
Interval Methods for Kinetic Simulations

Leonidas J. Guibas∗ Menelaos I. Karavelas∗

Graphics Lab., Computer Science Dept., Stanford University

Stanford, CA 94305, U.S.A.

{guibas, karavelas}@cs.stanford.edu

Abstract

We propose a speed-up method for discrete-event simula-
tions, including sweep-line or -plane techniques, requiring
the repeated calculation of the times at which certain dis-
crete events occur. Instead of calculating these event times
precisely, we use interval methods to obtain less expensive
approximations that may still be adequate for the simula-
tion. This can happen because some events get descheduled
before they actually happen, or because event time com-
parisons can be resolved using only information about their
bounding intervals. The computed intervals are refined as
necessary, when greater accuracy is needed. For geometric
objects described by polynomials, including moving objects
on polynomial trajectories, the proposed method is shown
to give a speed-up roughly proportional to the degree of the
polynomials.

1 Introduction

Discrete-event simulation is commonly used by geometric
algorithms to solve a variety of problems, in both the static
and kinetic settings. Many classic geometric algorithms are
of the sweep-line type (or sweep-plane, etc, in higher dimen-
sions), in which a sweep is used to reduce a static problem in
a given dimension to a dynamic problem in one less dimen-
sion. A sweep algorithm typically maintains an event queue,
where the event times are the moments when the sweep line
needs to stop and perform updates to the data structures it
maintains, including the event queue itself. A famous classic
example of such an algorithm is the Bentley-Ottmann line-
sweep algorithm [3] for detecting all intersections among a
set of line segments in the plane. All kinetic data structures
(KDSs) [2, 4], which are data structures aimed at dealing
with geometric objects in motion, are also based on an event
queue, where the event times are certificate failures associ-
ated with the proof of correctness of a computation of the
KDS attribute of interest. When a certificate fails, the proof,

∗Work by the authors is supported by National Science Foundation
grant CCR-9623851 and by U.S. Army Research Office MURI grant
DAAH04-96-1-0007, and by a grant from the U.S.-Israeli Binational
Science Foundation.

and with it the event queue, needs to be updated. In both
cases a priority queue on event times is maintained and the
algorithm repeatedly advances the clock to the next event
and updates the queue. We will refer to both of these sce-
narios as kinetic simulations, because they involve the con-
tinuous evolution of a system punctuated by discrete events.

The calculation of an event time is frequently a non-
trivial computational task. For example, it may involve
computing the intersection of three-surfaces in the sweep-
plane case, or the time when moving points become coplanar
or co-spherical, in the kinetic case. The cost of such compu-
tations cannot always be justified in terms of the final result
that needs to be computed. For example, almost all kinetic
simulations involve the de-scheduling of events — these are
events that will not happen because the associated certifi-
cates were removed from the proof, and the computational
resources that went into their event-time calculation will be
wasted. In general, of course, it is hard to know, at the time
an event is scheduled, that it will be de-scheduled at some
future time in the kinetic simulation. Moreover, in many
sweep and kinetic problems the exact time when events hap-
pen may not be needed, as long as we can guarantee that the
correct sequence of events will be generated. This is exactly
the case in the classic Bentley-Ottmann sweep, where the
output is a purely combinatorial list of intersecting pairs of
segments.

The goal of this paper is to present an approach to re-
ducing the cost of event-time calculations in kinetic simula-
tions, through the use of interval methods, akin to interval
arithmetic [1]. Instead of exact event times, we will focus
on time intervals guaranteed to contain one or more events.
The key intuition is that we do not need to know very pre-
cisely events scheduled to happen far into the future. We
want to devote computational resources to refining the in-
tervals associated with these events only as they get closer
to the present time in the simulation. By using intervals
for all event-queue operations as well, we are often able to
resolve comparisons between event times without further re-
finement of the associated intervals. The result is that we
are able to generate the correct sequence of events for the
kinetic simulation, but at a substantial savings in the cost
of the event-time calculations.

To realize and evaluate experimentally this idea, we con-
centrate in this paper on events whose event times can be
calculated by solving polynomial equations. Since almost
without exception kinetic certificates are low degree polyno-
mial functions of attributes (e.g., positions) of a small num-
ber of the moving bodies (e.g. the CCW or InCircle tests),
this restriction covers the case where the motions themselves

are polynomial (in the sweep case an equivalent condition
is that the curves or surfaces involved are polynomial func-
tions). Polynomials are an attractive class of functions to
consider, because efficient root isolation methods for them
have been well studied. We specifically make use of the
technique of standard sequences to determine intervals con-
taining the roots (event times) of interest. Furthermore,
more general functions can often be well approximated by
polynomials in certain ranges (e.g., Taylor expansions). Our
techniques can be extended to this case by including addi-
tional certificates whose failure indicates that a particular
approximation is invalid and a new polynomial approxima-
tion needs to be generated.

