A Practical Evaluation of Kinetic Data Structures

Julien Basch

Leonidas J. Guibas*

Craig D. Silverstein' Li Zhang

Computer Science Department
Stanford University
Stanford, CA94305

{jbasch,guibas,csilvers,lizhang}@cs.stanford.edu

1 Introduction

In many applications of computational geometry to model-
ing objects and processes in the physical world, the partici-
pating objects are in a state of continuous change. Motion is
the most ubiquitous kind of continuous transformation but
others, such as shape deformation, are also possible. In a
recent paper, Basch, Guibas, and Hershberger [BGH97] pro-
posed the framework of kinetic data structures (KDSs) as a
way to maintain, in a completely on-line fashion, desirable
information about the state of a geometric system in contin-
uous motion or change. They gave examples of kinetic data
structures for the maximum of a set of (changing) numbers,
and for the convex hull and closest pair of a set of (moving)
points in the plane. The KDS framework allows each object
to change its motion at will according to interactions with
other moving objects, the environment, etc.

We implemented the KDSs described in [BGH97], as well
as some alternative methods serving the same purpose, as
a way to validate the kinetic data structures framework in
practice. In this note, we report some preliminary results
on the maintenance of the convex hull, describe the experi-
mental setup, compare three alternative methods, discuss
the value of the measures of quality for KDSs proposed
by [BGH97], and highlight some important numerical issues.

2 Kinetic Data Structures

Given a set of continuously moving points in the plane, we
wish to maintain some configuration function of interest, de-
pendent on the positions of the points. This function could
be, for example, the minimum distance between all pairs of
the points. Even though this distance changes continuously,
it can be derived from a combinatorial function F' — de-

*Supported in part by National Science Foundation
grant CCR-9623851 and by US Army MURI grant DAAHO04-
96-1-0007.

fSupported by the Department of Defense, with partial sup-
port from NSF Award CCR-9357849, with matching funds from
IBM, Mitsubishi, Schlumberger Foundation, Shell Foundation,
and Xerox Corporation.

To appear in the 13th Symposium of Computational Ge-
ometry, 1997.

scribing the identity of the pair of points that realize this dis-
tance — that changes at discrete times only. A kinetic data
structure maintains the combinatorial function F' through
a list of certificates whose validity at a particular instant
in time implies the correctness of F' at that instant. These
certificates are typically low degree algebraic inequalities in-
volving a few of the moving points, such as “point p is to
the left of point g,” or “the distance d(p,q) is greater than
the distance d(p,r).”

In the KDS framework each point is assumed to follow
a particular flight plan. Typically we will assume that these
motions are piecewise algebraic of low degree. Under this
constraint, for a given certificate ¢, we can calculate the
next future time ¢(c) at which ¢ becomes false by solving for
“the next larger” root of an algebraic equation,. All these
“certificate failure times,” or events for short, are kept in
an event queue associated with the combinatorial function
F. Since F' cannot change between events, we can perform
a dynamic simulation of the system by jumping from event
to event. Processing an event involves recomputing a new
certificate list — since at least one certificate is now false —
that re-validates (the same or a modified) F' at the current
time, and appropriately updating the event queue. If F
changes at the time of an event, the event is called external
Otherwise the event is called internal. For a KDS to be of
good quality, the following criteria should be met:

o the certificate list does not change too much when an
event occurs (responsiveness);

e the overhead of internal events with respect to external
events is reasonable (efficiency);

o the KDS itself is of small size, typically linear or slightly
superlinear (compactness); and

e cach point is involved in only a small number of cer-
tificates (locality).

Precise ways to make these criteria quantitative are dis-
cussed in [BGH97]. To elaborate on the second condition,
we say a KDS is efficient if, over a given class of allowed
motions, the ratio of the worst case number of total (inter-
nal plus external) events to the worst case number of exter-
nal events is small (as a function of the number of points
involved). Note that in this definition of efficiency, as origi-
nally proposed in [BGH97], we are comparing two worst-case
scenarios, even though these may arise for different config-
urations of moving points.

The locality condition is important when points change
their motion law, something we call a flight plan update.



This is common in typical simulations, where for instance
points may bounce off walls or off each other. When a point
changes motion, the failure times of all certificates depen-
dent on that point must be updated. The locality condition
ensures that this operation can be performed within reason-
able time bounds.

3 Three ways to maintain a convex hull

Along with the method proposed in [BGH97], we imple-
mented two other methods for comparison: the Delaunay
triangulation and a less sophisticated method, dubbed “brute
force.” All these methods share the traits that they are event
driven and exact.

BGHI97-CH : The principle of the kinetic data structure pro-
posed in [BGH97] for the maintenance of the convex hull is
the following: the set of points is divided arbitrarily into a
red half and a blue half, and the convex hull of each half is
computed and maintained recursively. The convex hull of
the whole is then certified by the slope ordering between all
red and blue convex hull edges and by the orientation of a
set of bichromatic triangles. If the motion is algebraic of de-
gree k, it is possible to compute the time at which two edges
become parallel, and the time at which a triangle becomes
degenerate, by solving in each case an equation of degree 2k.
In [BGHY7], it is shown that, with some small adaptation,
this kinetic data structure is both local and efficient.

DELAUNAY : An alternate way to maintain the convex hull of
moving points is to maintain their Delaunay triangulation,
whose edges form a superset of the convex hull. This con-
figuration is especially straightforward to kinetize, as its set
of edges, together with “InCircle” tests that certify “local
Delaunayhood,” is a correct certificate structure [GMRI1].
As a way to maintain the convex hull, this KDS is not lo-
cal (a given point can have an arbitrarily high degree in
the underlying graph) and is not known to be efficient (the
best known upper bounds for the number of changes to the
DT when points move along algebraic trajectories is roughly
cubic). If the motion of each point can be described by al-
gebraic pieces of degree k, the event times for the Delaunay
certificates will be roots of polynomials of degree 4k.

BRUTE-CH : There is a simple, brute force data structure for
maintaining a convex hull. We simply calculate the time at
which each point will hit (or leave) the convex hull, assuming
its current motion remains unchanged. When a point on
the hull has a flight plan update, we must recalculate the
event times of all the other points. (When a non-hull point
updates its flight plan, we need only recalculate its own event
time.) Furthermore, whenever a point enters or leaves the
convex hull, all events must be rescheduled. Hence, as one
flight plan update causes the rescheduling of up to Q(n)
events, this structure is not local.

4 Numerical issues

The major problem in implementing robust kinetic data
structures is the approximate numerical computation of roots
of polynomials. As the same issues arise for any implemen-
tation of a line sweep algorithm on curves (for which we are
not aware of any general implementation), the solution we
propose is of independent interest.

To focus on the specific problems posed by a KDS, we
make the assumption that the value of a polynomial at a
given point (time) can be computed exactly, but the roots

of a polynomial are computed with a small error. In this set-
ting there are two problems we must address: (1) events can
get out of order and (2) an event that really happens in the
future can appear to have already happened, or vice versa.
We discuss the second problem, which occurs frequently; we
never observed an occurrence of the first problem.

To be concrete, assume that at time ¢t = to we are pro-
cessing the event “(abcd) are cocircular”. Omnce we have
processed this event, we need to schedule another event for
the same four points, because they may become cocircular
again. The associated polynomial P(t) has a root at t = to.
Because of numerical error, however, this root might appear
to be at some te > to, and the event that was just processed
will be improperly rescheduled. To avoid this problem, we
discard the root closest to to before finding the next event
time.

Using this method, we were able to run reliable simu-
lations involving 50,000 points, or about 400,000 events for
the BGHI97-cH KDS.

