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Abstract

We extend the notion of a source unfolding of a convex polyhedron
P to be based on a closed polygonal curve Q in a particular class rather
than based on a point. The class requires that Q “lives on a cone” to
both sides; it includes simple, closed quasigeodesics. Cutting a particular
subset of the cut locus of Q (in P) leads to a non-overlapping unfolding
of the polyhedron. This gives a new general method to unfold the surface
of any convex polyhedron to a simple, planar polygon.

1 Introduction

Two general methods were known to unfold the surface P of any convex poly-
hedron to a simple polygon in the plane: the source unfolding and the star
unfolding, both with respect to a point x ∈ P; see, e.g., [DO07]. In [IOV10] we
defined a third general method, the star unfolding with respect to any mem-
ber of a class of simple, closed curves Q on P, a class we called “quasigeodesic
loops.” Here we extend the source unfolding to be based on a different class of
simple, closed, polygonal curves Q. The intersection of the two classes includes
simple, closed quasigeodesics. Thus both the source and star unfolding are now
generalized from points to these quasigeodesics, in all cases unfolding P to a
simple, planar polygon.

Cut Locus. The point source unfolding cuts the cut locus CP(x) of the
point x: the closure of the set of all those points y to which there is more than
one shortest path on P from x. The point source unfolding has been studied for
polyhedral surfaces since [SS86] (where the cut locus is called the “ridge tree”).
Our method also relies on the cut locus, but now the cut locus CP(Q) with
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respect to Q. The definition of CP(Q) is the same: it is the closure of all points
to which there is more than one shortest path from Q. Here it is analogous
to the “medial axis” of a shape; indeed, the medial axis of a polygon is the
cut locus of the polygon’s boundary. As with the point source unfolding, our
unfolding essentially cuts all of CP(Q), but this statement needs to be qualified:
we do not cut some segments of the cut locus (incident to Q), and we cut some
additional segments not in the cut locus (again incident to Q).

Convex Curves and Quasigeodesics. Let p be a point on an oriented,
simple, closed, polygonal curve Q on P. Let L(p) be the total surface angle
incident to the left side of p, and R(p) the angle to the right side. Q is a convex
curve if L(p) ≤ π for all points of Q. Q is a quasigeodesic if L(p) ≤ π and
R(p) ≤ π for all p, i.e., it is convex to both sides. Quasigeodesics, introduced
by Alexandrov (e.g., [AZ67, p.16]) are the natural generalization of geodesics
to polyhedral surfaces. A quasigeodesic loop has a single exceptional point at
which the quasigeodesic angle condition to one side may not hold. We have the
inclusions: {convex} ⊃ {quasigeodesic loop} ⊃ {quasigeodesic}.

The class of curves for which our source unfolding method works includes
(a) convex curves that pass through at most one vertex of P, and (b) quasi-
geodesics. The method does not (always) work for all quasigeodesic loops. Thus
the class of curves for which the source and star unfolding methods work are
not directly comparable, but they both include quasigeodesics.

Curves “Living on a Cone.” The precise class of curves for which our
source unfolding method works depends on the following notion. Let Q be (as
before) an oriented, simple, closed, polygonal curve on P. Let N be a vertex-
free neighborhood of Q in P to the left of and bounded by Q. We say Q
lives on a cone to its left if there exists a cone Λ and an N such that Q ∪ N
may be embedded isometrically on Λ, enclosing the cone apex a. A cone is
a developable surface with curvature zero everywhere except at one point, its
apex a. We consider a planar polygon to be a cone with apex angle 2π, and a
cylinder to be a cone with apex angle 0. The source unfolding described in this
paper works for any curve Q that (a) lives on a cone to both sides (perhaps on
different cones), and (b) such that each point of Q is “visible” from the apex a
along a generator of the cone (a line through a lying in Λ). See Figure 1. We
should remark that the cone on which a curve Q lives has no direct relationship
(except in special cases) to the surface that results from extending the faces of
P crossed by Q. The cones on which Q lives play a central role in our proof
technique. Although a curve could live on many different cones, it is established
in [OV11, Lem. 3] that the cone is uniquely determined to each side by P. We
also established [OV11, Thm. 3] that the classes of curves listed above live on
cones in this sense. Indeed the set of curves enjoying the properties (a) and (b)
above is wider than what we list here, but as the full class of curves that live
on cones to both sides is not yet precisely delimited, we leave this issue aside.
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Figure 1: A 4-segment curve Q which lives on cone Λ to its left. A portion of
N is shown, and a generator g = ax is illustrated. (Adapted from [OV11].)

