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Abstract

It is shown that a convex medial axis polyhedron has
two distinct edge unfoldings: cuttings along edges
that unfold the surface to a simple planar polygon.
One of these unfoldings is a generalization of the point
source unfolding, and is easily established to avoid
overlap. The other is a novel unfolding that requires a
more complex argument to establish nonoverlap, and
might generalize.

1 Introduction

Medial Axis Polyhedron. Let P be a convex poly-
gon. The medial axis M = M(P), M C P is the
closure of the locus of the centers of disks in P, each
of whose boundary touches 9P in two or more points.
The medial axis is a well-studied construct that ap-
plies much beyond convex polygons, but we restrict
our attention here to convex P. Then, M is a tree
of straight segments whose leaves are the vertices of
P. To each point meM may be associated the ra-
dius r(m) of the maximal disk in P centered on m.
Let P lie in the zy-plane, and for each meM, de-
fine a point p(m) = (mg,my,r(m)): it is vertically
above m at height z = r(m). Finally, define the me-
dial azxis polyhedron P for P to be the convex hull of
P U {p(m) : meM}. See Fig. 1 for an example that
we will use throughout. Let M be the tree of edges
of P that project to M.

The medial axis polyhedron is studied in [PWO1,
p. 376]. An alternative construction is to define a
halfspace through each edge of P that makes an an-
gle of 7/4 with respect to the zy-plane containing
P, and includes P. The intersection of these halfs-
paces with z > 0 yields P. One property established
in [PWO01] (for arbitrary piecewise-C? closed curves,
not just convex polygons) is that the surface over the
base is developable, i.e., it can be “developed” with-
out distortion flat to a plane. However, in general
developable surfaces develop with overlap. Here we
are explicitly seeking a nonoverlapping development
via cuttings along edges.

Source Unfolding. The medial axis M(P) is also
known as the cut locus of OP: the closure of the
locus of points with more than one distinct short-
est path from OP. The points M on P have the
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Figure 1: (a) A convex polygon P and its medial axis
M(P). (b) The corresponding medial axis polyhedron
P.

same property, and so form the cut locus of the base
rim 0P measuring shortest paths on the surface. It
is well known that the cutting the cut locus of a
“source” point x on a convex polyhedron unfolds the
surface to a nonoverlapping unfolding, the source un-
folding [DOO07, p. 359]. Cutting M on a medial axis
polyhedron P is cutting the cut locus of 0P, and it
is easy to see that this leads to a nonoverlapping un-
folding for medial axis polyhedra. For each face f; in-
cident to a base edge e; can be viewed as composed of
shortest paths to M, each path a segment perpendic-
ular to e;. Cutting M permits each face to flip out, ro-
tating about e; into the xy-plane. The perpendicular-
ity of the shortest segments to e; and the convexity of
P easily guarantee nonoverlap of this unfolding. This
is also a special case of a “dome unfolding,” which
was already known to avoid overlap [DOO07, p. 322].

Convex Cap Unfolding. Of more interest is an un-
folding that in some sense “squashes” the convex cap
over P into the plane. Convex caps meet every line
orthogonal to P in at most one point. They are an
interesting special case to explore the long-unsolved
problem of whether or not convex polyhedra always
have an edge unfolding. One special case is studied



in [O’R0O7]; the work here establishes another special
case.

The research in [IOV07a] led to the conjecture! that
cutting the cut locus of a simple, closed quasigeodesic
leads to a nonoverlapping unfolding. As 9P is such
a quasigeodesic, unfolding two medial axis polyhedra
glued base-to-base on the same P via the unfolding
described in the next section establishes a (very) spe-
cial case of this conjecture.

2 Unfolding

Unfolding Defined. Let (v1,...,v,) be both the 2D
vertices of P and the corresponding 3D vertices of
P; the context will disambiguate. Let e; = v;v;41
be the edges of P (and P), let f; be the face of P
incident to e;, and let u; be the edge of P incident
to v; and shared between f;_; and f;. The unfolding
U of P we study is obtained by cutting every edge of
M not incident to a leaf vertex v;, and cutting wuq,
the edge of M incident to v;. We ignore the base P
for now; it is easily attached later. U consists of the
faces f1, fa, ..., fn glued together at the shared edges
u; in a sequence. (See ahead to Fig. 2.) We view oU
as composed of two parts: the outer shell constituted
by the edges e; of P, and the inner path constituted
by images of cut edges of M. We continue to call
the vertices of the outer shell vy, ..., v,, with v] the
second image of v;.

