## cube.in

```# Cube, {+-10,+-10,+-10}
# Number of faces
12
# Number of vertices
8
# Vertex coordinates and indices for each face
# All faces are congruent isosceles triangles, but half are
# described with the long 20 Sqrt[2] edge on the x-axis
0.0 0.0 4  20.0 0.0 5  0.0 20.0 6
0.0 0.0 4  20.0 0.0 6  0.0 20.0 0
0.0 0.0 5  20.0 0.0 4  20.0 20.0 0
0.0 0.0 5  28.28427124746190200 0.0 0  14.14213562373094900 14.14213562373095100 1
0.0 0.0 0  28.28427124746190200 0.0 6  14.14213562373094900 14.14213562373095100 2
0.0 0.0 1  20.0 0.0 0  20.0 20.0 2
0.0 0.0 5  20.0 0.0 1  20.0 20.0 3
0.0 0.0 2  20.0 0.0 6  0.0 20.0 3
0.0 0.0 1  28.28427124746190200 0.0 2  14.14213562373094900 14.14213562373095100 3
0.0 0.0 6  28.28427124746190200 0.0 5  14.14213562373094900 14.14213562373095100 7
0.0 0.0 3  28.28427124746190200 0.0 6  14.14213562373094900 14.14213562373095100 7
0.0 0.0 5  28.28427124746190200 0.0 3  14.14213562373094900 14.14213562373095100 7
# Gluing instructions for each edge of each of 12 faces
2 0
9 0
1 0

0 2
4 0
2 1

0 0
1 2
3 0

2 2
5 0
6 0

1 1
7 0
5 1

3 1
4 2
8 0

3 2
8 2
11 0

4 1
10 0
8 1

5 2
7 2
6 1

0 1
11 2
10 1

7 1
9 2
11 1

6 2
10 2
9 1
# Source face index and local vertex index
# Implied global index of source = 6
0
2
```

## cube.out

Comments in brackets to the right are not part of the output.
```-------------------------------------------------
8		[eight vertices]
1 4 6 -0 	[path through 1 face:
face 4, vertex 6, fraction along edge = 0]
3 9 6 -0  11 7 0.5  6 3 0.666667
[path through 3 faces:
face  9, vertex 6, fraction along edge = 0;
face 11, vertex 7, fraction along edge = 1/2;
face  6, vertex 3, fraction along edge = 2/3]
1 7 6 -0
1 10 6 -0
1 1 6 -0
1 0 6 -0
1 0 6 0
1 9 6 -0
6		[global index of source vertex]
-------------------------------------------------
```

Research supported by NSF grant CCR-9731804.
Last Update: