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Abstract

It is shown that a convex medial axis polyhedron has
two distinct edge unfoldings: cuttings along edges
that unfold the surface to a simple planar polygon.
One of these unfoldings is a generalization of the point
source unfolding, and is easily established to avoid
overlap. The other is a novel unfolding that requires a
more complex argument to establish nonoverlap, and
might generalize.

1 Introduction

Medial Axis Polyhedron. Let P be a convex poly-
gon. The medial axis M = M(P ), M ⊂ P is the
closure of the locus of the centers of disks in P , each
of whose boundary touches ∂P in two or more points.
The medial axis is a well-studied construct that ap-
plies much beyond convex polygons, but we restrict
our attention here to convex P . Then, M is a tree
of straight segments whose leaves are the vertices of
P . To each point m∈M may be associated the ra-
dius r(m) of the maximal disk in P centered on m.
Let P lie in the xy-plane, and for each m∈M , de-
fine a point p(m) = (mx,my, r(m)): it is vertically
above m at height z = r(m). Finally, define the me-
dial axis polyhedron P for P to be the convex hull of
P ∪ {p(m) : m∈M}. See Fig. 1 for an example that
we will use throughout. Let M be the tree of edges
of P that project to M .

The medial axis polyhedron is studied in [PW01,
p. 376]. An alternative construction is to define a
halfspace through each edge of P that makes an an-
gle of π/4 with respect to the xy-plane containing
P , and includes P . The intersection of these halfs-
paces with z ≥ 0 yields P. One property established
in [PW01] (for arbitrary piecewise-C2 closed curves,
not just convex polygons) is that the surface over the
base is developable, i.e., it can be “developed” with-
out distortion flat to a plane. However, in general
developable surfaces develop with overlap. Here we
are explicitly seeking a nonoverlapping development
via cuttings along edges.

Source Unfolding. The medial axis M(P ) is also
known as the cut locus of ∂P : the closure of the
locus of points with more than one distinct short-
est path from ∂P . The points M on P have the
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Figure 1: (a) A convex polygon P and its medial axis
M(P ). (b) The corresponding medial axis polyhedron
P.

same property, and so form the cut locus of the base
rim ∂P measuring shortest paths on the surface. It
is well known that the cutting the cut locus of a
“source” point x on a convex polyhedron unfolds the
surface to a nonoverlapping unfolding, the source un-
folding [DO07, p. 359]. Cutting M on a medial axis
polyhedron P is cutting the cut locus of ∂P , and it
is easy to see that this leads to a nonoverlapping un-
folding for medial axis polyhedra. For each face fi in-
cident to a base edge ei can be viewed as composed of
shortest paths to M, each path a segment perpendic-
ular to ei. CuttingM permits each face to flip out, ro-
tating about ei into the xy-plane. The perpendicular-
ity of the shortest segments to ei and the convexity of
P easily guarantee nonoverlap of this unfolding. This
is also a special case of a “dome unfolding,” which
was already known to avoid overlap [DO07, p. 322].

Convex Cap Unfolding. Of more interest is an un-
folding that in some sense “squashes” the convex cap
over P into the plane. Convex caps meet every line
orthogonal to P in at most one point. They are an
interesting special case to explore the long-unsolved
problem of whether or not convex polyhedra always
have an edge unfolding. One special case is studied
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in [O’R07]; the work here establishes another special
case.

The research in [IOV07a] led to the conjecture1 that
cutting the cut locus of a simple, closed quasigeodesic
leads to a nonoverlapping unfolding. As ∂P is such
a quasigeodesic, unfolding two medial axis polyhedra
glued base-to-base on the same P via the unfolding
described in the next section establishes a (very) spe-
cial case of this conjecture.

2 Unfolding

Unfolding Defined. Let (v1, . . . , vn) be both the 2D
vertices of P and the corresponding 3D vertices of
P; the context will disambiguate. Let ei = vivi+1

be the edges of P (and P), let fi be the face of P
incident to ei, and let ui be the edge of P incident
to vi and shared between fi−1 and fi. The unfolding
U of P we study is obtained by cutting every edge of
M not incident to a leaf vertex vi, and cutting u1,
the edge of M incident to v1. We ignore the base P
for now; it is easily attached later. U consists of the
faces f1, f2, . . . , fn glued together at the shared edges
ui in a sequence. (See ahead to Fig. 2.) We view ∂U
as composed of two parts: the outer shell constituted
by the edges ei of P , and the inner path constituted
by images of cut edges of M. We continue to call
the vertices of the outer shell v1, . . . , vn, with v′1 the
second image of v1.

Let αi be the angle of P at vi, and βi the sum of
the two (equal) angles of P incident to vi in faces fi−1

and fi. Thus βi is the angle at vi in U .

Lemma 1 The outer shell of ∂U is a convex curve.

Proof. Sketch. Calculation shows that

βi = 2 cos−1

(√
2 cos(αi/2)√
3− cos αi

)

and that αi < βi < π. �

This ensures that P may be attached to U at any edge
ei and avoid overlap. Henceforth we concentrate on
the nonoverlap of U .

Medial Axis Overlay. We close the outer shell of U
into a convex region U∗ by extending rays from v2

through v1, and from vn through v′1. If these rays
do not meet, then U∗ is unbounded. This indeed can
occur (roughly, when α1 is small), but the medial axis
is easily defined for unbounded regions.

Define a cell of a medial axis M(P ) as one of the
convex regions into which M(P ) partitions P , i.e.,
closures of the sets P \M(P ). The key claim is the
following:

1Made only in the presentation [IOV07b].

Theorem 2 Each face fi of U nests inside a cell of
M(U∗).

We say fi nests inside cell Ci if they share edge ei

and fi ⊆ Ci. Because the cells of M(U∗) partition
U∗, this theorem implies nonoverlap of U . See Fig. 2.
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Figure 2: Unfolding U and polygon U∗ for P in
Fig. 1(b), overlaid with M(U∗).

3 Inductive Construction

Our proof of Theorem 2 relies on the well-known in-
ductive construction of the medial axis for a convex
polygon. M(P ) = M(Pn) is constructed by extend-
ing a pair of edges ei−1 and ei+1 to meet at vi,j and
“engulf” ei to create a superset polygon Pn−1 of one
fewer vertex, (. . . , vi−1, vi,j , vi+2, . . .). See Fig. 3. We
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Figure 3: Partial inductive construction of M(P ) in
Fig. 1(a).

study two unfoldings Un and Un−1 that are based on
polygons Pn and Pn−1 related in just this manner. We
will use primes or the subscript n−1 to distinguish the
elements of Un−1 from the corresponding elements of
Un.

Lemma 3 Let Un and Un−1 be related by removing
ei from Pn, as described above. For j 6∈ {i−1, i, i+1},
the cell C ′

j of M(U∗
n−1) nests inside the corresponding

cell Cj of M(U∗
n). For j ∈ {i− 1, i + 1}, the cells nest

except for the portion cut away to remove ei.
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Here by “nests” we mean nests after a rigid move-
ment that places e′j and ej into coincidence. With
this lemma in hand, it will be straightforward to es-
tablish Theorem 2 by induction. We will use Fig. 4
to illustrate the proof. Here ei = e4 in U10 is removed
to create U9.
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Figure 4: Edge ei = e4 is engulfed in the U10 → U9

transition. ej = e6 and ek = e2. C ′
6 enlarges to C6.

Proof. Sketch. If the boundary of the cell C ′
j is com-

posed of subsegments of bisectors of edges of U∗
n−1

all indexed less than i − 1 or all greater than i + 1,
then C ′

j = Cj and there is nothing to prove. In Fig. 4
this holds for {C1, C7, C8, C9, C10}. So suppose C ′

j ’s
boundary contains a segment s′ that is a bisector of ej

and ek, where i lies between j and k. Let vj,k be the
point of intersection of the extensions of these edges,
through which the bisector containing s′ passes. Let
z be the vertex of Un that is the apex of the triangle
eliminated, 4vivi+1z. See Fig. 4(a).

Claim 1. When Un−1 is positioned so that e′j co-
incides with ej , then z lies to the same side of a per-
pendicular line through s′ as does vj,k. See Fig. 4(c).

The segment s′ of C ′
j changes to s of Cj by a rota-

tion of e′k about z to ek.
Claim 2. The rotation of the bisector of b′ = (e′j , e

′
k)

containing s′ to the bisector b = (ej , ek) containing s,
with e′j = ej fixed, is such that s strictly expands Cj .

These two claims rely on technical lemmas de-
scribed below. The consequence of Claim 2 (which
relies on Claim 1) is that every segment of C ′

j moves
in such a way as to expand to Cj .