2 Preview of Algorithm

Assume we are given a curve Q satisfying our conditions: it is convex to one side,
and it lives on cones to either side. We now describe the unfolding abstractly
at a high level. First we need some notation.

Q divides P into two closed “halves,” P1 and P2. We handle the two halves
a bit differently. Let P1 be the half to the convex side (say, the left side),
and P2 the half to the (possibly) reflex (i.e., nonconvex) right side. (If Q is a
quasigeodesic, both halves are convex.) Let CPi be the portion of the cut locus
CP(Q) in each half Pi.

Cut all edges of CP1
not incident to Q, and cut one additional precisely

selected segment from CP1
to Q. To the (possibly) nonconvex side P2, cut all

of CP2
, including those edges incident to Q. In addition, we cut shortest path

segments from CP2 to any remaining reflex vertices of Q. See Figure 2. The
result, we will show, is an unfolding of P to a simple, planar polygon.

We do not concentrate in this paper on algorithmic complexity issues, which
will only be touched upon in Section 7. But the described procedure is a definite,
finite algorithm which works for any Q in the appropriate class.

The unfolding procedure is best viewed as unfolding each half separately,
and then gluing them together along Q, as the examples below will emphasize.

Examples. Throughout this paper we will use three example polyhedra P
to illustrate concepts. Here we introduce two; the third will be described in
Section 3.

Example 1. The first example is a regular tetrahedron with a convex curve
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Figure 2: An abstract depiction of the full source unfolding for a convex curve
Q. Here q1 and q3 are reflex vertices of Q to the P2 side. (The figure is not
metrically accurate.)
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three congruent triangles meeting at its centroid.
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parallel to the base; see Figure 3(a), where Q = (b′, c′, d′). Q lives on the same
cone to each side, the cone determined by the lateral faces of the tetrahedron.
Note that the angle at each corner of Q is convex ( 2

3π) to one side and reflex
( 4

3π) to the other side. One of our main results, Theorem 1, shows that each
half unfolds separately without overlap, as illustrated in Figure 3(b). A second
main result, Theorem 2, shows that the two halves may be joined to one non-
overlapping piece, in this case producing a trapezoid. This is an atypical case in
many respects, but will be useful for that reason to illustrate degeneracies. For
example, notice that no part of CP1

is cut in this example, because all segments
of that cut locus are incident to Q.

Example 2. Our second example is more generic: a cube twice truncated,
with Q the particular quasigeodesic shown in Figure 4(a). The angles at the
vertices of Q = (v0, v1, v7, v10) within P1 are, respectively, ( 3

4π,
1
2π,

3
4π,

1
2π), and

the angles at those vertices within P2 are ( 3
4π, π,

3
4π, π). Because all of these

angles are at most π, Q is convex to both sides and so a quasigeodesic. The
cone on which Q lives to the P2-side is evident: its apex is the cube corner
truncated. The cone on which Q lives to the P1-side is not evident; it will be
described later (in Figure 6). For Q a simple closed quasigeodesic, the cut loci
CPi are each a single tree with each edge a (geodesic) segment, as illustrated in
Figure 4(b,c). Theorem 2 leads to the unfolding shown in Figure 4(d).

Our third example will illustrate that the edges of the cut locus can also be
parabolic arcs.