The remaining sections of the paper are as follows. In
Section 2 the overall framework of a kinetic simulation is
described in more detail. In Section 3 we present the al-
gebraic and analytic tools used to develop our algorithm,
i.e., we present the notion of standard sequences, as well
as Sturm’s and Bolzano’s theorems. Then in Section 4 we
present the details of the interval-based kinetic scheduler,
including the refinement and update policies for intervals
isolating polynomial roots, and the priority queue mainte-
nance using intervals as opposed to exact event times. In
Section 5 we provide an informal theoretical justification of
the advantages of our approach. In Section 6 we provide
a framework for comparing the interval and ordinary sched-
ulers and present empirical data on the superiority of the in-
terval approach. In Section 7 we discuss a trade-off between
degree and number of pieces for splined motion trajecto-
ries. Finally we conclude in Section 8 with some additional
remarks and plans for further work.

2 Kinetic Simulations

The inner loop of a kinetic simulation is the maintenance of
the associated event queue. The entries of the event queue
are the future failure times of the certificates currently in
the kinetic proof — we will call these the active certificates.
At each step of the kinetic simulation the next certificate
to fail is obtained from the priority queue and the kinetic
proof is updated to accommodate the altered state of the
world. As a result, typically a number of active certificates
leave the proof (and event queue) and a number of other
new certificates enter the proof and become active. In a
well-designed KDS the number of certificate deletions and
insertions per certificate failure is small (this is the concept
of a responsive KDS [4]).

Each certificate is typically a simple algebraic inequality
on the positions/poses of a small number of features of the
moving objects. In fact, in most kinetic simulations only
a small number of different types of certificates are ever
used (for example, a kinetic Voronoi/Delaunay simulation
for point sites can be done using only the InCircle test).

The above considerations motivate the following formu-
lation of the problem: let S be a set of polynomials {f1(t),
f2(t), . . .,fk(t)} (corresponding to the certificates in the KDS),
the real roots of which represent possible events in our sim-
ulation. There is a notion of a current time t0 and we are
interested in quickly finding the time t1, which is the small-
est root of any of the fi greater that t0. Then we perform
some changes in the set S and advance in time by setting
t0 ← t1.

The naive solution to this problem is the following: for
each polynomial fi compute all its roots to the required pre-
cision, discard those that are complex and insert its smallest
real root greater than the current time into the event queue

(we can think of the event queue as a priority queue im-
plemented using a heap). Some methods for computing the
roots of a polynomial are the Jenkins/Traub method [6],
the eigenvalue method [13, 11] in which we construct the
companion matrix of the polynomial and compute its eigen-
values, Muller’s and Laguerre’s methods [11] and a more re-
cent method by Lang and Frenzel [9]. Among these methods
the last one, although very accurate for high degree poly-
nomials, is rather expensive. Muller’s, Laguerre’s and the
Jenkins/Traub methods, however, are not stable enough for
polynomials of degree greater than 60 or so. Thus we de-
cided to adopt the eigenvalue method for both our theoret-
ical analysis as well as the implementation of the KDS. As
already mentioned, our goal is to avoid spending resources
in computing real roots that correspond to events that may
never happen, or complex roots that are of no interest for
our simulation. In addition, we want to compute the real
roots of the polynomials only to such accuracy as required
to resolve root comparisons and determine which polyno-
mial among the two being compared has the earliest failure
time.

The approach that we employ in this work is to use the
standard sequence [5] of a polynomial f in the queue to main-
tain an ordered list of intervals that contain and isolate its
real roots. The leftmost among these intervals is the one
that represents the certificate for f in the priority queue.
The comparison of two polynomials in the queue is done
by comparing the intervals and splitting them as necessary.
This process of resolving comparisons, as well as the forward
stepping in time related to the update of the current time
t0, cause us to refine these interval lists and obtain tighter
bounds on the roots of the polynomials.

The main advantages of this approach are as follows.
First of all, operations on the interval list are only performed
when needed, that is when the information obtained so far
about the roots is not sufficient to resolve root comparisons,
and thus to determine the relative priority of the two poly-
nomials in the queue. These operations are focussed on the
smallest root of each polynomial, rather than all the roots
at the same time, thus avoiding spending computation time
on possible events that may eventually not happen. More-
over, if we were to use a symbolic algebra system for per-
forming computations, then our algorithm could be imple-
mented with exact operations — unlike the naive method
which must always resort to numerical techniques.

3 Mathematical Preliminaries

Let y = {y1, y2, . . . , ym} be a finite sequence of non-zero
numbers. We define the number of variations in sign of y
to be the number of indices i, 1 ≤ i ≤ m − 1, such that
yiyi+1 < 0. If y = {y1, y2, . . . , ym} is an arbitrary sequence
of numbers, then we define the number of variations in sign
of y to be that of the subsequence y′ obtained by dropping
the zeros in y. For the example the number of sign variations
of {4.5, 0, 0, 0.5,−1.3, 0, 10−30, 4,−200} is 3.

