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1 Introduction

In this paper, we study partition properties of the set of real numbers. The meaning of “set of
real numbers” will vary, referring at times to the collection of sequences of natural numbers,
ωω; the collection of infinite sets of natural numbers [ω]ω; the collection of infinite sequences of
zeroes and ones, 2ω; or P(ω), the power set of ω.

The archetype for the relations is the property: “all sets of reals are Ramsey,” in the notation
of Erdos̈ and Hajnal, ω → (ω)ω . This states that for every partition F : [ω]ω → 2 , there is an
infinite set H ∈[ω]ωsuch that F is constant on [H ]ω. Like virtually all of the properties we will
discuss, it contradicts the Axiom of Choice but is compatible with the principle of dependent
choices (DC). DC will be used throughout the paper witout further mention.

The properties discussed in this paper will vary in two respects. Some, like ω → (ω)ω , will
be incompatible with the existence of an ultrafilter on ω (UF) and some will not. Some are
known to be consistent relative to ZF alone, and for some, such as ω → (ω)ω, the question is
still open. All properties, however, are true in Solovay’s model and hence are consistent relative
to Con(ZF + “there exists an inaccessible cardinal”) [Ma], [CS].

For details on the notation or basic properties, we refer the reader to [ER], [DPH] or [DPH1].

1



2 Doughnuts

Doughnut partition properties postulate the existence of homogeneous “doughnuts”, sets of
sets which must contain one fixed set (the hole) and be contained in another.

Definition 2.1 If H ⊂ K ∈[ω]ω, K r H ∈[ω]ω, then the doughnut (H, K), is the set {X :
H ⊆ X ⊆ K}. The property, ω → ((ω))ω holds iff for all partitions F : [ω]ω → 2 , there is a
doughnut on which F is constant.

The work of Moran and Strauss implies that ω → ((ω))ω holds for partitions into pieces
which have the property of Baire [MS]. The consistency of ZF+DC+“all sets of reals have the
property of Baire” was established from Con(ZF) by Shelah [Sh], the two facts together give
the following.

Proposition 2.1 Con(ZF) implies Con(ZF + DC + ω → ((ω))ω ).

For completeness we prove:

Proposition 2.2 (Moran, Strauss) For every partition of [ω]ω into two pieces having the prop-
erty of Baire, there is a doughnut, (H, K) contained in one piece of the partition.

Proof: Let A be a subset of ωωwith the Baire property, and let B be [ω]ωrA. Then there
are open sets Wa and Wb and meager sets Ma and Mb such that A = Wa∆Ma and B = Wb∆Mb.
Since Ma ∪Mb is also meager, let N0, N1, . . . be a sequence of nowhere dense sets such that
Ma ∪Mb = ∪iNi. We can assume that for each i, Ni ⊆ Ni+1. Let C = ∪i∈ωN i, clearly, C is
meager, and so at least one of the sets Wa rC and Wb rC is non-empty and therefore residual
(second category).

Identify sets in [ω]ωwith sequences of 0s and 1s in 2ω. For any finite s ∈ 2k, k < ω, let Us

be the collection of infinite sequences with initial segment s.

Suppose Wa r C 6= ∅ . Let α ∈ Wa r C, and choose an initial segment of α, s0, with
Us0
⊆WarN0. Let t0 be such that Us0

⌢{0} ⌢t0 ⊆ 2ω
rN 1, and let t1 be such that Us0

⌢1 ⌢t0 ⌢t1 ⊆
2ω

r N1. Such t0 and t1 exist since N1 is closed and nowhere dense. Put s1 = t0
⌢t1. Notice

that the sequences t0, t1 can be taken from α, (they can be the corresponding segments from
α).

To simplify the writing, if 〈s0, . . . , sk〉 with k < ω is a sequence of finite sequences and
r ∈ 2k, we will write 〈s0, . . . , sk〉 ∗ r to abbreviate s0

⌢r(0) ⌢s1
⌢r(1) ⌢ . . . ⌢skr1

⌢r(k r 1) ⌢sk

(we will also use the obvious generalization to infinite sequences).

Suppose we have defined sk so that U〈s0,...,sk〉∗r ⊆ 2ω
r Nk hold for every r ∈ 2k. Let

{r0, r1, . . . , r2k−1} enumerate 2k. Define ti for i < 2k as follows, t0 is such that

U〈s0,...,sk〉∗r0
⌢t0 ⊆ 2ω

r Nk+1,

U〈s0,...,sk〉∗r1
⌢t0 ⌢t1 ⊆ 2ω

r Nk+1,
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...

