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ABSTRACT 

SpectralConway is a spectral implementation of cellular 
automata (CA), specifically, John Conway's Game of Life 
(GoL)[3]. The process eschews the traditional quantised 
grid paradigm of the CA in favour of a frequency 
continuum. We apply the neighbour rules to a set of 
floating-point values (partials), with the neighbourhood 
defined as a pitch interval. This paper outlines the reasons 
for taking this approach, the concept behind the algorithm, 
contextualises this approach within new developments in 
CA, and assesses the algorithm in the context of the piece 
Whitewater. 

1. INTRODUCTION 

The initial concept for SpectralConway came from writing 
the piece Whitewater (for wind instrument and live 
electronics, performed at ICMC 2007 [7]1). The piece is 
based on slowly changing multiphonics, and we wanted a 
process that could allow the computer to grow and evolve 
sounds based on the live input: creating synthetic 
multiphonic-like timbres that the player can interact with. 
The reason for using GoL as the basis of the algorithm is 
almost completely aesthetic and subjective—beginning as 
the composer’s fascination with the “lifelike” [16] motion 
of the graphical CA. Given an input, GoL is a simple 
system that will create variation that can exhibit both 
stability/repetition and novel variation, providing a level of 
interactive unpredictability within a globally stable sonic 
texture.  

Also, because the piece relies on bounded improvisation 
by the player to guide the structure, a CA approach seemed 
most viable as it fosters local level variation while 
allowing emergent structures on a larger scale: as Eduardo 
Reck Miranda notes, “the inner structures of sounds seem 
more susceptible to cellular automata modelling than 
larger musical structures.” [8] We have used a CA to 
emulate in the audio world of sound spectrum the lifelike 
inner motion observed on graphic CA. The algorithm 
receives analysis of multiphonic timbres in real-time and 

                                                           
1 see http://eprints.hud.ac.uk/7396/ for the score and a recording of 

the piece, as well as for the compiled Max/MSP external. 

drives their temporal proliferation, with the larger structure 
being guided by live performer input. 

Another aesthetic reason for using GoL—although 
many other CA would have been suitable here also—is 
that the rules of the process tend to generate cluster-based 
patterns. In the musical mapping this often leads to pitch 
clusters, with their resultant acoustic beating patterns. Such 
patterns are characteristic of the inharmonic multiphonics 
that make up the material in Whitewater. 

All these aesthetic choices were based on the 
contemplation by the composer of a graphic-based GoL—
not limited to GoL implementation—but we welcome 
other CA rule-systems to explore different properties. 
However, the first and foremost issue we were confronted 
with was the question of musical mapping, as we were 
unsatisfied with the obvious simple mappings. 

1.1. Previous Musical implementations of Cellular automata 

Our focus in this paper is not explicitly to extend CA 
theory, but to discuss our particular mapping approach 
from an artistic perspective. To give our work a context it 
is worth briefly examining the field of CA 
implementations in music: for a detailed explanation of CA 
technique, and a history of CA implementations in music 
up to 2005, please refer to the article by Burraston and 
Edmonds [1], or for a general survey of CA outside the arts 
see Ganguly et al 2003 [2]. 

We have observed that previous implementations of CA 
in music have fallen into two main paradigms: (a) note-to-
cell mapping which focuses on localised pattern variation 
in midi/note-based music; (b) synthesis (mainly granular) 
implementations, focusing on stochastic pattern variation 
and swarm effects in timbre-based music, such as Eduardo 
Reck Miranda’s ChaosSynth [8]. Since 2005 there have 
been efforts to improve the understanding of mapping CA 
processes onto musical parameters [5], as well as research 
into less linear mapping approaches, such as radial 
mapping [4], and histogram to spectrum mapping [12]. 
Toguchi et al use a wave propagation CA model to 
simulate impact sounds [14]: this type of CA has a 
different mode of proliferation to GoL and would not have 
suited our aesthetic considerations. These recent 
approaches are beginning to explore the space in-between 
linear and stochastic paradigm, but not to our satisfaction 
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for this purpose: we needed to be able to manipulate 
individual partials (frequency/amplitude pairs) that change 
over time in the potentially infinite domain of floating-
point frequency values. The stochastic approach lacks 
sufficient control at the frequency level, while note-to-cell 
mapping strategies require us to quantise the frequency 
values to a limited set, more amenable to a fixed grid; this 
would reduce the possibilities for interesting timbres with 
partials whose frequencies lie outside that set. After some 
initial trials with mapping the graphic CA to the audio, we 
reassessed our approach. 