Let now f(x) be a polynomial of positive degree with
real coefficients. Then the sequence of polynomials {f0(x),

f1(x), . . ., fs(x)} defined by repeated division as:

f0(x) = f(x) (1)

f1(x) = f ′(x) (2)

f0(x) = q1(x)f1(x)− f2(x) (3)

...

fi−1(x) = qi(x)fi(x)− fi+1(x) (4)

...

fs−1(x) = qs(x)fs(x) (i.e., fs+1 = 0), (5)

where the degrees of the fi monotonically decrease, is called
the standard sequence for f(x) [5]. As it can easily be ver-
ified, the fi(x), i ≥ 2 are obtained by modifying Euclid’s
algorithm for finding the g.c.d. of f(x) and f ′(x) in such a
way that the last polynomial obtained at each stage is the
negative of the remainder1 in the division process:

fi+1(x) = −fi−1(x) mod fi(x), i = 1, . . . , s− 1. (6)

In view of the above, fs(x) is the g.c.d. of f(x) and f ′(x).
In particular, if fs(x) is a constant polynomial then f(x)
has no multiple roots. Moreover, if fs(x) is not a constant
polynomial, then if gi(x) = fi(x)/fs(x), 0 ≤ i ≤ s, then
g0(x) has the same roots as f(x), but now all the roots of
g0(x) are simple. Moreover the sequence {gi(x)}si=0 is the
standard sequence for g0(x).

Using the notion of standard sequences just described
we are ready to state Sturm’s theorem, which addresses the
problem of counting the number of real roots of a polynomial
in an interval of the real line:

STURM’S THEOREM
2. Let f(x) be a polynomial of

positive degree with real coefficients and let {f0(x) = f(x),
f1(x) = f ′(x),. . ., fs(x)} be the standard sequence for f(x).
Assume [a, b] is an interval of the real line such that f(a) 6=
0, f(b) 6= 0. Then the number of distinct real roots of f(x)
in (a, b) is Va−Vb where Vc denotes the number of variations
in sign of {f0(c), f1(c), . . . , fs(c)}.

It is shown in [14] that the roots of p(x) = anxn +
an−1x

n−1 + . . . + a1x + a0 lie in [−α, α], where

α = 1 +
max{|an−1|, . . . , |a0|}

|an|
. (7)

Hence, if µ = α + ε (for some ε > 0) and {p0(x) = p(x),
p1(x) = p′(x),. . ., ps(x)} is the standard sequence of p(x),
then the total number of distinct real roots of p(x) is V−µ−
Vµ, where, as before, Vc is the number of variations in sign
of {p0(c), p1(c), . . . , ps(c)}.

Another very well-known theorem that will be of use is
Bolzano’s theorem:

BOLZANO’S THEOREM. Let f(x) be a continuous real
valued function in the interval [a, b], and assume that f(a)
and f(b) have opposite signs, i.e., f(a)f(b) < 0. Then there
is at least one c in the open interval (a, b) such that f(c) = 0.

1An algorithm for finding such division remainders for two poly-
nomials with real coefficients can be found in [8].

2Sturm’s theorem holds true for polynomials with coefficients in
any real closed field R. The statement of the theorem that we present
deals only with the case of real coefficients (see [5] for the generic
statement).

Based on the above two theorems we can define the two
primitives we will use, Tf (a, b) and Sf,N (a, b). The primi-
tive Tf (a, b) counts the number of distinct real roots of the
polynomial f(x) in (a, b), provided that f(a)f(b) 6= 0. The
primitive Sf,N (a, b) gives the number of (distinct) real roots
of f(x) in (a, b) provided that f(a)f(b) 6= 0 and that the
number of real roots of f(x) in (a, b) does not exceed N .

The purpose of introducing the second primitive is that if
we know that N = 1 and that f(x) has only simple roots, if
any, in (a, b), then we can determine the number of real roots
of f(x) in (a, b) by simply checking whether f(a)f(b) < 0
or not. This test is much cheaper, especially for high de-
gree polynomials, than the one suggested by Sturm’s The-
orem. Note that if f(x) has only simple roots in (a, b) and
degf(x) ≥ 2, then Tf (a, b) is equivalent to Sf,N (a, b) for
N = degf(x).

Finally, given two polynomials f(x) and g(x) and an in-
terval [a, b] we can determine, using the above machinery,
whether they have a common real root in [a, b]. This can be
done by computing the g.c.d. h of f and g, and then using
the above mentioned predicates to determine if h has a real
root in [a, b].

4 The Interval-based Kinetic Scheduler

In order to reduce the cost of event time calculations in the
event queue, we keep intervals that contain one or several
of those event times. This choice enables us to avoid wast-
ing computing resources when the comparison between two
event times can be resolved by considering their correspond-
ing intervals. Moreover, by our approach, we avoid spending
computing time on events that are scheduled to happen in
the future, and which may be de-scheduled before their time
of occurrence (e.g., because the “flight” plans of the objects
in the kinetic simulation have changed in the meantime, or
because of other changes in the kinetic proof). By using
intervals we are able to focus only on the first event time
associated with a certain certificate that is greater than the
current time; computations that have to do the remaining
event times related to the certificate in question are post-
poned until later, when they are actually needed. Clearly,
the better estimates we have for our event times, the easier
the comparisons are. For this purpose, if during the process
of comparing event times based on their interval represen-
tation we get finer bounds on these times we store and use
these to facilitate other comparisons that are performed dur-
ing the process of updating the event queue.