U〈s0,...,sk〉∗r2k
−1

⌢t0 ⌢t1 ⌢... ⌢t
2k

−1
⊆ 2ω

r Nk+1.

And now put sk+1 = t0
⌢t1

⌢ . . . ⌢t2k−1.

In this way we obtain a sequence s0, s1, . . . with the property that 〈s0, s1, . . . 〉∗f ∈WarC ⊆

A for every f ∈ 2ω. The set H , then, is the set of all n < ω such that the nth digit of
〈s0, s1, . . . 〉 ∗ f is 1 for f the infinite sequence taking the constant value 0. The set K is the set

of all n < ω such that the nth digit of 〈s0, s1, . . . 〉 ∗ f is 1 for f the sequence taking constant
value 1. �Prop. 2.2

Notice that a simple modification of this proof shows that the result holds also for partitions
into countably many pieces.

The property ω → (ω)ω clearly implies ω → ((ω))ω . In fact, it implies a sweeping version
of ω → ((ω))ω .

Proposition 2.3 ω → (ω)ω implies ω → ((ω))ω

WO, in other words, every partition of [ω]ω into
a well-ordered collection of classes has a homogeneous doughnut.

Proof: Suppose F : [ω]ω → α, for some ordinal α. Define G : [ω]ω → 2 by G(p) = 0 iff
F (p) ≤ F (q) for all q ∈ [p]ω. Let x ∈ [ω]ω be homogeneous for G. The range of G must be {0},
since if z ∈ [x]ω is selected so that F (z) is minimal in F ′′[x]ω, then G(z) = 0.

Divide x up into the disjoint union of ω-many infinite sets {xi}i<ω. Then since
F (∪i<nxi) ≥ F (∪i<n+1xi), these must be equal for some n (or we would have an infinite
descending chain). For that n, H = ∪i<nxi and K = ∪i<n+1xi witness doughnut homogeneity.

�Prop. 2.3

It is not known whether ω → ((ω))ω itself implies this property, but we can prove:

Proposition 2.4 ω → ((ω))ω implies ω → ((ω))ω

ω.

Proof: Suppose that F :[ω]ω→ ω. For any set X ⊆ ω and n < ω, define F X
n :[ω]ω→ 2

by F X
n (p) = 1 iff F (X ∪ p) ≥ n. Using ω → ((ω))ω, choose a doughnut (X0, Y0) from [ω]ωon

which F ∅
1 is constant. If the range of F1 is {0}, we are done. Otherwise, choose (X1, Y1) from

[Y0 rX0]
ω on which F X0

2 is constant. If the range is {0}, we are done, otherwise choose (X2, Y2)
from [Y1 r X1]

ω on which F X0∪X1

3 is constant, and so on.

At some point we must have homogeneity going to {0} since if we can continue, we will
have F (

⋃

i<ω)Xi ≥ n for all n < ω. �Prop. 2.4

Doughnut relations are possible on other sets.
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Definition 2.2 The relation P(ω) → (P(ω)) asserts that for every F : P(ω) → 2 there is a
collection {ai}i<ω of pairwise disjoint non-empty subsets of ω, such that F is constant on all
unions of these sets, i.e., F is constant on {∪i∈bai : b ⊆ ω}.

The expression P(ω) → ((P(ω))) asserts that for all F : P (ω) → 2 there is a collection
{ai}i<ω of pairwise disjoint subsets of ω, such that F is constant on {∪i∈bai : b ⊆ ω, 0 ∈ b}.

These properties contradict the Axiom of Choice. This can be seen using the usual diago-
nalization argument.

Proposition 2.5 ([CS] 1.4) ZF + AC ⇒ P(ω) 6→ ((P(ω)))

Proof: Well-order the collection of all ω-collections of sets with order type ‖2ω‖. Build a
partition of P(ω) by taking each possible homogeneous sequence in turn and defining F to be
different on two unions of sets from the sequence (each containing the first set). At any stage
α < ‖2ω‖, we have defined F on only 2 · α-many sets so there are plenty of unions of the αth

homogeneous sequence for which F is undefined. �Prop. 2.5

Proposition 2.6 ω → ((ω))ω implies P(ω)→ ((P(ω)))

Proof: Any partition of P(ω) is a partition of [ω]ω. A homogeneous doughnut (H, K) for
[ω]ω produces a homogeneous collection for P(ω): let a0 = H and let {ai}0<i<ω be a partition
of K r H into infinitely many infinite sets. �Prop. 2.6

While ω → (ω)ω and ω → ((ω))ω are not known to be equivalent, surprisingly, P(ω) →
(P(ω)) and P(ω)→ ((P(ω))) are.

Proposition 2.7 P(ω)→ ((P(ω))) implies P(ω)→ (P(ω))

Proof: Suppose we are given F : P(ω) → 2. Using P(ω) → ((P(ω))) , obtain {A0
n}n<ω

such that F is constant on all unions of these sets which contain A0
0. Define F1 on P(ω) by:

F1(p) = F
(

⋃

i∈p A0
p+1

)

. Using P(ω) → ((P(ω))) again, obtain {Bn}n<ω, and set for each

n < ω, A1
n =

⋃

j∈Bn
A0

j+1. Now define F2 by F2(p) = F
(

⋃

i∈p A1
p+1

)

and continue in the same
way.

Consider {Ak
0}k<ω. The value of F on any union X of these sets depends only on the least

k such that Ak
0 ⊆ X. This partitions ω into two pieces, R1 = {k: if k is least such that Ak

0 ⊆ X
then F (X) = 0} and R2 = {k: if k is least such that Ak

0 ⊆ X then F (X) = 1}. One of these is
infinite, say it is Ri. Then F is constant on all unions of the sets {Ak

0}k∈Ri
. �Prop. 2.7

Proposition 2.8 The property P(ω) → (P(ω)) implies that every subset of ωωcontains or is
disjoint from a perfect set.
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Proof: Given F : ωω → 2, define G : P(ω) → 2 as follows. If A is an infinite subset of
ω, G(A) = F (A) (looking at A as an increasing sequence), the definition of G on the finite
subsets of ω is irrelevant. Let A0, A1, . . . be a sequence of pairwise disjoint infinite subsets of
ω homogeneous for G, i.e. all the possible unions of elements of the sequence A0, A1, . . . have
the same image under G. To see that this gives a perfect homogeneous set for F , just notice
that the set P of all the unions of the form A = ∪i∈ωAf(i) with f : ω → ω, is a set of sequences
of natural numbers with no isolated points. It remains to show that it is a closed set. Let C
be the complement of P . If an infinite set A of natural numbers is in C, then either there is
an element a ∈ A such that a /∈ ∪iAi or there is an i such that Ai ∩ A is nonempty and Ai

is not contained in A. In either case, it is easy to find a neighborhood of A contained in C.

�Prop. 2.8

The referee has pointed out that in view of Propositions 2.3 and 2.4, the following implica-
tions follow.

1. ω → ((ω))ω
α implies P(ω)→ ((P(ω)))α

2. P(ω) → ((P(ω)))α implies that for every F : P(ω) → α, there is a collection aii<ω of
pairwise disjoint non-empty subsets of ω such that either ∀b, c ∈ P \ {∅}F (

⋃

i∈b ai) =
F (

⋃

i∈c ai), or else ∀b, c ∈ P \ {∅}F (
⋃

i∈b ai) = F (
⋃

i∈c ai)↔ min(b) = min(c)

3. P(ω)→ ((P(ω))) implies P(ω)→ ((P(ω))) ω

3 Floating Ordinals

The reals ωω are subject to another sort of relation, infinite polarized partition relations.

Definition 3.1







ω
ω
...






→







2
2
...






asserts that for every F : ωω → 2, there is a sequence

H0, H1, . . . of pairs of natural numbers such that F is constant on Πi∈ωHi (see [DPH]).

It is not difficult to see that







ω
ω
...






→







ω
ω
...






is false, that is, we cannot hope to find a

homogeneous sequence of infinite sets, in fact, even











ω
ω
ω
...











→











ω
ω
2
...











fails, as the partition,

F (p) = 0 iff p(0) > p(1), witnesses. As a consequence, partition relations involving “floating
omegas” were introduced.
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Definition 3.2











ω
ω
ω
...











→















ω
ω
...

⌣⌣⌣
...















asserts that for every F : ωω → 2, there is a homoge-

neous sequence of non-empty sets H0, H1, . . . with {i ∈ ω : |Hi| = ω} infinite.

Since the places i in the sequence where Hi is infinite are not specified, we call these “floating
omegas” (they are also placed “above the waves” in the notation).

Briefly, this relation is also false (see [DPH]), but if only a finite number of floating omegas
are involved, the problem turns more interesting. The partition relation











ω
ω
ω
...











→





















ω
...
ω











n

⌣⌣⌣
1
...





















, which asserts that for every F : ωω → 2, there is a homogeneous

sequence of non-empty sets H0, H1, . . . of which at least n are infinite, is consistent, in fact,
it follows from results in [MS] that it holds for Baire partitions. It is open, however, whether
or not one can have several floating omegas when the rest of the sets in the homogeneous
sequence are required to have at least two elements, in other words, it is not known if the

partition property











ω
ω
ω
...











→





















ω
...
ω











n

⌣⌣⌣
2
...





















is consistent. The consistency of one “fixed”

omega,







ω
ω
...






→







ω
2
...






is true [He]. Weaker properties such as











ω
ω
ω
...











→















2
2
...

⌣⌣⌣
...















were established for Baire partitions by Moran and Strauss ([MS]).

Proposition 3.1











ω
ω
ω
...











→















2
2
...

⌣⌣⌣
...















implies P(ω)→ (P(ω)) .

6



Proof: In view of Proposition 2.7, we need only prove P(ω) → ((P(ω))) . Let {Xi : i ∈
ω} be a collection of pairwise disjoint infinite subsets of ω. List the elements of each Xi in
increasing order by {Xi(0), Xi(1), . . .}. Given F : P (ω) → 2 , define G : ωω → 2 by G(α) =
F (

⋃

i∈ω{Xi(k) : k ≥ α(i)}i<ω), and let d < 2, H0, H1, . . . be such that g′′
∏

i<ω Hi = {d}, and
M = {i ∈ ω : |Hi| = 2} is infinite. We can assume that the rest of the Hi’s are singletons. Let
M = {m0, m1, . . . }.

Put Hi = {ai, bi} with ai < bi if Hi is a pair, otherwise let Hi = {bi}.

Put c0 =
⋃

i∈ω{Xi(k) : k ≥ bi}, and for j > 0, cj =
⋃

i∈ω{Xmj
(k) : amj

≤ k < bmj
}. Then if

X is any union of the sets ci which includes c0, F (X) = d. �Prop. 3.1

Proposition 3.2











2
2
2
...











→















2
2
...

⌣⌣⌣
...















is equivalent to ω → ((ω))ω .

Proof: This is easily seen by identifying the relevant spaces, 2ω and [ω]ω. �Prop. 3.2

4 Square Brackets

Most partition properties considered so far have square-bracket versions. The status of all of
these is unresolved. Consider for example, ω → [ω]ω .

Definition 4.1 ω → [ω]ωA asserts that for all partitions F :[ω]ω→ A, there is an infinite p such
that F ′′[p]ω 6= A. If A = ω, then the subscript is omitted and we write simply ω → [ω]ω .

Proposition 4.1 (Kleinberg) ω → [ω]ω implies ω → [ω]ωn for some n < ω.

Proof: If not, then for each n < ω, let Fn be a witness to the failure of ω → [ω]ωn. Then
F (p) = Fp(0)(p r p(0)) witnesses the failure of ω → [ω]ω. �Prop. 4.1

Clearly, ω → (ω)ω implies ω → [ω]ω . It is a long-standing open question whether ω → [ω]ω

implies ω → (ω)ω.

Square-bracket relations can imply round-bracket relations.

Proposition 4.2 ω → [ω]ω implies







ω
ω
...






→







2
2
...
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Proof: (We acknowledge here the help of Maŕıa Carrasco). Using Kleinberg’s observation
let n ∈ ω be such that ω → [ω]ωn . Let m ∈ ω be such that 2m ≥ n. We have then ω → [ω]ω2m .

If p ∈ [ω]ω, we denote by (p)m
i the ith component of a decomposition of p into m infinite

pairwise disjoint subsets obtained using a standard coding of pairs of natural numbers.

Given F : ωω → 2, define G : [ω]ω → 2m by G(p) = 〈F ((p)m
0 ), F ((p)m

1 ), . . . , F ((p)m
m−1)〉.

Let H ∈ [ω]ω be homogeneous for G (i.e., G′′[H ]ω is not all of 2m). List H in increasing
order as H = {y0, y1, . . . }, and let J be the collection of successive pairs of elements of H ,
J = {{y0, y1}, {y2, y3}, . . . }. Using the same coding as above, we can decompose J into m
subsequences to obtain (J)m

0 , (J)m
1 , . . . , (J)m

mr1. At least one of the (J)m
i must be a homogeneous

sequence of pairs for F , this is to say, for some i < m, F must be constant on Pi(J)m
i , the

product of the pairs belonging to (J)m
i . Otherwise, G takes all possible values in 2m, because we

could put together an element p ∈ ΠJ such that the tuple 〈F ((p)m
0 ), F ((p)m

1 ), . . . , F ((p)m
m−1)〉

is any desired sequence. �Prop. 4.2

5 Ultraflitters

There is a divide among partition properties between those that are consistent with UF and
those that aren’t. The relation, ω → (ω)ω, for example, is not. The divide is useful in examining
the relationship between properties.

The consistency of







ω
ω
...






→







2
2
...






with UF, for example, would solve the long-open

question of whether or not







ω
ω
...






→







2
2
...






implies ω → (ω)ω. See [LT] for results in this

direction.

UF is a “choice” principle. The various proofs that certain relations are inconsistent with
UF actually show inconsistency with a (possibly) weaker principle.

Definition 5.1 A flitter on ω is a set F ⊆ P(ω) with the property that if a, b ∈ F , then either
a ∩ b or ac ∩ bc is infinite. More concisely, a, b ∈ F ⇒ a∆b is co-infinite. F is an ultraflitter
if for all x ⊆ ω, either x or xc is in F .

Clearly, an ultrafilter is an ultraflitter. It can be shown that a family F of subsets of ω
with the property a, b ∈ F ⇒ a∆b is co-infinite, is maximal if and only if it is an ultraflitter.
It is well known that, viewed as a subset of 2ω, an ultrafilter cannot be Lebesgue measurable
nor can it have the property of Baire. The same holds for ultraflitters. The existence of an
ultraflitter (UFL) appears to be weaker than UF, which requires at least that the intersection
of members is infinite. We do not, however, have a proof of this.

[

Note: Flitters are self-dual, that is, for any flitter F , {xc : x ∈ F} is also a flitter. This
could be why they are called flitters.

]
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Like UF, UFL is a choice principle. It is equivalent to the existence of a choice function
for continuum-many two-element sets. It is also equivalent to the failure of a floating object
partition property.

Proposition 5.1











2
2
2
...











→







2
⌣⌣⌣

...






iff ¬UFL.

Proof: (⇒) Suppose F is an ultraflitter. Define F on ω2 as follows. For α ∈ 2ω let Aα ⊆ ω
be such that its characteristic function is α. Given a subset A ⊆ ω, let (A)e be the union of
the even intervals determined by A, i.e., (A)e =

⋃

n∈ω[A(2n), A(2n + 1)). Put F (α) = 0 iff
(Aα)e ∈ F . If two sequences α, α′ ∈ 2ω differ in just one place, then the sets (Aα)e and (Aα′)e

are almost complementary, and cannot be both in F , hence F (α) 6= F (α′).

(⇐) Suppose F : ω2 → 2 is any partition, and suppose that no collection {Hi}i<ω is
homogeneous. For s ⊆ ω, let ps ∈

ω2 be defined by: ps(0) = 1 iff 0 ∈ s, and ps(i + 1) = 0 iff
[

i ∈ s ⇔ i + 1 ∈ s
]

. For p ∈ ω2, let sp ⊆ ω be defined by: i ∈ sp iff Σi
k=0p(k) is odd. Some

facts:

Define F by: s ∈ F iff F (ps) = 1.

1. F (ps) 6= F (psc). Consider ps and p′, differing from ps only at 0. Since no collection of
homogeneous sets exists for F , F (ps) 6= F (p′). But p′ is actually equal to p(sc)

2. If s and s′ are the same except that i is in s but not in s′, then F (ps) = F (ps′). Consider
ps and ps′ . They are identical, except they differ at i and i + 1. Form p so that it agrees with
ps everywhere except at i (and hence it agrees everywhere with ps′ except at i + 1). Since
no collection of homogenous sets exists for F , we must have F (ps) 6= F (p) 6= F (ps′), and so
F (ps) = F (ps′).