3 Cut Locus of Q

The proof that the described source unfolding avoids overlap relies on two key
ingredients: the structure of the cut loci in each half of P, and the cones on
which Q lives. Here we focus on the cut loci.

A vertex of Q is a point q with an angle at q in Pi different from π; note
this definition depends on the half Pi. Thus if Q is a geodesic, it has no vertices
at all to either side. It will be useful to distinguish two varieties of these ver-
tices: a convex vertex has angle less than π in Pi, and a reflex vertex has angle
greater than π. Note the meaning of these is interchanged when looking from
P1 compared to looking from P2 (although it is possible that an angle differs
from π from one side and is equal to π from the other, e.g., v10 in Figure 4).
Let q0, q1, . . . , qk be the vertices of Q in some circular order, with respect to the
half Pi. (Although these vertices depend on Pi, we opt not to subscript with i
to ease notation.)

The cut locus CPi
is a tree whose leaves span the vertices of Pi, including

the convex vertices of Q, which must be leaves of CPi
. (That CPi

is a tree is
well-known in Riemannian geometry, e.g., see [Thu98, p. 539]. This can also
be seen from the fact that each half Pi has a finite intrinsic diameter, and so
shortest paths from Q are finite in length and each ends at a cut point.) Each
non-leaf point p of CPi

has at least two shortest paths to Q; leaves have precisely
one shortest path to Q, or might lie on Q. Each shortest path from p ∈ CPi
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Figure 4: (a) Truncated cube and quasigeodesic Q = (v0, v1, v7, v10).
(b,c) Views of Pi and cut loci CPi

(dashed). (d) Unfolding to a simple polygon.
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to Q is called a projection to Q. The segment of CPi incident to each convex
vertex of Q bisects the angle there.

We now review our three examples to illustrate these relationships. In Fig-
ure 3, CP1

is a tree spanning the apex a and the three vertices {b′, c′, d′} of Q.
CP2

is a tree in the bottom face spanning its three vertices {b, c, d} (but not
touching Q).

Figures 4(b,c) show that CPi are each trees spanning the vertices of Pi and
touching Q: at its four vertices in P2, and its two vertices in P1 (the angles at
v1 and at v10 are π in P1).

Example 3. Figure 5 shows an example that illustrates several aspects not
present in the other two examples. First, Q is neither a convex curve nor a
quasigeodesic, but it nevertheless lives on a cone to both sides, namely, the cone
determined by the pyramid’s lateral sides. Thus our method applies to this Q.
Second, CP1

is a tree spanning the apex a and the two convex vertices of Q to
that side, {b′, d′}. CP1

includes four parabolic arcs: one generated by the edge
b′e′ and the reflex vertex c′1, one generated by the edge c′1c

′ and the reflex vertex
e′, and two more symmetrically placed arcs. CP2

is a tree that includes an X on
the bottom face spanning {b, c, d, e}. In general, parabolic arcs arise as arcs at
equal distance to a reflex vertex and an edge.

4 Cut Loci on Cones

The essence of our proof, that the unfolding of each half Pi avoids overlap
(Theorem 1), is that pieces of Pi embed into the cone Λi, and that Λi develops
without overlap in the plane when cut along a generator. A key to our approach
is to define these “pieces” of Pi (in Sec. 5) by comparing the cut locus CPi

on Pi

with the cut locus CΛi
on the cone Λi on which Q lives to the Pi-side. The cone

Λi and surface Pi share the same boundary Q, and by construction, the same
angles occur along Q. Therefore, Q has the same vertices in both Λi and Pi.
Thus CPi and CΛi both have the same set of leaves touching Q, but of course
in general they differ in the interior of the surfaces.