Let «; be the angle of P at v;, and (; the sum of
the two (equal) angles of P incident to v; in faces f;_1
and f;. Thus §; is the angle at v; in U.

Lemma 1 The outer shell of QU is a convex curve.

Proof. Sketch. Calculation shows that

s (et

and that a; < 8; < 7. O

This ensures that P may be attached to U at any edge
e; and avoid overlap. Henceforth we concentrate on
the nonoverlap of U.

Medial Axis Overlay. We close the outer shell of U
into a convex region U* by extending rays from vy
through vy, and from v, through v;. If these rays
do not meet, then U* is unbounded. This indeed can
occur (roughly, when o is small), but the medial axis
is easily defined for unbounded regions.

Define a cell of a medial axis M (P) as one of the
convex regions into which M (P) partitions P, i.e.,
closures of the sets P\ M(P). The key claim is the
following:

!Made only in the presentation [IOVO7b].

Theorem 2 FEach face f; of U nests inside a cell of
M(U™).

We say f; nests inside cell C; if they share edge e;
and f; C C;. Because the cells of M (U*) partition
U*, this theorem implies nonoverlap of U. See Fig. 2.

Figure 2: Unfolding U and polygon U* for P in
Fig. 1(b), overlaid with M (U*).
3 Inductive Construction

Our proof of Theorem 2 relies on the well-known in-
ductive construction of the medial axis for a convex
polygon. M(P) = M(P,) is constructed by extend-
ing a pair of edges e;—1 and e; 41 to meet at v; ; and
“engulf” e; to create a superset polygon P, 1 of one
fewer vertex, (...,vi—1, ;i , Vit2,...). See Fig. 3. We
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Figure 3: Partial inductive construction of M(P) in
Fig. 1(a).

study two unfoldings U,, and U,,_; that are based on
polygons P, and P,,_; related in just this manner. We
will use primes or the subscript n—1 to distinguish the
elements of U,,_; from the corresponding elements of
U,.

Lemma 3 Let U,, and U,,_1 be related by removing
e; from P, as described above. For j & {i—1,i,i+1},
the cell C}; of M (U,;_,) nests inside the corresponding

cell C; of M(U}). For j € {i—1,i+ 1}, the cells nest
except for the portion cut away to remove e;.



Here by “nests” we mean nests after a rigid move-
ment that places e; and e; into coincidence. With
this lemma in hand, it will be straightforward to es-
tablish Theorem 2 by induction. We will use Fig. 4
to illustrate the proof. Here e; = e4 in Uqq is removed
to create Uy.

(©) Ujp U Uy

Figure 4: Edge e; = ey is engulfed in the Uyg — Uy
transition. e; = eg and ey, = es. Cf enlarges to Cg.

Proof. Sketch. If the boundary of the cell C’j’. is com-
posed of subsegments of bisectors of edges of U;_;
all indexed less than ¢ — 1 or all greater than ¢ + 1,
then C} = C; and there is nothing to prove. In Fig. 4
this holds for {C1, C7,Cs, Cg, Cro}. So suppose Cj’s
boundary contains a segment s’ that is a bisector of e,
and ey, where i lies between j and k. Let v; 1 be the
point of intersection of the extensions of these edges,
through which the bisector containing s’ passes. Let
z be the vertex of U, that is the apex of the triangle
eliminated, Av;v;412. See Fig. 4(a).

Claim 1. When U, _1 is positioned so that e; co-
incides with e;, then z lies to the same side of a per-
pendicular line through s’ as does v; ;. See Fig. 4(c).

The segment s’ of C} changes to s of C; by a rota-
tion of e}, about z to ey.

Claim 2. The rotation of the bisector of b’ = (e, €],
containing s’ to the bisector b = (e;, ex) containing s,
with e;- = e; fixed, is such that s strictly expands C}.

These two claims rely on technical lemmas de-
scribed below. The consequence of Claim 2 (which
relies on Claim 1) is that every segment of C;» moves
in such a way as to expand to Cj.

