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Finding Minimal Enclosing Boxes
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The problem of finding minimal volume boxes circumscribing a given set .
three-dimensional poinls is investigated. It is shown that it is not necessary for
minimum vol®fe box to have any sides flush with a [ace of the convex hull .
the set of points, which makes a naive search problematic. Nevertheless, it
proven that at least two adjacent box sides are fiush with edges of the huli, ar
this characterization enables an ({n*) algorithm to find all minimal boxes for
set of n points.

KEY WORDS: Computational geometry; polyhedra; polyhedral appro
mation; minimum volume box.

1. INTRODUCTION

It is often useful to circumscribe a complex three-dimensional shape with
simpler shape, for, e.g., intersection calculations; other applications incluc
layout,!") image processing,”’ and shape analysis.*’ The probles
investigated in this paper is, given a set of » points in three dimensio:
(which may be the vertices of a polyhedron), find the minimum volun
rectangular boxes circumscribing the points. The boxes may be oriente
arbitrarily, but all faces must meet orthogonally. Henceforth such box
will be called minimal boxes. Note that there is not necessarily a uniqe
minimum: for example, an icosahedron has 30 distinct equal-volume
minima.?

The equivalent problem in two-dimensions is to find minimal area re
tangles circumscribing # points in a plane. This problem has been solve
with an O(n) algorithm by Toussaint,"*? based on earlier work by Freema

! Department of Electrical Engineering and Computer Science, Johns Hopkins Universi
Baltimore, Maryland 21218.

2 Each of 10 pairs of parallel faces admits 3 identical but combinatorially distinct minimt
volume boxes.
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and Shapira.'" Algorithms for minimal area triangles'>® and minimal area
k-gons,”! have also been developed.

There are two simplifications that can be made to the problem
immediately. First, it is obvious that every box circumscribing a set of »
points also circumscribes the convex hull of those points. Since the convex
hull of a set of n three-dimensional points can be found in O(nlogn)
time,® and since this time will be dominated in our algorithm by the
remaining computations, our first step is to compute the convex hull of the
given points. We will assume henceforth that the input is a convex
polyhedron of n vertices.

Second, it is obvious that a minimal box must touch the inscribed
polyhedron on each of its six faces; otherwise a face could be moved
inwards reducing the volume.

2. TWO EDGES FLUSH

In this section we will supplement the two obvious necessary con-
ditions just discussed with one less obvious: every minimal box must have
at least two adjacent faces flush with edges of the enclosed polyhedron.
First we will review the results in two dimensions.

Define an side s of a circumscribing rectangle to be flush with an edge
¢ of the inscribed polygon if e <s. Freeman and Shapira'®’ proved the
following theorem.

Theorem 1. A minimal area rectangle circumscribing a convex
polygon has at least one side flush with an edge of the polygon.

Toussaint® was able to use this characterization to implement a
“rotating calipers” algorithm to find all minimal rectangles in linear time.
The algorithm fixes a rectangle side flush to an arbitrary polygon edge,
then finds the other contact points as extreme points of the pelygon in
directions orthogonal and parallel to the fixed side. The area of this initial
rectangle is computed. The “next” candidate is found by determining, from
the clockwise angles at each contact, which of the contacts will change first
as the rectangle rotates clockwise. Its area is compared to the minimal so
far, and the procedure repeated. Theorem 1 guarantees that this procedure
will find all minima.

Define a face F of a circumscribing box to be flush with an edge e of
the inscribed polyhedron if e< F. The analog to Theorem 1 for three
dimensions is as follows.

Theorem 2. A box of minimal volume circumscribing a convex
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polyhedron must have at least two adjacent faces flush with edges of the
polyhedron.

Proof. Suppose to the contrary that there are fewer that twc
adjacent faces flush with edges. We will show that there must be fow
adjacent faces, all orthogonal to one (forming a ring), that are not flusk
with any edges. Let the faces be called Front, Back, Left, Right, Bottom
and Top.

Case 1. Exactly one face, say Bottom, is flush with an edge. Ther
Front, Left, Back, Right form the claimed ring.

Case 2. Exactly two nonadjacent faces are flush with an edge. Lel
one be Bottom. Then only Top is nonadjacent to Boitom, so the other face
flush with an edge must be Top. Then again Front, Left, Back, Right forrr
the claimed ring.

5
Case 3. More thamtwo faces are flush with edges. Since each face is
adjacent to four others, it is not possible to select more than two faces such
that none are adjacent to each other.

Without loss of generality, let Front, Left, Back, Right be the ring of
nonflush faces. Project the polyhedron and the ring of faces onto the Bot-
tom face. The result is a convex polygon circumscribed by a rectangle.
Since none of the faces are flush with an edge of the polyhedron, none of
the rectangle edges are flush with an edge of the projected convex polygon.
Theorem 1 then says that the rectangle is not minimal in area. We can
therefore decrease the volume of the supposed minimal box by keeping
Bottom and Top fixed and rotating the other faces until their projected rec-
tangie becomes flush with an edge of the projected polygon. This contradic-
tion establishes the theorem. J

I do not believe that Theorem 2 can be strengthened. For example, it
is easy to establish that it is not necessary for any face of a minimal box to
be flush with a face of the inscribed polyhedron: the minimal box for a
regular tetrahedron has all six faces flush with edges, but none flush with
faces {see Fig. 1).

Our algorithm checks all pairs of edges as candidates for the flush
edges guaranteed by the theorem, and for each pair performs a type of
three-dimensional caliper rotation. The data structure used to track the
caliper rotation is discussed in the next section.

3. GAUSSIAN SPHERE REPRESENTATION

We will find it convenient to use a dual representation for a convex
polyhedron P that we call the Gaussian sphere associated with P. The
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Fig. 1. The minimal box for a regular tetrahedron of edge length 1.

Gaussian sphere § partitions the surface of the unit sphere centered on the
origin into convex regions R(v), one for each vertex v of P, such that ifmis
a unit vector from the origin whose tip lies in R(v), then the plane through
v with normal n is a supporting plane for the polyhedron. Thus each vertex
of P is associated with a region of S representing normals for all supporting
planes at the vertex. Similarly, each face of P is mapped to a vertex of §
representing its normal. And each edge of P is mapped to a subarc of a
great circle on S, representing the normals of all supporting planes that
contain the edge. Figure 2b shows the Gaussian sphere for the convex

polyhedron in Fig. 2a.
It is easy to compute the Gaussian sphere representation in linear time

from a data structure for a convex polyhedron that includes face and edge
adjacency information, such as results from the Preparata and Hong con-
vex hull algorithm®: simply create a vertex of S for each face of P, and an
arc between two S vertices if the corresponding faces of P are adjacent.

It should be clear that each region R of S is convex in the sense that
the shortest path on the surface of S (a great circle arc) between any two
points of R is contained within R: every pair of supporting planes H, and
H, at a vertex v of P intersect in a supporting line L at » such that all
planes through L between H, and H, are also supporting, and L maps to a
great circle arc connecting the images of H, and H, on §.

Any box surrounding a polyhedron P can be represented as three pairs
of antipodal points on the Gaussian sphere, the tips of six orthogonal vec-
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Fig. 2. (a) A convex polyhedron with 15
visible vertices. (b) The Gaussian sphere for
the polyhedron. Each face is labeled with its
corresponding verlex.

tors emanating from the origin.> We will use S in the succeeding sections to
track the “caliper paths,” the locations where the box faces contact P, as
the box moves from one orientation to the next.

4. CALIPER PATHS

In this section we will establish that fixing two edges flush on adjacent
faces leaves just a single degrec of freedom. This will permit ali the local
3 Compare Toussaint’s “star” data structure for the two-dimensional equivalent.’®!
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minima that occur throughout the range of this freedom to be found in
linear time. The constraints imposed by the two flush edges are a bit dif-
ficult to visualize, and it will be necessary to explore them in considerable
algebraic detail. The reader interested in just the main line of thought may
skip to Lemma 3 at the end of this section.