To one of the two sides, the cone may be unbounded (established in [OV11]).
This occurs in both Figure 3 and Figure 5. For the tetrahedron (Figure 3), Λ2

is unbounded, and CΛ2
is empty. For the pyramid (Figure 5), Λ2 is again

unbounded, and CΛ2 is in this case a forest, including two halfline branches to
infinity, one from e′ through e, and another from the Y-junction below c′ through
c. The cut locus can only be a forest (as opposed to a tree) to an unbounded side.
This is because an unbounded surface Λi contains infinite-length shortest paths
without cut points, which then separate CΛi

into components, as in the pyramid
example. Only one side may be unbounded, unless the cone is a cylinder.

In the truncated cube example, both cones are bounded (because the quasi-
geodesicQ is convex to both sides), and both CΛ1

and CΛ2
are trees; see Figure 6.

Note that the cut locus extends to the apex ai of Λi in both instances, which it
must because the cut locus includes all vertices.

CΛi
is determined by any small neighborhood of Q to the Pi-side, because
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Λi is so determined (see again [OV11]). And because every leaf of CΛi is also a
leaf of CPi , the bisecting property of cut loci (each edge of the cut locus incident
to a vertex v ∈ Q bisects the angle of Pi at v) implies that small neighborhoods
of the leaves of CΛi

are included in CPi
. In other words, the edges of CPi

and
CΛi

issuing from vertices of Q coincide until they hit a vertex of CPi
or a vertex

of Pi. We use this property in the proof of Lemma 1 below.
We now turn to defining the “pieces” of Pi that embed in Λi.

5 Peels & Subpeels: Embedding in the Cone

Let u0, u1, . . . , um be the vertices (leaves and junction points) of CPi , following
a circular ordering of all of their their projections to Q. Note that this ordering
is unambiguous even though some points have multiple equal-length projections
to Q, because these projections never cross. Therefore, those leaves and junction
points of CPi

appear several times in the sequence u0, u1, . . . , um, each as many
times as its number of projections. Let (uj , uk) be two consecutive leaves of CPi ,
and (u′j , u

′
k) corresponding consecutive projections onto Q. The peel αPi(uj , uk)

is the closed flat region of Pi bounded by the two projection paths uju
′
j , uku

′
k,

the subpath Qij of Q from u′j to u′k, and the unique path in CPi
connecting

uj to uk, such that αPi
(uj , uk) contains no leaf of CPi

. Each peel αPi
(uj , uk)

is isometric to a planar convex polygon if Qij is convex to the left; otherwise,
αPi(uj , uk) can be decomposed into the union of planar convex polygons and
triangles whose base is a parabolic arc and whose vertex opposite to that side
is a reflex vertex of Q.

Between two consecutive leaves uj and uk are the vertices along the tree
path, uj , uj+1, . . . , uk−1, uk. Each of these delimits a subpeel of αPi

(uj , uk),
partitioning the peel along the projection segments ulu

′
l, j < l < k.

The notion of peel and subpeel can be defined analogously for Λi. If CΛi

has at most one component, everything defined above for CPi
holds exactly

as stated. Assume now that CΛi
has at least two components. In this case,

all leaves of CΛi
belong to Q, and we consider them as projection points of

themselves. Again we consider all projections of the junction points of CΛi
. We

take the circular order along Q of all these projection points. If two consecutive
projections correspond to points on the same component of CΛi , we use the
definition of peels and subpeels given above.

Now assume two consecutive projections uj and uk correspond to points on
different components of CΛi

. Then the peel αΛi
(uj , uk) is the closed flat region

of Λi bounded by the two projection paths uju
′
j , uku

′
k, the subpath Qij of Q

from u′j to u′k , and the two paths in CΛi from uj , respectively uk, to infinity,
such that αPi

(uj , uk) contains no leaf of CPi
. Here we note that each component

of CΛi
has precisely one arc going to infinity, so the definition above is correct.

The definition for subpeels is analogous: either we get bounded polygons, or
unbounded polygons determined by arcs to infinity in different components of
CΛi .

These peels can be decomposed into the union of (a) planar rectangular
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trapezoids, with one side either a line-segment, or a parabolic arc, or “an arc at
infinity”; and (b) triangles whose base is a parabolic arc (possibly at infinity)
and whose vertex opposite to that side is a reflex vertex of Q.