Let f(x) be a polynomial that represents one of the cer-
tificates in our kinetic simulation. With each such polyno-
mial we associate an ordered interval list (a1, b1), . . ., (am,
bm) such that bi ≤ ai+1, i = 1, . . . , m−1, f(ai)f(bi) 6= 0 and
Tf (ai, bi) > 0, i = 1, . . . , m. All real roots of f(x) greater
than the current time tc are contained in one of these inter-
vals (initially the list consists of a single interval containing
all the real roots of f(x)). Suppose now that we want to de-
termine, among two polynomials p(x) and q(x), which is the
one that corresponds to the earliest event time, i.e., which
is the one that has the smallest real root (greater than tc).
We can also think of these event times as the priorities of
p(x) and q(x) in the event queue; the question, therefore, is
which, among p(x) and q(x), has the greater priority. Let
(a, b) and (c, d) be the leftmost intervals in the lists of p(x)
and q(x), respectively. We can assume that the roots of these
polynomials are simple, since otherwise we can replace the
polynomials, as described in the previous section, with oth-
ers that have only simple roots. Without loss of generality

we can also assume that a ≤ c (otherwise we can interchange
the roles of p(x) and q(x)). The procedure that we follow
to determine the relative priority of p(x) and q(x) is the fol-
lowing (note that we test a condition only if all the previous
ones have failed) :

1. if b ≤ c then the smallest root of p(x) will be smaller
than the smallest root of q(x), and thus p(x)’s priority
will be greater than that of q(x).

2. if p(x) has any roots in (a, c] then priority(p(x)) >
priority(q(x)).

3. if b ≤ d and q(x) has all its roots in [b, d), then the
priority of p(x) is greater than that of q(x).

4. if b > d and all the roots of p(x) are in [d, b), then
priority(p(x)) < priority(q(x)).

5. if both polynomials have some of their roots in the
interval (c, k), where k = min{b, d}, then we need to
employ a subdivision-like approach: we split (c, k) in
the middle and check if the real roots of p(x) and q(x)
are distributed in such a way in the two resulting in-
tervals that we can directly determine their relative
priority (e.g., if p(x) has roots in (c, c+k

2
) and q(x)

does not then priority(p(x)) > priority(q(x))). We re-
cursively continue this subdivision process until we can
determine which of the two polynomials has higher pri-
ority.

If the smallest roots of the two polynomials are not the same
then the subdivision procedure terminates; on the other
hand if they share that root then something else has to be
done. What we do is the following test: if the two polynomi-
als have only one root in the interval of interest we check to
see if that root is a common one. To do so we compute their
g.c.d. and check if it has a root in the interval of interest.
The natural question that arises is how we can be sure that
the polynomials will have only one root in that interval.

At various points during the algorithm an interval (α, γ),
associated with a polynomial f(x), needs to be split in two
parts (α, β) and (β, γ). If f(β) 6= 0, and f(x) has roots in
both intervals then we replace (α, γ) with (α, β) and (β, γ).
If only one of the two intervals contains roots of f(x) then
we simply update the corresponding endpoint. If f(β) = 0,
then find a point β′ to the left or to the right of β, such that
f(β′) 6= 0 and do the splitting using that point. Since we
have to do these interval splits anyway in order to determine
the relative priority of the two polynomials we basically get
for free better bounds on the roots of both polynomials.
However, these better approximations of the roots are only
computed when the information obtained so far is not suf-
ficient to determine which polynomial is of higher priority.
Moreover, splitting the intervals results in interval lists that
will eventually contain only a single real root of the polyno-
mial in question, which is important for determining if two
polynomials have a common real root.

So far we did not properly take into account that we have
a current time tc and that we are interested only in real roots
larger than that time. In addition, this current time is repre-
sented as the root of a polynomial c(x). Therefore we do not
know it exactly, but rather we have an interval (αc, βc) in
which it lies. This interval is the first interval in the interval
list associated with c(x). We can actually assume that the
current time is the only root of the associated polynomial in
that interval, since otherwise we can use the midpoint of the
interval to split it; we can continue this recursively until we

get a list in which the first interval contains only one root,
which is going to be tc. To take account of this fact, the
interval list of a polynomial p(x) needs some preprocessing
which has to do with discarding the roots that are smaller
than tc. This procedure is as follows:

1. discard all of the intervals (ai, bi) such that bi ≤ αc (if
any) and then renumber the remaining ones.

2. if βc ≤ a1 there is nothing more to be done: we have
already kept all those roots that are greater than tc.

3. if βc > a1, we check if tc is in (αc, a1]; in that case we
simply update our bounds for tc.

4. if b1 ≤ βc then

(a) if tc is in [b1, βc), then delete (a1, b1), update αc,
and proceed in the same manner with the new
(a1, b1).

(b) if tc is not in [b1, βc), then it has to be in (r, b1),
where r = max{a1, αc}, in which case we update
the bounds for tc and employ the subdivision ap-
proach in (r, b1).

5. if b1 > βc and p(t) has at least one root in (r, βc], where
r is defined as above, then we employ the subdivision
approach in (r, βc].

