (12 points)  In what order would the nodes be visited for the tree 
at right for the following traversal methods? 

A 

B  C 

D 

F 

G 

H 

E 

I 

 
a.  Inorder traversal 
 
b.  Breadth first traversal 
 
c.  Preorder traversal 
 
d.  Postorder traversal 
 
 
6.  (10 points)  For the binary search tree at right, indicate the tree 
that would result from each of the following operation.  You should 
assume that each part starts with the tree pictured.  (In other words, 
the changes are not cumulative.) 

7 

8  4 

6 

9 

0 

2 

5 

1 

 
a.  Insert 3. 
 
b.  Delete 2, using right merge if necessary. 
 
c.  Delete 6, using left merge if necessary. 
 
d.  Delete 5, using right copy if necessary. 
 
e.  Delete 5, using left copy if necessary. 
 
 
Hash Tables 
 
7.  (8 points)  Suppose that a particular application uses a hash table of 
size five, with linear probing.  The hash function is simple modular 
hashing.  Draw the contents of the table after the following sequence of 
insertions: 

0 
1 
2 

 3 
Key: 179; Data:  Alan Turing 4 
Key: 381; Data:  John Von Neumann 
Key: 440; Data:  Ada Lovelace 
Key: 381; Data:  Charles Babbage 
Key: 514; Data:  Grace Hopper 



Recursion 
 
8.  (12 points)  Consider the following code.  What would the output be? 
 
#include <iostream> 
 
int recursive(int x) { 
  cout << x << ", "; 
  if (x <= 1) { 
    return 0; 
  } else if (x%2 == 1) { 
    return recursive(x-1); 
  } else { 
    return recursive(x/2)+1; 
  } 
} 
 
int fib(int n) { 
  cout << n << ", "; 
  if (n <= 1) { 
    return 1; 
  } else { 
    return (fib(n-1)+fib(n-2)); 
  } 
} 
 
void main() { 
  cout << "Part a:  "; 
  int x = recursive(13); 
  cout << x << endl; 
  cout << "Part b:  "; 
  int y = fib(7); 
  cout << y << endl;   
} 
 
 



Inheritance 
 
9.  (12 points)  Consider the following definition for class Shape, designed to keep track of the 
details of geometric shapes for display on the screen.  You are to design a new class called 
Circle derived from Shape.  It will have one new property, radius, plus appropriate 
constructors, accessors and manipulators. 
 
enum Color = {Black, White, Red, Yellow, Orange, Green, Blue, Purple}; 
 
class Shape { 
public: 
  Shape(float x = 0, float y = 0, Color body = Black, Color border = Black); 
  Shape(const Shape &); 
  virtual ~Shape(); 
 
  // accessors: 
  float getCenterX() const; 
  float getCenterY() const; 
  Color getBodyColor() const; 
  Color getBorderColor() const; 
 
  // manipulators: 
  void setCenterX(float); 
  void setCenterY(float); 
  void setBodyColor(Color); 
  void setBorderColor(Color); 
   
  // other methods: 
  virtual float area() const;       // computes shape's area 
  virtual float perimeter() const;  // computes shape's perimeter 
  virtual void draw() const;        // draws the shape on the screen 
 
protected: 
  float centerX;      // x coordinate of figure's center 
  float centerY;      // y coordinate of figure's center 
  Color bodyColor;    // color of shape body 
  Color borderColor;  // color of shape border 
}; 
 
a.  What new methods should be added for class Circle?  What existing methods of class Shape 
should be overridden?  Write a class declaration for class Circle, taking advantage of 
inheritance as you do so. 
 
b.  Write the copy constructor for class Circle, using initializers where appropriate. 
 