We now prove the central technical result, Lemma 1, which establishes the
embedding of Pi into Λi. This lemma shows that the peels of Pi nest inside
the peels of Λi. At one spot in the argument, we need a specialized lemma,
which we invoke (Lemma 2) before proving it. As a consequence of the nesting
lemma, embedding of the half-surfaces into their cones follows, as summarized
in Lemma 3.

Lemma 1 (Peel Nesting) Each subpeel βPi
of Pi is isometric to a region of

a subpeel βΛi
of Λi. The union of the subpeels in one peel αPi

of Pi is non-
overlapping in some αΛi

, and thus each peel αPi
is nested inside a peel αΛi

of
Λi.

Proof: Let ΓPi
be the directed curve that traces around the maximal subtree

of CPi
disjoint from Q, i.e., around the cut locus minus the edges incident to

Q. ΓPi is an Eulerian tour of this subtree, tracing its edges twice, once from
each side. Thus each non-leaf point x of CPi \Q has at least two images in ΓPi ,
and a junction point x of CPi

has deg(x) ≥ 3 images in ΓPi
. We define ΓΛi

to
be the “image” of ΓPi

on Λi: an isometric tracing with the same angles, on Λi.
We are going to track a variable point xt on ΓΛi

inside Λi, and analyze how
xt interacts with CΛi . The crux of the proof analyzes what happens when xt
might leave its peel αΛi .

We will illustrate the proof with the portion of ΓΛ1
for P1 of our truncated

cube example shown in Figure 8.
To initiate the analysis, let x0 ∈ ΓΛi

be any point in the interior of a peel
αΛi

. We need to argue for the existence of such a point. We will choose a leaf
of CPi , but it must be chosen with some care. First, if CPi = CΛi , then the
claim of the lemma is trivial. So assume the cut loci differ. Delete from CPi all
branches in common with CΛi

. By “branches” here we mean subtrees of CPi

whose removal does not disconnect CPi
; so what remains is still a tree.

Let v ∈ P be a leaf of this reduced tree. As we argued above, the image in
Λi of a small neighborhood of v in Pi remains included in Λi. So we may take
x0 = v. Vertex v8 in Figure 8 could serve as x0.

Now we move a point xt along ΓΛi
continuously from x0. As long as xt re-

mains inside the peel αΛi
, the subpeel βPi

to which xt belongs remains included
in peel αΛi

. Adjacent subpeels βPi
and β′Pi

share a side orthogonal to Q in αΛi
,

and so they do not overlap one another.
Now assume that xt reaches a point xt = y ∈ CΛi . If ΓΛi touches but does

not cross CΛi
, then the subpeel βPi

to which xt belongs, or the adjacent subpeel
β′Pi

into which xt is moving, remains included in αΛi
, and there is nothing to

prove. We should note that, in general, we cannot conclude that touching-but-
not-crossing CΛi

necessarily implies that y is a junction of CPi
. It could be that

y is a leaf of CΛi , which is another instance of touching-but-not-crossing, and
again nesting remains clearly true. So henceforth we assume y is interior to CΛi .

12
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Now we consider the situation when xt crosses CΛi at y, as it does at y=a in
Figure 8. This is exactly when the claim of the theorem might be false, for the
subpeel βPi

bounded by ΓΛi
then extends beyond the peel αΛi

. But Lemma 2
below establishes that y must be (the image of) a junction point of CPi

(and
note that a is a junction in our example). This means that the subpeel βPi

ends at y, and ΓΛi enters a new subpeel β′Pi
of a new peel α′Λi

of Λi. Thus the
subpeel nesting claim of the lemma is established. The peel nesting property
will be obtained following the proof of Lemma 2.

We complete the proof of Lemma 1 with a technical lemma that was in-
voked above. We use δS(x, y) to represent the distance function on surface
S: the length of a shortest path on S between x and y. We will employ the
Alexandrov-Toponogov Comparison Theorem in two versions, Lemmas 5 and 6
in the Appendix.