Finally, F must be an ultraflitter: First, if a ⊆ ω, then either a ∈ F or ac ∈ F by fact
2. Second, suppose a, b ∈ F and both a ∩ b and ac ∩ bc are finite. Then a and bc differ by
only a finite set. Applying fact 2 repeatedly shows that F (pa) = F (pbc), so F (pb) = F (pbc),
contradicting fact 1. �Prop. 5.1

Proposition 5.2











ω
ω
ω
...











→











ω
ω

⌣⌣⌣
...











implies ¬UFL.

Proof: Any sequence r ∈ ωω can be turned into a sequence pr ∈
ω2 in the following fashion:

for each n, consider r ↾ n. The elements in this finite sequence can be put into non-decreasing
order by some permutation of n. For definiteness, consider only permutations that do not
change the relative order of elements which are equal. Define pr(n) = 0 iff the permutation
described above is even.
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Now suppose that F is an ultraflitter. Define F :ω ω → 2 by F (r) = 0 iff {n : pr(n) = 0} ∈
F . Suppose that {Hi}i<ω is homogeneous for F , with Hj and Hk infinite. Take r ∈

∏∞
i=0 Hi.

Moving r(j) up or down changes the parity of some of the permutations (the values of pr(i) for
i > j). If we change r(j) to s to form r′, and r(j1), < r(j2) < . . . < r(jk) are the members of
r between r(j) and s, then for i > j1, j2, . . . , jk, the permutation arranging the first i elements
of r in order can be amended to a permutation arranging the first i elements of r′ in order by
multiplying by (r(j), r(j1)) · (r(j), r(j2)) · . . . (r(j), r(jk)). Thus pr(i) changes iff k is odd.

Since Hj and Hk are infinite sets, let us suppose that r(j) < s < t < r(k) and s ∈ Hk

and t ∈ Hj . Let r1, r2, r3 each be the same as r with these exceptions: r1(j) = t, r2(k) = s,
r3(j) = t, r3(k) = s. The difference between pr and pr1

above k is exactly the complement of
the difference between pr2

and pr3
; in both cases we are jumping the jth value, but in one case

we must jump over s and the other case we don’t. This leads to a contradiction. �Prop. 5.2

Corollary 5.1











ω
ω
ω
...











→











ω
ω

⌣⌣⌣
...











⇒











2
2
2
...











→







2
⌣⌣⌣

...






.

Proposition 5.3 ω → [ω]ω ⇒ ¬UFL.

Proof: By Proposition 4.1, we have ω → [ω]ωn for some n. We can choose n to be a prime
number > 2.

For p ∈ [ω]ω, i < n < ω, let pm
i = ∪k<ω [p(m · k + i− 1), p(m · k + i)] (interpret p(−1)

as 0), where {p(0), p(1), . . .} are the elements of p in increasing order and we are looking at
the segments determined on ω by these numbers. The segment [p(0)\p(−1)] is just the initial
segment determined by the first element of p .

Suppose that F is an ultraflitter on ω, and define F : [ω]ω → 2n by F (p)(i) = 1 iff pn
i ∈ F .

Let q ∈ [ω]ω be homogeneous for F in the sense that the range has size less than n.

Our goal is to find q′ ∈ [q]ω such that F (q′) is neither 〈0, 0, . . . , 0〉 nor 〈1, 1, . . . , 1〉. This
will give us a contradiction, since then F (q′), F (q′ r q′(0)), . . . , F (q′ r q′(n− 1)) which are all
rotations of F (q′), will be distinct (since n is prime) contradicting the homogeneity of q. To
construct q′, consider {q3n

i : i < 3n}.

Case 1 One of the sets {
⋃

i<n

q3n
i ,

⋃

n≤i<2n

q3n
i ,

⋃

2n≤i<3n

q3n
i } is in F and one isn’t.

Say, for example,
⋃

i<n

q3n
i ∈ F and

⋃

i<n

q3n
i /∈ F . Then for any n − 2-element subset a of

{2n + 1, 2n + 2, . . . , 3n− 1}, q′ = {q(3n · k + 1) : i ∈ {n, 2n} ∪ a, k ∈ ω} will serve since F (q′)
begins 〈1, 0, . . . 〉.