A similar pruning approach can be applied when we want
to run the simulation up to a time Tmax, where Tmax is
assumed not to be an event time. In that case we discard of
all the intervals (ak, bk) such that Tmax ≤ ak. Let (a`, b`) be
the last interval in the list; clearly, a` < Tmax. If b` ≤ Tmax

then we do nothing; otherwise, we just replace (a`, b`) with
(a`, Tmax), if (a`, Tmax) contains any roots of the associated
polynomial, or discard it altogether.

On several occasions we have talked about determining
whether a polynomial f(x) has real roots in a certain interval
(ai, bi) or about how many roots there are. The primitive
that we can use in these cases is Tf (ai, bi), the most generic
one among the two we introduced in the previous section.
There are instances, however, where we can do better. If we
store the number ni of real roots of the interval (ai, bi), then
we can use the primitive Sf,ni

(c, d), whenever ai ≤ c ≤ d ≤
bi, which is always the case when we split intervals. This
way we can take advantage of the very simple test that the
primitive S incorporates if ni = 1 and f(x) has simple roots
in (ai, bi).

5 A Theoretical Justification

In this section we present a very simple model for the distri-
bution of the event times and perform a worst-case analysis
for two methods: our interval-based approach and a method
which computes all roots of the certificate polynomials by
computing the eigenvalues of the corresponding companion
matrix.

In particular, let s be the number of active polynomi-
als and let us assume that each polynomial has d real roots
which are random i.i.d. variables in [0, Tmax], where Tmax

is the time until when we run our kinetic simulation. Let
also m be the total number of KDS events occurring dur-
ing the simulation, and assume that at each event k old
certificates (polynomials) leave the event queue and k new
certificates enter the queue. Then the expected separation
between the event times, i.e., the roots of the polynomials
is Tmax

ds
, whereas the expected separation between roots of

the same polynomial is Tmax

d
. We will also assume that the

event queue is implemented using a heap-like structure, so
that insertions and deletions in the queue take logarithmic
time in the queue size.

The cost of the eigenvalue method is O(d2K) where K
is the number of iterations performed [13]. In particular, if
we want to compute the eigenvalues with accuracy equal to
ε, then

K = O(
log ε

log max1≤i≤d−1
|λi+1|

|λi|

) (8)

where λi are the roots of the polynomial satisfying |λi+1| ≤
|λi|, 1 ≤ i ≤ d−1. In our case we can assume that λi ≥ 0, ∀i
(the roots represent time values). In view of our assumption
that the roots are evenly distributed and that their distance
is Tmax

d
in expectation, we get that

max
1≤i≤d−1

|λi+1|
|λi|

≤ d− 1

d
≤ d

d + 1
(9)

which implies that

K = O(
log ε

log d
d+1

) = O(d log
1

ε
) (10)

Since the roots are expected to be Tmax

ds
apart from each

other, we only need an accuracy ε = Θ(Tmax

ds
) which implies

that
K = O(d(log d + log s)) (11)

Hence, the total cost per event using the eigenvalue method
is O(kd3(log d + log s)).

Consider now the interval-based method. This method
needs O(log ds) steps to resolve the comparison between two
polynomials (because of the subdivision-like approach that
we employ) and at each step the cost isO(d2) (this is the cost
to compute the predicates Tf (a, b) or Sf,N (a, b)). Therefore
the total cost per event is O(kd2(log d + log s)), which is a
factor of d better than that of the eigenvalue method. As
we will see in the next section the numerical experiments
support the above theoretical calculation.

6 Numerical Experiments

We implemented the algorithm that was described in Section
4 for two KDSs: one for maintaining the Delaunay triangu-
lation (DT) and one maintaining the closest pair (CP) of a
set of points moving on the plane. The points are moving
on trajectories of the form (x(t), y(t)) where both x(t) and
y(t) are polynomials of degree d. The coefficients of these
polynomials are chosen uniformly from [−1, 1], except their
constant term which is chosen uniformly from [0, 1]. In the
case of the DT the certificates correspond to InCircle tests
of quadruples of points, hence the degree of the certificates is
at most 4d. In the case of the CP the certificates are polyno-
mials of degree 2d or d, that corresponding to comparisons of
squared distances for points in the plane or to comparisons
of the projections of points along certain (fixed) directions.
The details for the certificates for both simulations can be
found in [2].

In our examples the number n of moving points is be-
tween 10 and 20, whereas the degree d of their motion varies
from 2 to 40 in the DT simulation, and from 2 to 80 in the
CP simulation. For every pair (n, d) we computed the run-
ning times using three different approaches:

(a) the “naive” method, in which we compute all the roots
of a polynomial, throw away those that are complex,
and use the real ones to resolve the event time com-
parisons; the roots of a polynomial are computed by
constructing the companion matrix and computing its
eigenvalues [11, 13],

(b) the interval-based approach that we have already de-
scribed, and

(c) a hybrid method, in which we isolate the real roots
of the polynomial using the predicates Tf (a, b) and
Sf,N (a, b) and then use a standard root finding tech-
nique, like the bisection method [11], to compute the
root of the polynomial in each interval.