2. SPECTRALCONWAY 

2.1.  Conceptual Description 

What is novel about our approach to CA mapping is that it 
does not rely on a fixed grid of discrete values with a 
neighbourhood based on adjacency; instead, we use a 
floating-point continuum with a neighbourhood based on 
musical interval distance. 

Let’s compare the standard CA with SpectralConway. 
In a basic 2D graphic CA, the world is quantised as a grid 
of cells, each of which may be alive or dead. In successive 
generations, each cell is tested against a neighbourhood of 
the eight cells immediately surrounding it, as shown in 
Figure 1. Eric Weisstein defines the GoL rules as: 

1. Death: if the count is less than two or greater than 
three, the current cell is switched off. 

2. Survival: if (a) the count is exactly two, or (b) the 
count is exactly three and the current cell is on, the 
current cell is left unchanged. 

3. Birth: if the current cell is off and the count is 
exactly three, the current cell is switched on [17]. 

       
Figure 1. (Left) Graphic CA with neighbourhood 
based on adjacency: C = current cell; N = neighbour. 
(Right) Example of Graphic CA. 
 

In SpectralConway, cells are replaced with spectral 
partial descriptors (frequency/amplitude pairs), and each 
partial is tested against a neighbourhood defined by a pitch 
interval defined in semitones, such as 12 for an octave or 7 
for a fifth. SpectralConway tests to see how many other 
partials lie within this pitch interval and applies GoL-type 
rules: the next state (alive or dead) of the tested partial is 
determined by the amount of live neighbours. Note that the 

algorithm is concerned only with pitch: each partial’s 
amplitude is passed through the algorithm unaltered. 

Figure 2 shows spectralConway's intervallic 
neighbourhood, defined here as an interval of an octave 
and applied to each of the partials: the large dot is the 
partial currently being tested, and a-d are other partials 
alive in the current generation. Here, the partials a and b 
are within the neighbourhood of the tested partial, c and d 
are not. Applying the classic GoL rules described earlier, 
the target partial would survive to the next generation as 
there are exactly two other partials within its 
neighbourhood. Partials a and b would also survive, but 
partials c and d would die as they each have less than two 
partials in their respective neighbourhoods. 

2.2.  Technical Implementation 

SpectralConway was originally written in Javascript for 
Max/MSP [11], and has since been hard-coded as a C 
external object for greater efficiency. Our object does not 
analyse the audio input, this is performed by other objects: 
it has been positively tested with fiddle~ [9] and sigmund~ 
[10] and FTM/Gabor gbr.peaks [13]. SpectralConway 
receives the resultant input as list of partials 
(frequency/amplitude pairs) and places them as cells in an 
array of fixed size (the “world”): 32 cells is the default but 
this can be changed at instantiation time. Our object also 
does not deal with audio synthesis, but again outputs a list 
of the living partials’ pitch and amplitude to be re-
synthesised. By reducing the processing to the control data 
only, we both reduce the CPU load for the object, and open 
up possibilities for enhanced reusability/adaptability of the 
idea. 

The system's initial state is with all cells dead, and the 
list of incoming partials are systematically declared as live 
cells. The CA rules—the maximum and minimum living 
neighbour count required to stay alive—are preset to the 
standard GoL rules as described above, and the 
neighbourhood's defining pitch-interval is set to an octave 
(12) as default: these three parameters can be altered in 
real-time with Max messages sent to the instance.  

A 'seeding' mechanism takes each incoming cell (as a 
list of frequency/amplitude pairs) and places it in the array, 
replacing the nearest dead cell; if there are no more dead 
cells then the array is full and the input is discarded. An 
'evolve' message applies the CA rules to all the current 
cells. A 'play' message outputs the list of live cells as 
frequency/amplitude pairs for synthesis purposes.  

The 'seeding', 'evolve' and 'play' mechanisms are all 
triggered by external messages, and are independent to 
allow for separate control: this means that the evolution of 
the CA is not tied to the rate of incoming partials. For 
example, in the Whitewater implementation, the rate of 
evolution is controlled by an external signal, so that even if 
there is no new seeding of the world, the evolution of the 
spectrum continues. 
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Figure 2. SpectralConway distance-based neighbourhood. 
 

2.3.  Some Consequences of Continuum-based 
Approach 

In the example from section 2.1, SpectralConway appears 
to behave largely as a grid-based CA would, but there are 
consequences to using this continuum-based approach that, 
while not relevant to our implementation, are worth briefly 
examining. As SpectralConway uses partials represented 
as floating-point frequency values, there is the possibility 
of a very large number of partials being present in a given 
interval-defined neighbourhood, as opposed to a maximum 
of eight possible adjacent neighbours on a square grid. In 
our implementation (see section 2.2), we circumvent this 
potential problem by using an array of fixed size, thus 
limiting the amount of possible neighbours. This 
effectively creates a grid of dynamically changing scale 
without needing to quantise frequency values. 

Also, for our purposes, the possibility of large numbers 
of neighbours is not relevant because the GoL rules are 
only concerned with neighbourhoods of a finite range of 
“cells”; numbers outside this range mean death regardless 
of size. But it has considerable scope for development in 
contexts with higher numbers of partials, and allows for 
the development of rule sets specific to SpectralConway, 

This continuum-based approach we have adopted means 
that SpectralConway is not quite a Cellular Automata (it 
has no cells), but our implementation behaves like a CA 
because of the way it has been implemented with a fixed 
array size, and by being based on population-density rules. 
However, on the level of analogy, SpectralConway also 
has some of the characteristics of a Continuous Spatial 
Automata (CSA), described by MacLennan as, “analogous 
to a cellular automaton, except that the cells form a 
continuum, as do the possible states of the cells.” [6] 

SpectralConway’s shares with the CSA the possibility 
of defining the neighbourhood as a radius, but does not 
share the continuous state aspect as the partials in 
SpectralConway have binary states (alive or dead). Also, 
as far as we are aware, there are no musical 
implementations of CSA. 

We believe that SpectralConway is a unique approach 
to the implementation of CA in music and opens up 
considerable possibilities for creative development. 

3. ASSESSMENT 

What fascinated us originally about the graphical CA was 
how its patterns were created and evolved: that there was a 
lifelike quality to their spontaneous variations and 
transformations. CA evolution tends towards three possible 
states: 'extinction', where all the cells are dead; 'chaos', 
where cell states change constantly and there are no 
perceivable patterns; 'life', where there are varying levels 
of activity and perceivable patterns. SpectralConway 
achieves an audio analogue of this in that the spectral 
content of the live input undergoes spontaneous and 
unpredictable variation, as well as crossbreeding with 
previous live input material that is still in the world. 

For Whitewater, we implemented SpectralConway to fit 
with a specific musical language: for example, the piece 
takes advantage of the Game of Life rules' tendency 
towards settling into patterns of stable periodic oscillators 
('blinkers'). The CA process acts like a filter on the 
incoming multiphonic so that some frequencies die off and 
others persist, often becoming locked into ostinati. The 
relationship between the graphical CA, which was the 
initial inspiration for the piece, and resultant sound is quite 
clear: the patterns and blinkers visible on the graphical CA 
become patterns of oscillating pitches in SpectralConway. 
The instrumental player has the choice of interacting with 
the resultant pitches or re-seeding the world with a new 
multiphonic. 

SpectralConway, and CA in general, have some musical 
limitations. The piece Whitewater addresses the problem 
that the initial list of partials will be the only cells available 
in the world, therefore allowing very limited possibilities 
for evolution. The Whitewater patch addresses this in two 
ways2:  

(1) By performing three analyses of the live input per 
attack, staggered at short intervals (each attack from the 
live player sends three time-staggered sets of inputs into 
SpectralConway) the world is 'super-seeded'. This allows 

                                                           
2 The following ideas are not part of the SpectralConway algorithm, 

but help to enhance its perception in the piece. 

70



for subtle variation in the frequencies, which alters the 
inner motion of the sound. 

(2) To increase the available frequency-space for 
mutation and cell redefinition that would enrich the 
Whitewater world, we have introduced another form of 
‘super-seeding’ wherein frequencies not present in the 
initial sound are added to the seed list after a delay. These 
frequencies are the combination tones between the most 
prominent recent frequency and the frequencies already in 
the seed list. These extra frequencies increase the potential 
richness of the sound and the possibilities for mutation; 
generation of harmony not present in the input sound. 

4. FUTURE DEVELOPMENTS 

The next step is to release SpectralConway publicly with 
the present paper. At present, SpectralConway is used in 
very different ways in the authors' pieces Whitewater and 
Sandbox#2 [15] but we welcome other user’s perspective 
on this approach. 

We would also like to consider other approaches to 
mapping the frequency continuum, such as using spectral 
identity: each partial would be tested against integer 
multiples/divisors, with wider neighbourhoods going 
further up and down the spectra. Each different mapping 
has different consequences for the musical outcomes. 

Finally, we would like to bring back the idea of discrete, 
floating cell boundary definition in CA back to the visual 
world, in a swarm-like agent interaction. 

We hope that with this paper and the release of the Max 
object, other people will take this rich spectral 
implementation of Conway's Game of Life and find their 
own creative application for it.  
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