Case 2 Either all or none of {
⋃

i<n

q3n
i ,

⋃

n≤i<2n

q3n
i ,

⋃

2n≤i<3n

q3n
i } are in F . Suppose they are all

in F .
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Case 2a One of {q3n
2n+2, . . . , q

3n
3n−1} is not in F .

Then q′ = {q(3n · k + 1) : i ∈ {n, 2n, 2n + 2, 2n + 3 . . . , 3n− 1}, k ∈ ω} will serve.

Case 2b Finally, if all of {q3n
2n+2, . . . , q

3n
3n−1} are in F , then since

⋃

i<2n

q3n
i is not in F (it is the

complement of
⋃

2n≤i<3n

q3n
i ),

q′ = {q(3n · k + 1) : i ∈ {2n, 2n + 1, 2n + 2, . . . , 3n− 1}, k ∈ ω} will serve.

�Prop. 5.3

We close with an example of the discriminating power of ultraflitters and ultrafilters.

Definition 5.2 Denote by (ω)ω the collection of all partitions of ω into ω-many pieces. For
x ∈ (ω)ω, denote by (x)ω the set of all y ∈ (ω)ω which are coarser than x (every piece of x is
contained in a piece of y). The relation ω ← (ω)ω asserts that for any partition F of (ω)ω into
2 pieces, there is an x ∈ (ω)ω such that F is constant on (x)ω.

Carlson and Simpson show that in Solovay’s model, the relation, ω ← (ω)ω holds [CS].

Note that P (ω)→ (P (ω)) is equivalent, in this notation, to ω ← (ω)2.

Proposition 5.4 Con(ZF + “there is an inaccessible cardinal”)⇒ Con(ZF + P(ω)→ (P(ω))
+ “there is an ultrafilter on ω”).

Proof: We acknowledge here helpful remarks by Nicholas Sparks.

We work in a model of ZF+DC+ω ← (ω)ω and force to add an ultrafilter. The partial
ordering is the usual one, P(ω)/fin. We claim that P(ω) → (P(ω)) holds in the extension.
Suppose p “F is a function from P(ω) to 2”. For any q ∈ (ω)ω, let qn be the nth piece of q,
where the pieces are ordered by their least elements. Let G : (p)ω → 3 be defined by: G(q) = i
iff {∩qn : n > 1} forces F (q1) = i. Let r ∈ (p)ω be such that G is constant on (r)ω.

Notice first that the range of G on this set cannot be {2}, since there are a j < 2 and a set
t ⊆ {∩ri : i > 1} such that t  F (r1) = j, and so we can form a coarsening q of r by merging
all pieces ri with i > 1, i not in t, into the piece r0. Then G applied to this partition is j.

Let {d}, d < 2, be the range of G on (r)ω. Let t = {∩r2i+1 : i > 1} ⊆ p. We claim that t 

“{r2i}0<i<ω is homogeneous for F .” For any s, a union of these sets, we can form a coarsening
q of r with s as q1 as follows. Merge all r2i which are in s. Merge all r2i which are not in s with
r0, and if 2i is the least such that r2i is in s, merge all r2k+1 with 2k + 1 < 2i with r0. We are
left with a partition q where q1 = s, and {∩qi : i > 1} is exactly t with a finite set removed.
By homogeneity, {∩qi : i > 1} forces that F (s) = d, and the claim is proved. �Prop. 5.4

Corollary 5.2 Con(ZF + there is an inaccessible cardinal) implies Con(ZF + ω → (ω)ω and
P(ω)→ (P(ω)) are not equivalent).

We summarize the results of this paper with a chart on the next page:
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ω ← (ω)ω

ω → (ω)ω

ω → ((ω))ω
wo

ω → [ω]ω ⇔ ∃n ω → [ω]ωn

ω → ((ω))ω ⇔ ω → ((ω))ω
ω ⇔







2
2
...






→















2
2
...

⌣⌣⌣
...





















ω
ω
...






→















2
2
...

⌣⌣⌣
...















¬UFL ⇔







2
2
...






→







2
⌣⌣⌣

...













ω
ω
...






→







2
2
...













ω
ω
...






→











ω
ω

⌣⌣⌣
...











P(ω)→ (P(ω)) ⇔ P(ω)→ ((P(ω)))⇔ ω ← (ω)2

C
on

(Z
F
+

in
accessib

le)
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