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1 Introduction

How many times have you seen something like this?

Then Now

Simon Clay/Chrysalis Images

Courtesy of The Bostonian Society/Old State House

On the left is a picture of the Massachusetts Statehouse in Boston, taken
about 1860. On the right is a picture taken in 1999. The intent is to show
us how the building and its setting have changed, but the effect is diminished
because the camera was not in the same place for both photographs. How hard
is it to determine the exact location of the photographer from information in a
photograph?

The problem of understanding the relative positions of image and object is
actively studied by computer scientists. In Kanatani [K], it is part of “compu-
tational projective geometry.” The specific task of locating the camera from the
photograph is called “camera calibration.” In Kanatani’s book the process is
quite involved and technical. In a mathematical paper published later, Eggar
[E] tackles the same problem. He proves that the task can be done, but the tech-
nique is similarly complex and the paper does not derive a practical method or
formula.



In this paper, we present a method and a formula for locating the position
of the photographer. Our basic result is the following;:

Proposition If a picture of a rectangular solid taken by a vertically-held
pin-hole camera has measurements (on the photograph) of a, b, ¢, d, and e,

then the camera was positioned
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to the left of B in the direction from C to B and
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in front of point B, where BC and AB are on-site measurements.
The proof is based on high-school plane geometry and the basic principles
of projective geometry taught in a beginning drawing class.

2 Background

Our assumption is that the camera is a pinhole camera with the film in a vertical
plane (plane perpendicular to the ground). Under these circumstances, the
image on the film is the same as if we projected the three-dimensional world
onto a plane, what we’ll call the “image plane”, using straight lines to the
viewer’s eye.
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The only difference is that with a pinhole camera, the image appears on the
film upside-down.

We’ll need a few elementary facts about this projection:

(A) The images of lines that are parallel to the ground and to one another
meet at a single point in the image plane.

image plane

This point is called the vanishing point of the collection of parallel lines.

Imagine a collection of planes, each passing through the eye and one of the
parallel lines. Then the planes intersect in a line which meets the image plane
at the vanishing point.

All such vanishing points line on a single horizontal line called the horizon
line.

(B) Lines in the real world that are parallel to each other and also parallel
to the image plane are parallel when projected onto the image plane.
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From this it follows that real horizontal lines are projected to horizontal
lines.
(C) Also, ratios along lines parallel to the image plane are preserved when
T

projected to the image plane. In the diagram below, this means that % =5
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Finally,

(D) Lines on the ground connecting an object to the photographer appear as
vertical lines on the image plane.

Again, imagine a plane containing the eye of the photographer and the line
to the photographer.

image plane

photo-
grapher

That plane is vertical and intersects the image plane in a vertical line.
A converse of (D). is also true: lines in the ground plane whose images are
vertical connect to the photographer.



3 Owur Method

Given the tools above, we present a simple method for determining the location
of the photographer.

This is a photograph of John M. Greene Hall at Smith College, taken around
1935 by Edgar Scott.

Historic Northampton, Northampton, Massachusetts

The building is a complex solid, so we pick a rectangular solid on it whose
corners are easy to locate.
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The schematic corresponds to the aerial view below, where BC is the front
of the building and P is the location of the photographer.
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Our goal is to compute the distances IB and JB. We’ll compute IB—the

computation of JB can be done symmetrically. Our procedure is to express

B
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in terms of the five measurements a, b, ¢, d, and e in the image plane. Assuming
we can measure BC on site, we can then multiply this times the ratio to find
1B.

To make viewing the proof easier, we will show our work on a schematic
with sharper angles:
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We begin by extending EF and AB in the schematic picture to determine
the location of the left vanishing point, V.

Next, notice that PI in the aerial view is parallel to AB, hence by Fact
(A), in the schematic picture it passes through V. Also, since it is a line to the
photographer, by Fact (D) it is vertical in the schematic picture. Thus point I
is the intersection of this vertical with the extension of BC.



Now we add a horizontal line through B parallel to the image plane and
extend PI and DC to meet it. In the aerial view, it looks like:

By Fact (B), this line is also horizontal in the schematic. The aerial view
line CL is parallel to AB and PI, so it too passes through V.



From AKIB ~ ALCB in the aerial view we have
IB KB

BC BL’
From Fact (C), this proportion is equal to the ratio of image plane distances .

To find %, we add two more horizontal lines, CN and the horizon line VHF,
then focus on the lower half of the resulting figure.

From AVLK ~ AVCN we have
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From AVJB ~ AV HA we have
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from which we can derive:
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These together give us:
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We promised to express this ratio in terms of a, b, ¢, d, and e. We can accomplish

that by noticing that from similar triangles
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The corresponding formula for i}é can be found symmetrically:
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This completes the proof of the proposition.
The last step in locating the position of the camera is finding its height. This
is accomplished in a primitive way by noting where the horizon line cuts across
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the picture. The height of the camera is the height of this line as it appears
against the building in the picture.

4 Conclusion

The close agreement of the two pictures illustrates the proposition.

There are problems, though, in applying the proposition. It may be difficult
to find an appropriate part of a building to analyze. It can be difficult to
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measure the building. It can be difficult to measure the photograph. Finally,
locating the spot computed by the proposition, is not easy without equipment.

Considering these problems, the close agreement of the pictures of John M.
Greene Hall might be considered good luck. We used a high-resolution scan
on the archive photograph—b was measured at 470 pixels. Even so, if b were
measured just one pixel less, the computed location of the photographer changes
by almost two feet (because of the strategic location of b in the denominator of
the formula).
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