Lemma 2 (Junction Crossing) When ΓΛi
crosses CΛi

at xt = y, y is (the
image of) a junction point of CPi .

Proof: Because ΓΛi
crosses CΛi

at y, y has at least two projections to Q on Λi

(because every interior point of CΛi has at least two projections). One of the
two segments, say yy1, also is a segment on Pi, because up to this point xt=y in
our tracing, the peel αPi

containing xt is nested in αΛi
. So the length of these

segments is the same on Pi and on Λi: δPi
(y, y1) = δΛi

(y, y1).
Let y2 be the “next” projection of y to Q on Λi, i.e., there is no other Λi

projection of y between y1 and y2 along Q. See Figure 8, which illustrates these
two Λi projections. We aim to establish that δPi(y, y2) ≤ δΛi(y, y2), which will
imply equality (because all projection segments from y have the same length on
Pi, and the same length on Λi—details below). This will imply that the regions
on Pi and on Λi determined by {y, y1, y2} are isometric. Thus y would have two
projection segments yy1 and yy2 on Pi. But these two segments derive from
xt ∈ ΓΛi corresponding to a point y ∈ CPi , and there is a second point of ΓΛi

that corresponds to the same y, on “the other side” of the cut locus. Thus there
must be a third projection from y to y3 on Pi, which implies that y is a junction
of CPi

. This situation is illustrated in Figure 8, where two points along ΓΛi

derive from “different sides” of a.
Now we prove the claim that δPi(y, y2) ≤ δΛi(y, y2). Consider the vertices

q1, . . . , qk between y1 and y2, ordered from y1 to y2. (In Figure 8 there is
just one such vertex q1; see Figure 9 for a generic example.) Then the right
triangle 4yy1q1 is flat on Λi, and non-negatively curved on Pi. Hence by the
Alexandrov-Toponogov Comparison Theorem (Lemma 6), the hypotenuse is no
longer on Pi, δPi

(y, q1) ≤ δΛi
(y, q1), and the angle at q1 is at least as large on

Pi (Lemma 5), ∠Pi(y, q1, y1) ≥ ∠Λi(y, q1, y1). This angle inequality implies that
∠Pi(y, q1, q2) ≤ ∠Λi(y, q1, q2); see Figure 9. Continuing with the same logic,
δPi

(y, q2) ≤ δΛi
(y, q2), and ∠Pi

(y, q2, q1) ≥ ∠Λi
(y, q2, q1), so ∠Pi

(y, q2, q3) ≤
∠Λi

(y, q2, q3). This leads (by induction) to the conclusion that the last distance
is no longer on Pi: δPi

(y, y2) ≤ δΛi
(y, y2), which is exactly what we aimed to

establish. We now show that there must be equality here.
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y

y1

y2
q3q2q1

Figure 9: Applying the Alexandrov-Toponogov Comparison Theorem to the
sequence of triangles apexed at y along Q from y1 to y2.

Suppose instead some inequality in the chain of reasoning above were strict.
This leads to δPi

(y, y2) < δΛi
(y, y2). But we already know that δΛi

(y, y2) =
δΛi

(y, y1) = δPi
(y, y1), and so δPi

(y, y2) < δPi
(y, y1). But this is a contradiction,

because all projections from y to Q on Pi have the same minimal length.
Thus our conclusion above that there must be a third projection from y to

y3 on Pi follows, which means that that y is a junction of CPi .
Having established the subpeel nesting property, we obtain next the same for

peels. Outside the isometric regions of Pi and Λi that correspond to the external
common subtrees, ΓΛi

is in one-to-one correspondence with what remains from
Q (because of the projection onto along segments). I.e., each time ΓΛi

enters
a peel of Λi, its part inside that peel is in one-to-one correspondence with the
part of Q bounding that peel minus the regions of Pi and Λi that correspond
to the external common subtree (because of the projection along segments).