For j & {i — 1,4,7 + 1}, this suffices to show that
C} nests inside C;. For j € {i —1,i+ 1}, C} in fact
does not nest in C, because C’j( includes Azv;v; ; or
Azv; jvi41, not present in C;. Compare C3 and Cs in
Figs. 4(a,b). However, C} \ A does nest in C; (where
A is the appropriate triangle), for the same reason:
the segment s’ rotates to s about z to enlarge the
cell. O

3.1 Technical Lemmas

Lemma 4 Let s be a segment of the medial axis of
a convex polygon P deriving from a maximal disk
touching e; and ey, whose extensions meet at v; .
Then all points of the medial axis deriving from the
portion of OP from e; to i to the v; ;-side is to that
same side of any perpendicular line L through s.

Proof. Sketch. See Fig. 5. U

Figure 5: Lemma 4.

Lemma 5 With e = e; fixed, let b" and b be the
bisectors of e; with e, and ey respectively, where ey,
is a rotation of €) about a point z that lies between
e; and b'; see Fig. 6. Then the bisectors meet at a
point ¢ = s’ N s which is left of the line through z
perpendicular to b'.

Proof. Sketch. Let e}, rotate 6 about z. If b’ forms an
angle of ¢’ with e;, then after rotation of ey, bisector

b forms an angle § > 6’ with e;. One can show that
0=0"+4§/2.



Figure 6: When e}, rotates to e, about z, ¢ = b Nbis
left of L, the perpendicular to b through z.

Case 1. wvjy lies right of v}, as in Fig. 6. As z
slides up a fixed L toward b, ¢ moves up b’ from v;.’k,
and ¢ = z at b’. Prior to that, ¢ lies left of L.

Case 2. vj lies left of v}, on the line containing
ej. Then ¢ falls behind v}k on b, well left of L. O

The reason that Lemmas 5 and 4 support the claims
of Lemma 3 is as follows. Lemma 4 places z to the
“correct” side of the endpoint of s’. Lemma 5 shows
that the rotation about z that constitutes the U,,_1 —
U,, transition causes the bisectors b D s and ¥’ D s
to meet at a point ¢ even further to the z-side of
the endpoint of s’. Thus, s is moved away from s’
throughout its length, and so C; D C’]’-.

Completing the Induction. Consider the con-
struction sequence hinted at in Fig. 3: P =
P,,P,_1,...,P;. Each polygon P; leads to an un-
folding U; and medial axis M (U;). We know from
Lemma 3 the cells of the M (U}) nest. So, starting
from face f; nested in C; for some U;, i > 3, the nest-
ing will continue for all greater ¢, and thus establish
the nesting claimed in Theorem 2. All that remains
is establishing the base of this induction.

Lemma 6 For P; a triangle, the three faces f; of Us
each nest inside the cell C; of M(U3).

Proof. Sketch. The apex z of P3 is equidistant from
the three edges of Ps, and therefore z in Us is at the
center of a circle that touches the three edges of Uj.
See Fig. 7. |

4 Extensions

Pottmann and Walner consider in [PWO01, p. 358f]
the more general polyhedron constructed by slanting
planes at some constant angle v (“constant slope de-
velopable surfaces”). Call such a polyhedron P(v);
the medial axis polyhedron is P(w/4). It is not dif-
ficult to prove that the projection of M from P(v)

Figure 7: Induction base case: z is a vertex of the
medial axis of Us.

to the plane of P is independent of ~, i.e., it is al-
ways the medial axis M (P). The following additional
hypotheses appear to hold, although I have not yet
proved them formally:

1. The main theorem (Theorem 2) holds for P(v)
for any ~ and therefore shows all these polyhedra
unfold without overlap in the same manner.

2. A polyhedron consisting of P(v1) and P(72)
glued base-to-base on the same P unfolds by glu-
ing the convex outer shells of the two unfoldings
along a common edge.

3. For any given v, deform P(v) by driving v — 0
continuously, meanwhile maintaining the original
0; face angles incident to each v;, and allowing
the faces to extend as needed to fill in the gaps
at the “cut” edges. When v = 0 is reached, the
result is the unfolding U*.

Finally, perhaps the analog of Theorem 2 holds for
cutting the cut locus of an arbitrary convex cap, which
would establish the quasigeodesic conjecture for con-
vex caps.
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