Let e, and ¢, be edges flush with the adjacent faces F| and F, (say Left
and Front). Translate e, and e, to the origin O of a coordinate system as
shown in Fig. 3. It is clearly no loss of generality to assume that e, coin-
cides with the z-axis, and that e, lies in the yz-plane making an angle ¢ &
[ —n/2, n/2] with the y-axis; any other orientation may be rotated to such a
configuration. We will also assume that e, and e, are unit vectors to sim-
plify the calculations:

e;=(0,0,1) (1)

e; = (0, cos @, sin @} 2)

Let 1, and n, be unit outward-pointing vectors normal to F, and F,. The
constraint that these faces are flush with ¢, and e, can be expressed as

n-e=0 (3}
#y es=0 (4}

Thus if n, and n, are placed at the origin O, n, must lie in the xy-plane,
and n, must lie in a plane orthogonal to e,; see Fig. 3. Let 3, be the angle

Zz
4

Fig. 3. n, is orthogonal 1o ¢, at angle §, in the xy plane. n, is
orthogonal to e, at angle 3, in the plane orthogonal to e,.
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from the positive x-axis to »,; our conventions restrict &, to liein [ —x, 0].
We have then

n, = (cos §,, sin 3, 0) (3)

We now compute #, given ¢, which fixes e,, and §,, which fixes n,.

Let
ny= (X3, ¥2, 23) with z,= £./1—x]— 3 (6)

We have two constraints on n,: Eq. 4 and the orthogonality of F, and F,:

nyny=0 (7

Solving Eqs. 4 and 7 simultaneously yields the following expressions for the
components of n,: .

x;="[—o(sin ¢}] sin §, sin ¢/R
yy=[+a(sin¢g)] cos &, sin ¢/R (8)
z,= —cos &, cos /R

where

R=\/00528,+sin23, sin? ¢ £

and where o(x} is the sign function: +1 if x>0 and —1 otherwise. These
equations initially contain a pair of +’s, potentially leading to four
solutions. But back substitution and our conventions show that the
solution is unique for all 8,, as shown in the previous equations.

Let &, be the angle between the positive x-axis and n, {within the
plane orthogonal to e,): cos §,=x,, $,e[—=/2,n/2]. Then we have
established that, for a given ¢, and e,, an orientation of F, flush with ¢,
(specified by §,) uniquely determines an orientation of F, (specified by &,).
Figure 4 plots the ($,, §,) correspondence function for various values of .
Note that when ¢ = +n/2, e, and e, are parallel and §,= +(3, + n/2).

When ¢=0 and 3, = —n/2, R=0 and Eq. 8 are degenerate. Thus
when e, and e, are orthogonal, 3, cannot move, but &, is free to vary in
[ —=/2, #/2], yielding solutions n,=(cos 9,, 0, sin 9,).* We will see later
that this degenerate simple motion is a special case of the general motion,
and does not have to be considered separately.

4 In addition the roles of e, and ¢, are symmetrical, so 9, and ¢, can be interchanged.
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Fig. 4. 9, as a function of 3, [or various values of ¢.

Finally we explore the behavior of ny=(x;, y3,23), the outward-
pointing normal for the Top face of the box. The defining equation

Hy=#H; X H,y (10)

leads, after simplification, to
X3 =2,sin 9,
V3= —I,C05 3 (11)

Zy= —X,fsin §,

Figure 5 plots (x5, y3) as $; and 9, are varied throughout their ranges. The
(x5, v,) image is a convex shape through the origin, symmetric about the
y-axis. Thus as 9, and 3, vary, n, precesses about a cone shape in three
dimensions. This somewhat counter-intuitive twisting motion of the box is
displayed for a particular ¢ value in Fig. 6. When e, and e, are parallel, n,
remains fixed as &, and 9, vary. Note that this is the same motion induced
by the degenerate solution when e; and e, are orthogonal, except that in
that case », remains fixed as the other two normals rotate.

We can summarize the calculations of this section in the f{ollowing
lemma.
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Fig. 5. The trace of iy, seen [rom above, as 9, and 3, vary, for selected values of ¢.

2

X

Fig. 6. Three orientations of a box for 3, = —a/2{4), —1.4(B), — 1.2(C); here ¢ =0.5.
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Lemma 3. Let »n, and n, be normals to two adjacent faces flush
with edges of the polyhedron, and let n, be orthogonal to both #; and »,.
Then n, uniquely determines n, and n; via easily calculable relations
(Eqs. 8 and 11). As #, is moved throughout its free range, both »; and n,
trace out arcs of great circles on the Gaussian sphere, and #, traces out a
curved convex path.

Proof. The unique determination is established by the referenced
equations. The normals n, and », trace out the edges on S corresponding
to ¢, and e,, which are great circle arcs, as discussed in Section 3. Thus
their antipodal partners are also great circle arcs. That the n; path is con-
vex is obvious from Fig. 5, and will be formally established in the next sec-
tion. §

5. THE ALGORITHM

The algorithm is reminiscent of Toussaint’s two-dimensional “rotating
calipers” at the local level,') but is a brute-force search at the top level.
The aigorithm tries all pairs of edges as candidates for the two flush edges
guaranteed by Theorem 2. At the top level the algorithm is as follows.

Construct Gaussian sphere for the given convex polyhedron.

Jfor all pairs of edges e, and ¢, do
Rotate 3 orthogonal “calipers” throughout &, range,
computing volume of each local minimum.

return global minima

Constructing the Gaussian sphere requires O(n) time as shown in Sec-
tion 3; its use will be discussed later in this section. The for loop executes

(5)-a

times. We will now show how the body of the loop can be implemented
with an O(n) algorithm.

Start §, at its smallest possible value (when F, is flush with one of the
two faces adjacent to e,), or with the smallest value permitted by the range
of freedom of &,, which is easily computed from the equations in the
previous section. Fixing 3, fixes all three normals by Lemma 3. Now find
the contact for each of the remaining four faces by finding the extremes in
the appropriate directions. These extremes can be found in O(log n)
time, 1 but we can settle for a linear search. This establishes the starting

position for the “calipers.”
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Fig. 7. Contact change occurs when the
normal tip enters or leaves a face, here at p,
and p,.

Now the goal is to compute the next value of &, at which at least one
of the four contacts is different. This is accomplished by looking at the nor-
mal tip paths on the Gaussian sphere. A contact change occurs whenever a
path crosses an edge sepdrating two regions (see Fig. 7). Let unprimed
variables refer to vertices, edges, and faces of the polyhedron P, and primed
variables to their counterparts on S. As the path crosses from region v}
over ¢’ to region v; on S, the supporting plane determined by the normal
changes its contact from vertex v, to edge e briefly, then to vertex v, on P.
So we must find the “next” such crossing among all four paths.

Consider first the paths for —n, and —»n,, determining faces F; and
F,. Since these are great circle arcs, they can intersect a convex region v’ of
S at most twice, say at p, and p, as in Fig. 7. Then, given p,, we can search
for p, by traversing the edges of v’ counterclockwise until the great circle is
met again. Knowing p, and p, either directly yields a 49, (for an n, path),
or indirectly (for n,) via the equations in the preceding section.

Fig. 8. The n; path intersections with a face are sorted on the
boundary of the lace.
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The paths for the two faces orthogonal to n3, Fs and Fj, are not great
circle arcs, and therefore may intersect a region at several places. However,
as such a path is convex, its intersections with " are sorted cyclically
around the boundary of v’, as in Fig. 8. We can establish this formally by
showing that an #, path intersects each great circle at most twice.

Let (x, y, z) be a normal vector whose tip lies on a great circle. Then,
if (a, b, c) is a normal orthogonal to the plane of the great circle, we have

ax+by+cz=0 (12)

Substituting Eq. 11 for x, y, and z and simplifying yields a second degree
trigonometric polynomial:

a' cos 9, sin 8, + b cos? 9, +¢'sin* §, =0 (13)

where a’, b, and ¢’ are independent of $,. Such an equation can have at
most two roots within any range of = for $,. This can be seen by replacing
cos §, sin 9, with isin 29,, and cos®$, and sin® 3, with 3(1 +cos28,),
yielding a first-degree trigonometric equation in 23,. This equation can
have at most one root within a = range of 28, and so at most 2 roots
within a 7 range of 8,, establishing the claim.

Since the intersections of an n, path with a region of S are sorted
cyclically, we can still find the next intersection via a counterclockwise
search of the region’s boundary. Determining whether a particular edge of
the region intersects the path requires solving Eq. 13, which can be accom-
plished in constant time by standard numerical techniques. This
immediately yields a 43, value.

Among all four paths, the one yielding the smallest 49, determines the
next combinatorial position of the calipers. Between these two positions, no
contacts change. We will show in the next section that we can find the
minimal volume box within the 49, range in constant time. Given this, it is
easy to see that the search of the entire 3, range requires only O(n) time:
each path intersects each edge on the Gaussian sphere at most twice, so the
entire computation is bounded by the number of edges on the sphere,
which is O(n).

We can summarize this discussion with the following algorithm for
performing the caliper rotation.

3, «~ minimum possible value
while 8, < maximum possible value do
begin
Find the next intersection of the —n,, —n,, and +n, paths with an
edge on S.
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49, « smallest 49, determined by the sour paths.
Find the minimum volume box withing the range [ 3, &, + 49,].
3, =9, +48,.

end

6. THE VOLUME FUNCTION

The equations developed in Section 4 enable us to formulate an
explicit expression for the volume within any 49, range during which the
contacts do not change. It can be expressed as a function of one variable,
$,, and is a trigonometric polynomial of fixed degree. Somewhat sur-
prisingly, we will show that this function can have positive local minima,
implying that volume local minima may occur with just two flush edges,
and all four other faces with vertex contacts. The reader uninterested in the
algebraic details may skip to the summarizing lemma at the end of this sec-
tion. M.

Consider viewing the box from the positive z axis, looking directly
down e,. Let the contact on F, (directly opposite F|) have a projection as
shown in Fig. 9: it is at a distance ¢, in the xy-plane, and oriented such
that when &, =7,, the thickness of the box in that dimension is maximal.
In general the thickness is given by

d,=c, cos(d,—-7,) (14)

Fig. 9. Top view of thickness: maximum is achieved at §, = y,.
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Note that when d, <0, face F, has rotated beyond the F; contact point, a
physically impossible situation.

Similarly, we can specify the thickness in the second dimension with
an angle y, at which &, rotation about e, achieves the maximal
thickness c,:

d,=cyco8(8,—7) (15)

The thickness in the third dimension is a bit more complicated, since
neither Fs nor Fg4 is rotating about an edge; rather both are (in general)
pivoting on vertices as $, moves throughout an interval. Let ¢, be a vector
between the two contact points. Then the thickness is determined by the
angle this vector makes with the third normal:

dy=c3 1y (16)

As we are only interested in the variation of the volume as 2 function of 3,,
not its absolute magnitude, we will normalize so that ¢, =¢, =l and c;is a
unit vector.

Each of these three equations may be written as functions of §; by
using the relationships established in Section 4. The result is:

d, = cos $;(cos y,) +sin $,(siny,)
d,=[cos &,(sin y,) + sin 3,(cos y, sin ¢}]/R {n
d, = [cos 8, sin 3,(a cos @) + cos® §,(—b cos @} + (—csin @) 1/R

where, in the final equation, ¢; = (a, b, ¢). Multiplying these three equations
yields an equation for the volume ¥ as a function of 3. Three typical plots
of V versus 3, are shown in Fig. 10. Note that curves B and C have no
positive local minima. This implies that the minimum volume box is
achieved by pushing 9, forward or backwards as far as is permitted while
continuing to maintain the same contacts; in other words, the minimum is
achieved at a contact transition point. But curve 4 demonstrates that the
function can have a positive local minimum for certain arrangements of
contacts. Thus not all minima are achieved at extreme positions: a delicate
balancing might be required.
The volume function has the form

__Pycos §,,sin 3,)
" Py(cos 8, sin &,)

(18)

where P, is a 4th degree polynomial in cos 8, and sin §,, and P.=R?
(Eq.9) is a second degree polynomial. Thus the equation d¥/d8, =0 is a
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Fig. 10. Three plots of the volume function. A: {g, ¥, vs. c1)= (.5, — 1.8, —.9, (0, .99, .05));
B: (—.3, =24, —4, (4,77, 5} C: (2 —1, .5, (0, 8, .6)).

6th degree polynomial in cos &, and sin $, (after muitiplying out the
denominator). This equation has at most 6 roots within the = range of &,
implying that there are at most 3 local volume minima within this range.
Some of these minima may fall in the regions where the volume is negative,
indicating an impossible situation. In fact, I have not been able to find an
example that has more than one positive local minimum. In any case, the
volume is a smooth, well-behaved function, and it is easy to find the
minima by standard numerical techniques. For example, the roots of the
derivative could be found by converting the 6th degree trigonometric
equation to a 12th degree polynomial in # by substituting cos 8, = and
sin 8, =./1—u* and squaring, and then finding the roots of this
polynomial by any root extraction method. The simplicity of the function,
however, suggests that a more straightforward numerical search for minima
would be sufficient.

The theoretical import of this section is summarized in the following
lemma. )

Lemma 4. The volume, when expressed as a function of 3,, has at
most 3 local minima, whose locations are given by roots of a 6th degree
trigonometric polynomial. Thus the minimum volume within any range of
&, may be found in constant time.
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7. DISCUSSION

The “delicate balancing” that might be required for achieving a
minimum volume box is not too surprising, as such balancing is required
even for the minimum area triangle in two dimensions. But in the case of
the triangle, the balancing condition has a concise geometrical inter-
pretation: it was proven in Ref 5 by a geometrical argument that the
balancing edge must pivot on its midpoint. This same result was arrived at
independently in Ref. 11 by minimizing the area function."") In this latter
algebraic formulation, the midpoint characterization is not immediately
obvious from the equations. It may be, similarly, that there is a concise
geometric interpretation of the volume function minima that is masked by
the increased complexity of the three-dimensional equations.

It should also be noted that although we have established that local
minima may require balancing, no example has been constructed that has a
globally minimal box balanced on four peint contacts.

Although the described algorithm requires O(n’) time to find all
minima, no example is known that has more than 2(n) global minima. A
cylinder with regular n-gons as end caps has n/4 equal global minima,
establishing the Q(n) lower bound. Adding a vertex just above the center of
each end cap of this example creates a polyhedron that has Q(n?) local
minima, but it still has only a linear number of global minima. The gap
between the lower bound and the algorithm’s complexity indicates that it
may not be optimal.

Finally, the complicated calculations required by the presented
algorithm lead ome to consider approximation algorithms. A simple O(n?)
algorithm will find all minimal boxes with at least one box side flush with a
face of the polyhedron. For each face F of the O(n) faces of the polyhedron,
fix one box side, say Bottom, flush to F, determining the opposite side Top
as extreme in the orthogonal direction. Now project the polyhedron onto
the Bottom box side, and solve the two-dimensional minimal area rectangie
problem by Toussaint’s algorithm in O(n) time.” The convex hull of the
projection can be found in linear time by only projecting those edges of the
polyhedron whose adjacent face normals point both towards and away
from Bortom. Thus when iterated over all faces, the algorithm requires
O(n?) time. Applying this algorithm to a regular tetrahedron of unit edge

length vields a box of volume 1 'ﬁ/2-,/2/3= llﬁ; the true minimum
(Fig. 1) has half this volume: (\/2/2)* = 1/(2 \/2).
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