For each pair (n, d) we started with 10 different initial
configurations of points. The experiments were performed
on an SGI workstation using an R10000/195 MHz processor.

What we can see from the results, as shown in Figures
1 and 2, is that the eigenvalue method in the DT case, is
superior for motion degrees up to 6, whereas for the CP
case it is superior for motion degrees up to 13. This should
be attributed to the overhead of the interval method due to
the evaluation of the standard sequence for each polynomial.
However for certificates of higher degree the interval-based
method is superior to the eigenvalue method. In fact the
data shows that we gain a speed-up factor of order d, where
d is the degree of the motion, independently of n. The same
can be observed when comparing the eigenvalue and the
hybrid methods. The hybrid method, however seems to be
a constant factor worse that the interval-based method; this
can be attributed to two facts: first of all, the hybrid method
computes all the real roots of each certificate and not only
those that are after the current time; secondly, the roots
are computed to greater accuracy than needed in order to
resolve the comparisons in the priority queue.

7 Degree vs. events

The cost of a kinetic simulation is an increasing function of
the algebraic degree of the motions — more complex motions
imply more time-consuming event-time calculations. At the
same time, this cost is also an increasing function of the
number of events that have to be processed. In this section
we consider a trade-off between these two costs. By approx-
imating a high-degree motion by a sequence of lower-degree
motions, we can reduce the cost of event-time calculations,
while at the same time adding the cost of processing the
flight plan updates that must happen at motion segment
boundaries. We can actually view this issue backwards as
well: if we approximate splined polynomial motions with
single polynomials of high degree, then we eliminate events
that have to do with flight plan updates, but at the same
time we increase the cost of processing the simulation events.
Of course kinetic simulations are chaotic systems and there
is absolutely no guarantee that the approximated system
will have the same sequence of events as the original. Never-
theless, according to our experience, approximations such as
the above do preserve the overall character of the simulation
as well as various global statistics, and thus are meaningful
and useful under certain circumstances.

To examine this trade-off, consider n points moving each
along a single parametric polynomial trajectory of degree
dH . We approximate the motion of the points, with mo-
tions of lower degree dL, dL < dH in the following manner:
we densely sample each higher order trajectory and then

perform a constrained least squares fit to the sampled data.
The number of time samples is equal to m and these are
uniformly distributed in the time interval of interest; we
will discuss the choice of m in the sequel. We impose the
constraint that the original and the approximating motions
must coincide at the endpoints of each of the time inter-
vals of the approximation (we need to maintain at least C0

continuity for the splined motion). The interval of approxi-
mation is initially the entire time interval for which we run
our simulation. We obtain a measure of closeness between
the original and approximating trajectories by combining
the distances between corresponding points on the two tra-
jectories at each of the sampled times using the L∞-norm.
If this closeness measure fails to be below some prespecified
threshold value, then we split the interval of approximation
at the sample time of maximum error and recursively repeat
the approximation procedure for the two subintervals. The
cost of each approximation step is Θ(md2

L), dominated by
the constrained least squares calculation. The number of
times we need to repeat the process will be analyzed below.

In our setting, we want to compute a polynomial segment
of degree dL that approximates a segment of degree dH to
within an error ε in the L∞-norm (or split the interval if that
is not possible). We accept a single segment only when we
can establish that it meets this criterion. Peetre [10] shows
that the error introduced by doing a discrete instead of a
uniform polynomial approximation is O(1/m2), where m is
the number of points used to perform the discrete approxi-
mation. Since we calculate the L∞-norm over a discrete set
of m sampled time values, we choose3 m = 10/

√
ε so as to

guarantee via Peetre a maximum error of ε/2 between the
discrete and uniform norms. We also make the threshold
discussed in the previous paragraph to be ε/2. In this way
a low degree segment is accepted only when it is known to
be within ε of the original in the L∞-norm.

When we approximate a polynomial of degree dH with
one of degree dL < dH , over the interval [0, t], the error
of the approximation is of order O(tr), where r = dL + 1.
Since we want this error to be at most ε, we require that
t = O(1/ε1/r). From this estimate for t we see that the
number of low degree polynomial pieces required to approx-
imate the original curve in our simulation will roughly be
O(Tmax/ε1/r), where Tmax is the stop time of the simula-
tion.

The cost of the kinetic simulation, in the model above,
is of two types:

1. the cost of resolving comparisons between certificates
that have to do with the maintenance of the geometric
attribute of interest, and

2. the cost of approximating and updating the trajecto-
ries of the moving points.