For j 6∈ {i − 1, i, i + 1}, this suffices to show that
C ′

j nests inside Cj . For j ∈ {i − 1, i + 1}, C ′
j in fact

does not nest in Cj , because C ′
j includes 4zvivi,j or

4zvi,jvi+1, not present in Cj . Compare C3 and C5 in
Figs. 4(a,b). However, C ′

j \4 does nest in Cj (where
4 is the appropriate triangle), for the same reason:
the segment s′ rotates to s about z to enlarge the
cell. �

3.1 Technical Lemmas

Lemma 4 Let s be a segment of the medial axis of
a convex polygon P deriving from a maximal disk
touching ej and ek, whose extensions meet at vj,k.
Then all points of the medial axis deriving from the
portion of ∂P from ej to k to the vj,k-side is to that
same side of any perpendicular line L through s.

Proof. Sketch. See Fig. 5. �

ej

ek

s

L

vj,k

Figure 5: Lemma 4.

Lemma 5 With e′j = ej fixed, let b′ and b be the
bisectors of ej with e′k and ek respectively, where ek

is a rotation of e′k about a point z that lies between
ej and b′; see Fig. 6. Then the bisectors meet at a
point q = s′ ∩ s which is left of the line through z
perpendicular to b′.

Proof. Sketch. Let e′k rotate δ about z. If b′ forms an
angle of θ′ with ej , then after rotation of ek, bisector
b forms an angle θ > θ′ with ej . One can show that
θ = θ′ + δ/2.
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Figure 6: When e′k rotates to ek about z, q = b′ ∩ b is
left of L, the perpendicular to b′ through z.

Case 1. vj,k lies right of v′j,k as in Fig. 6. As z
slides up a fixed L toward b′, q moves up b′ from v′j,k,
and q = z at b′. Prior to that, q lies left of L.

Case 2. vj,k lies left of v′j,k on the line containing
ej . Then q falls behind v′j,k on b′, well left of L. �

The reason that Lemmas 5 and 4 support the claims
of Lemma 3 is as follows. Lemma 4 places z to the
“correct” side of the endpoint of s′. Lemma 5 shows
that the rotation about z that constitutes the Un−1 →
Un transition causes the bisectors b ⊃ s and b′ ⊃ s′

to meet at a point q even further to the z-side of
the endpoint of s′. Thus, s is moved away from s′

throughout its length, and so Cj ⊃ C ′
j .

Completing the Induction. Consider the con-
struction sequence hinted at in Fig. 3: P =
Pn, Pn−1, . . . , P3. Each polygon Pi leads to an un-
folding Ui and medial axis M(U∗

i ). We know from
Lemma 3 the cells of the M(U∗

i ) nest. So, starting
from face fj nested in Cj for some Ui, i ≥ 3, the nest-
ing will continue for all greater i, and thus establish
the nesting claimed in Theorem 2. All that remains
is establishing the base of this induction.

Lemma 6 For P3 a triangle, the three faces fi of U3

each nest inside the cell Ci of M(U∗
3 ).

Proof. Sketch. The apex z of P3 is equidistant from
the three edges of P3, and therefore z in U3 is at the
center of a circle that touches the three edges of U∗

3 .
See Fig. 7. �

4 Extensions

Pottmann and Walner consider in [PW01, p. 358ff]
the more general polyhedron constructed by slanting
planes at some constant angle γ (“constant slope de-
velopable surfaces”). Call such a polyhedron P(γ);
the medial axis polyhedron is P(π/4). It is not dif-
ficult to prove that the projection of M from P(γ)
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Figure 7: Induction base case: z is a vertex of the
medial axis of U∗

3 .

to the plane of P is independent of γ, i.e., it is al-
ways the medial axis M(P ). The following additional
hypotheses appear to hold, although I have not yet
proved them formally:

1. The main theorem (Theorem 2) holds for P(γ)
for any γ and therefore shows all these polyhedra
unfold without overlap in the same manner.

2. A polyhedron consisting of P(γ1) and P(γ2)
glued base-to-base on the same P unfolds by glu-
ing the convex outer shells of the two unfoldings
along a common edge.

3. For any given γ, deform P(γ) by driving γ → 0
continuously, meanwhile maintaining the original
βi face angles incident to each vi, and allowing
the faces to extend as needed to fill in the gaps
at the “cut” edges. When γ = 0 is reached, the
result is the unfolding U∗.

Finally, perhaps the analog of Theorem 2 holds for
cutting the cut locus of an arbitrary convex cap, which
would establish the quasigeodesic conjecture for con-
vex caps.
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