So visiting the same peel of Λi twice (necessarily outside these isometric
regions of Pi and Λi) would produce a contradiction with this bijective corre-
spondence.
We summarize the main import of this section in the following lemma.

Lemma 3 (Cone Embedding) Let the curve Q on P live on a cone Λi on
one side. Then the corresponding half-surface Pi can be isometrically embedded
into that cone when it is cut along all edges of CPi not incident to Q.

Proof: Because CPi
spans the vertices of Pi, the cutting removes all curvature

and leaves a locally flat surface. The peels of Pi may then be embedded within
the cone Λi via Lemma 1, which guarantees non-overlapping.
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6 Source Unfolding

Henceforth let Pi be the embedded image of Pi on the cone Λi given by Lemma 3.
The proof of Theorem 1 below needs one more lemma, concerning cutting and
flattening Pi.

Lemma 4 (Generator Cut) Let g be a point of Q closest on the cone Λi to
the apex a of the cone. Then cutting Λi along the generator ag unfolds Pi to
one piece in the plane, i.e., the cut does not disconnect Pi.

Proof: We will prove that ag intersects only one peel α1 of Pi. In any case, let
α1 be the last peel (from a) of Pi intersected by ag. Let y be the closest point
to a in ag ∩ α1. Then, in α1, g is the point in Q closest to y, so ag follows a
shortest path segment within α1, projecting to g. By the peel nesting property,
this shortest path segment is included in α1; therefore, cutting along yg doesn’t
disconnect Pi.

Suppose now that ag meets another peel α2 of Pi at point x, which projects
in α2 (by a shortest path) to x′ on Q. Because g ∈ α1 and x′ ∈ α2 and α1, and
because α2 are distinct, g and x′ are distinct. Thus |xx′| < |xg|, where, to ease
notation, we use |pq| to represent δΛi

(p, q).
This inequality contradicts the assumption that ag is a shortest path to Q:

|ax′| ≤ |ax|+ |xx′| < |ax|+ |xg| = |ag| .

The first inequality follows from the triangle inequality on Λi, which is itself a
complete metric space.

Knowing that ag meets just one peel of Pi shows that it does not disconnect
Pi, and the lemma claim is established.

We now have assembled all the machinery needed to establish our first main
theorem:

Theorem 1 (Half Source Unfolding) For any Q that lives on a cone Λi to
the Pi-side, such that each generator of Λi meets Q in one point, the source
unfolding of the corresponding half Pi of P is non-overlapping.

Proof: First, cut all the edges of CPi
not incident to Q. Then apply Lemma 3

to obtain the embedding Pi in Λi. Finally, cut the generator ag to a closest
point g ∈ Q and unfold Pi by Lemma 4 into the plane.

Theorem 1 can be viewed as a significant generalization of the result in [O’R08],
which established it for “medial axis polyhedra,” whose base edges form Q and
whose lateral edges constitute the “upper component” of the cut locus.

The unfolding of the P1 half of the truncated cube in Figure 4(d) best illus-
trates this theorem.

We now turn to joining the two halves. Several strategies are available, and
we select a simple one. We refer again to Figure 2.

Theorem 2 (Full Source Unfolding) For Q a convex curve in the class of
curves we described, additional cuts permit joining the halves to one, simple
polygon.
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Proof: Let P1 be the half of P to the convex side of Q, and P2 the half to the
(possibly) nonconvex side. We unfold P1 just as described in Theorem 1 above.
Note that the planar image of Q is a convex curve, as all of Q’s vertices are
convex to the P1-side. To the nonconvex side P2, we cut all of CP2

, including
those edges incident to Q. Recall these edges will be incident to vertices that are
convex vertices to the P2-side. In addition, we cut shortest path segments from
CP2 to the other (reflex) vertices of Q (none if Q is a quasigeodesic, but possibly
several if Q is merely convex to one side). These combined cuts partition P2

into polygonal regions Ri (i = 0, 1, 2, . . .), each of which projects onto its base
qi−1qi on Q. See Figure 2. The regions are separated by empty cones, whose
bounding rays are separated by an angle equal to the curvature at qi. Because
these curvatures are positive, and Q is convex, the joined pieces do not overlap.