The first part of the cost is assumed to be equal to the
product of the number of events nev scheduled and desched-
uled in the priority queue due to the changes in the geomet-
ric attribute of interest, times the mean cost of resolving a
comparison between event-times. We saw in Section 5 that
this cost is O(d2 log(ds)), where d is the degree of the cer-
tificates and s is the size of the priority queue. Since the
degree of the certificates is typically a constant multiple of
the degree of the motion, the total cost due to the mainte-
nance of the geometric attribute is O(nevd2

L log(dLs)). The

3The constant 10 here was chosen arbitrarily. The correct constant
can be estimated if we have a priori knowledge of the maximum
acceleration of the particles.

second part of the cost has to do with the scheduling and
descheduling of events that correspond to changes in the mo-
tion, as well as the cost to approximate the original motion
with one of lower degree. The cost for these priority queue
updates is O(log s), yielding a total cost of O(nmc[log s +
d2

L/
√

ε]) for this second part, where nmc is the number of
events associated with the motion changes. Following the
analysis in the previous paragraph, nmc = Θ(n Tmax/ε1/r),
where r = dL + 1; thus, the total cost for our simulation is
O(nevd2

L log(dLs) + n Tmax [log s + d2
L/
√

ε]/ε1/r). In many
KDSs the size of the proof to be maintained is linear with
respect to the number of objects in the simulation, there-
fore s is taken to be equal to the number of points n. The
expression for the total cost of the simulation then becomes
O(nevd2

L log(dLn) + n Tmax [log n + d2
L/
√

ε]/ε1/r).
Assuming that the approximation is accurate enough,

the number of events nev is only a function of dH . Under this
assumption, and for fixed ε, it is clear that as dL decreases,
we expect the cost of updating the geometric attribute to
decrease and the remaining cost to increase. However, the
remaining cost consists of two different parts which behave
differently as dL changes. In particular, for small dL, since
we have a lot of low degree polynomials, the cost of up-
dating the event queue is large; for large dL, the cost of
the approximation dominates. Moreover, we can expect a
monotone increase in the cost of the simulation as the error
ε decreases.

In order to examine the validity of the above analysis we
considered n = 5 moving points at 10 initial random posi-
tions. The geometric attribute that we want to maintain in
this experiment is the Delaunay triangulation of the points.
The degree of their original trajectory is dH = 32 and the
degrees dL of the approximate trajectories vary from 30 to 2.
The stop time for the simulations is Tmax = 1. Our earlier
assumptions hold true, namely that the degree of the certifi-
cates d is a constant multiple of the degree of the motion dH

or dL and that the size of the priority queue s is linear in the
number of points n. Figure 3 depicts the average running
times as a function of the degree of the motion dL for several
errors ε. The square corresponds to the simulation where
the original trajectory is used. The interval-based approach
described in this paper was used to do the simulations.

The main observations are the following :

1. The cost of the simulation increases monotonically as
we increase the accuracy. This is in agreement with
our model.

2. For fixed accuracy and for decreasing dL, the cost of
the simulation at first decreases, reaches a minimum
and then increases. Initially the cost of the simulation
is dominated by the cost of computing the approxi-
mating motions (due to their large degree); as the de-
gree dL decreases further, the number of curve pieces
needed for the approximation starts to go up and the
cost now is dominated by the updates of the motion
in the event queue. This, again, is a behavior con-
sistent with the model presented above. The bumps
appearing in the graphs should be attributed to the
changes in the combinatorial structure of the simula-
tion and the fact that the point where we perform the
split in our recursive subdivision of the approximation
intervals may not be exactly optimal.

3. The degree of minimal total cost, when we do the ap-
proximation, increases as the accuracy increases. Fur-
thermore, for low accuracy, this minimal cost is smaller

than the cost when we do not approximate at all, while
for high accuracy this optimal cost is higher than the
original. This can also be explained by our model since
the cost of the approximation increases, both in terms
of the number of polynomial pieces required to approx-
imate the original trajectory and the cost of the least
squares fit, which, as we saw, depends on the imposed
accuracy.

The lesson from these experiments is that, if we require
very accurate approximate trajectories, then we are better
off performing the simulation without doing the approxima-
tion and taking advantage of the speed-up provided by our
interval approach. If accuracy is not an issue, then a smaller
degree will be advantageous and the above analysis and ex-
perimental data offer some guidance on the choice of the
optimal degree.

8 Conclusions

In this paper we have presented an interval-based method
for maintaining kinetic simulations of objects that move on
polynomial trajectories. The major idea of the method is to
use intervals that contain the event times of the simulation
in order to resolve the comparisons between events times in
the event queue, thus avoiding wasting time on computing
event times for events that may never occur, or computing
them more accurately than needed. Experimental results,
as well as a simple theoretical analysis, show that by using
the interval-based method we gain a speed-up of d, where d
is the degree of motion, over the naive approach.

Although polynomial motions constitute a common class
of motions, we would like to extend our approach to more
general motions. In particular, we would like to explore the
possibility of applying our algorithm to motions that are so-
lutions of ordinary differential equations either by exploiting
existing theoretical results (see [7]) or by approximating the
solution of the o.d.e. by a polynomial function and then
adding additional certificates in the kinetic simulation cor-
responding to the times that the particular approximations
are no longer valid. Another possible direction of research
is to use interval arithmetic techniques to obtain bounds on
function values (see [12]) for non-polynomial functions, and
use these bounds as the basis for our approach.

9 Acknowledgments

The authors wish to thank Pankaj Agarwal, Julien Basch,
Dan Halperin and Li Zhang for useful discussions.

References

[1] G. Alefeld and J. Herzberger. Introduction to interval
computations. Academic Press, New York, 1983.

[2] J. Basch, L. J. Guibas, and J. Hershberger. Data struc-
tures for mobile data. In Proc. 8th ACM-SIAM Symp.
Discrete Algorithms, pages 747–756, 1997.

[3] J. L. Bentley and T. Ottman. Algorithms for reporting
and counting geometria intersections. IEEE Trans. on
Computers, C-28(9):643–467, Sept. 1973.

[4] L. J. Guibas. Kinetic data structures — a state of the
art report. In Proc. 3rd Work. Algorithmic Found. of
Robotics, 1998. To appear.

[5] N. Jacobson. Basic Algebra I. W. H. Freeman, New
York, 2nd edition, 1985.

[6] M. A. Jenkins. Algorithm 493 zeros of a real polyno-
mial. ACM Transactions on Mathematical Software,
1:178–, 1975.

[7] A. G. Khovanskĭı. Fewnomials, volume 88 of Transla-
tions of Mathematical Monographs. Americal Mathe-
matical Society, Providence, Rhode Island, 1991.

[8] D. E. Knuth. Seminumerical Algorithms, volume 2 of
The Art of Computer Programming. Addison-Wesley,
Reading, MA, 3rd edition, 1998.

[9] M. Lang and B.-C. Frenzel. Polynomial root finding.
IEEE Signal Processing Letters, 1994.

[10] J. Peetre. Approximation of norms. J. Approx. Theory,
3(3):243–260, 1970.

[11] W. H. Press, S. A. Teukolsky, W. T. Vettering, and
B. P. Flannery. Numerical Recipes in C. Cambridge
University Press, Cambridge, 2nd edition, 1992.

[12] H. Ratschek and J. Rokne. Computer Methods for the
Range of Functions. John Wiley & Sons, New York,
1984.

[13] L. N. Trefethen and D. Bau, III. Numerical Linear
Algebra. SIAM, 1997.

[14] R. E. Zippel. Effective polynomial computation. Kluwer
Academic Publishers, Boston, 1993.

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

400

Degree

R
un

ni
ng

 ti
m

e
(s

ec
)

Running times for 10 points

Intervals
Hybrid
Eigenvalues

(a) DT: running times for 10 points

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

1600

Degree

R
un

ni
ng

 ti
m

e
(s

ec
)

Running times for 20 points

Intervals
Hybrid
Eigenvalues

(b) DT: running times for 20 points

0 5 10 15 20 25 30 35 40
0

5

10

15

Degree

R
un

ni
ng

 ti
m

e
ra

tio

Ratios of running times for 10 points

Eigenvalues/Intervals
Eigenvalues/Hybrid

(c) DT: ratios of running times for 10 points

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

Degree

R
un

ni
ng

 ti
m

e
ra

tio

Ratios of running times for 20 points

Eigenvalues/Intervals
Eigenvalues/Hybrid

(d) DT: ratios of running times for 20 points

Figure 1: Mean running times in seconds and ratios of running times for maintaining the Delaunay triangulation of 10 and
20 points on a plane using the three different methods for handling the events times: the interval-based, the eigenvalue one
and a hybrid one; 10 initial configurations were used for each point set.

0 10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

800

900

Degree

R
un

ni
ng

 ti
m

e
(s

ec
)

Running times for 10 points

Intervals
Hybrid
Eigenvalues

(a) CP: running times for 10 points

0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

3000

3500

Degree

R
un

ni
ng

 ti
m

e
(s

ec
)

Running times for 20 points

Intervals
Hybrid
Eigenvalues

(b) CP: running times for 20 points

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18

Degree

R
un

ni
ng

 ti
m

e
ra

tio

Ratios of running times for 10 points

Eigenvalues/Intervals
Eigenvalues/Hybrid

(c) CP: ratios of running times for 10 points

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

Degree

R
un

ni
ng

 ti
m

e
ra

tio

Ratios of running times for 20 points

Eigenvalues/Intervals
Eigenvalues/Hybrid

(d) CP: ratios of running times for 20 points

Figure 2: Mean running times in seconds and ratios of running times for maintaining the closest pair of 10 and 20 points on
a plane using the three different methods for handling the events times: the interval-based, the eigenvalue one and a hybrid
one; 10 initial configurations were used for each point set.

0 5 10 15 20 25 30 35
10

−1

10
0

10
1

10
2

10
3

Degree d
L

R
un

ni
ng

 ti
m

e
(s

ec
)

Running times for 5 points − Delaunay triangulation

ε = 1e−2
ε = 1e−3
ε = 1e−4
ε = 1e−5

Figure 3: Mean running times in seconds for maintaining the Delaunay triangulation of 5 moving points as a function of
the degree dL of the approximate splined motions. The points are moving originally on polynomial trajectories of degree
dH = 32; the running time for the simulation using the original trajectory is shown by a square. Four different values for
ε are considered: 10−i, i = 2, 3, 4, 5. The stop time is Tmax = 1. 10 initial configurations are used for each point set. The
interval-based method is applied.