It only remains to argue that the cut to g on the P1-side does not coincide
with a cut to a vertex qi on the P2-side, for that would disconnect the unfolding
into two pieces. This follows from [IIV07, Cor. 1], which shows that g could
only be a corner of Q if it were reflex to the P1-side, because ag makes an angle
at least π/2 with Q to each side of ag. But we know that Q is convex to the
P1-side, so it cannot be that g = qi.

For a convex curve Q shrinking to a point x, the full source unfolding with
respect to Q approaches the point source unfolding with respect to x, as one
would expect.

7 Future Work

We have not yet addressed the computational complexity of constructing the
source unfolding from a given Q, but we expect it will be polynomial in the
complexity of Q.

A secondary issue is finding a Q that satisfies our conditions. Although
it is known that every convex polyhedron has at least three distinct simple
closed quasigeodesics, there is no polynomial-time algorithm known for finding
one [DO07, Prob. 24.2]. However, it is easy to find convex curves through at
most one vertex: for example, a convex curve inside any face, or the curve
obtained by truncating any vertex v of P orthogonal to a vector within the
tangent cone of v (e.g., Figure 3(a)). Also, one can construct quasigeodesic
loops through at most one vertex by a minor modification of the technique
described in [IOV10]. Such a curve satisfies conditions (a) and (b) in Section 1.

Finally, we leave unresolved determining the largest class of curves Q for
which Theorems 1 and 2 hold.

Acknowledgments. We are grateful to the remarkably perceptive com-
ments (and the patience) of Stefan Langerman and several other anonymous
referees.
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Appendix:
Alexandrov-Toponogov Comparison Theorem

Several well-known comparison results for convex surfaces are usually identified
as variants of Toponogov’s 1959 theorem. For triangles on convex surfaces,
however, Alexandrov proved them, without any assumption of differentiability,
as early as 1948, and Pizzetti [Piz07] considered the differentiable case in 1907.
See [Ale06, p.242] or [AZ67, p.32] for versions in English; see also [ACC+08].

Essentially, the results compare triangles or “hinges” on a given surface to
those in the plane.

A triangle in a convex surface is a collection of three segments γ1, γ2, γ3 such
that γi and γi+1 have the common endpoint ai+2 (indices mod 3). We shall
denote the triangle by γ1γ2γ3 or, if the segments are clear from the context, by
a1a2a3. We use λ (γ) to denote the length of the curve γ.

The first lemma says that if you draw a triangle in the plane with the same
lengths as a triangle on a convex surface, the planar triangle angles in general
get smaller: they are at most as large as the convex-surface angles.

Lemma 5 For any triangle γ1γ2γ3 in a convex surface there exists a planar
triangle γ1γ2γ3 with λ (γi) = λ (γi). We have ∠γiγi+1 ≤ ∠γiγi+1, i = 1, 2, 3
(mod 3), and equality holds if and only if γ1γ2γ3 is isometric to γ1γ2γ3.

A hinge is a pair of segments, γ1 from a to b and γ2 from a to c, and the
angle ∠bac included between them at a. We denote the hinge by γ1γ2.

The second lemma says that if you draw a hinge in the plane with the same
angle as a hinge on a convex surface, the planar hinge endpoint separation in
general gets larger. Next, we denote by δ the Euclidean distance, and by δ the
distance on the surface.

Lemma 6 For any hinge γ1γ2 in a convex surface S there exists a planar hinge
γ1γ2 with ∠bac = ∠bac. We have δ(b, c) ≤ δ(b, c), and equality holds if and only
if there exists a segment joining b to c in S such that abc is isometric to abc.
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