5 Experimental setup

In order to remain independent of specific implementation
details, the cost of a KDS was taken to be a weighted sum of
the number of polynomial equations solved. This statistic is
motivated by the fact that most of the time spent by the data
structures we consider (over 80 percent, for DELAUNAY ) is
spent solving equations used in scheduling events. We weigh
each equation by the time it takes to solve: degree 1 equa-
tions (which are dominated by division) take 1 time unit,
degree 2 equations (which are dominated by square root)
take 4 time units, and degree 4 equations (which require ei-
ther many square and cube roots, or an iterative algorithm)
take 80 time units. These ratios were obtained empirically
by repeatedly solving several random equations of each type
(on a 90 MHz. Pentium; a 167 Mhz. UltraSparc-I; and an 8
processor, 250 MHz. MIPS R4400).

We ran the three methods described in section 3 with n
ranging from 10 to 10000 points with initial positions and
speeds chosen independently at random in the unit square.’
The first set of experiments was intended to measure the
efficiency on average (as opposed to worst case) of the dif-
ferent kinetic data structures. For this purpose, we let the
simulation run until the convex hull stabilized and there was
no more events in the event queue (Figure 1). The second
set of tests was designed to judge of the importance of the
locality requirement for a KDS: we introduced walls against
which the points bounced, and let the simulation run until
n bounces had occurred (Figure 2). Since each bounce re-
quires rescheduling every event associated with the bouncing
point, non-local structures are expected to perform poorly.
For each test, the result was averaged over five runs.

All tests were conducted on an SGI using an 8 processor
MIPS R4400 at 250MHz., running IRIX 6.2. The code was
written in C++ and compiled with the SGI CC compiler with
the -02 -mips2 optimization options.

6 Results

This study allowed us a close examination of the practical
value of the quality measures for KDSs proposed by [BGH97]
and highlighted some important issues that did not arise in

L Alternative distributions, such as the uniform unit disk and
the Gaussian, gave qualitatively similar results.



Various convex hull algorithms, no bouncing, square dist
le+09 T T

kinetic.square —+——
delaunay.square ---x---
brute.square ---%- -
1e+08 |- T 4

1e+07 | o T
1e+06
100000

10000 %

Weighted cost of solving equations

1000 . E

100 L L
10 100 1000 10000
Number of points

Table 1: Cost (weighted sum of the number of equations
solved) of the three different methods that maintain the
CONVEX HULL, when the points move along an unchanging,
linear flight plan.

the theoretical study. The first important conclusion, how-
ever, is that the implementation of kinetic data structures
did not pose any major problem and the framework is read-
ily practical. It provides a solid paradigm for dynamic sim-
ulations that avoids approximation due to arbitrary time
discretization.

On the side of efficiency, the number of equations solved
can be seen to be roughly linear for BGH97-CH , roughly
©(n*/?) for both DELAUNAY and BRUTE-CH . The worst
case is therefore far from being attained, but, as the num-
ber of external events itself is extremely low (about log? n),
the efficiency ratio is in all cases rather high. It therefore
makes more sense to compare the relative performance of the
different methods. In this sense, BGHI7-CH is vastly supe-
rior to Delaunay but only marginally better than BRUTE-CH
for the numbers considered (Figure 1).

Simulations with bouncing were performed to test the
value of the locality requirement. We mentioned earlier that
DELAUNAY was not a local KDS in the worst case. How-
ever, in this context, as the expected degree of a vertex is
constant, the performance of DELAUNAY doesn’t degrade
with bouncing. On the other hand, BRUTE-CH , which is
non-local at all points, has a quadratic growth due to the
intense rescheduling necessary upon each bouncing. Finally,
BGH97-CH handles bouncing gracefully as expected (Fig-
ure 2).

There is one particular aspect of a KDS that is not taken
into account in the framework of [BGH97]: it is the cost of
solving a single equation. The huge cost of solving degree 4
equations for DELAUNAY is the only reason why this method
performs so poorly for n up to a hundred. In this range,
the number of equations solved is comparable with that of
BGHI7-CH . This suggests that it would be worthwhile to
maintain some arbitrary triangulation instead of the Delau-
nay. An arbitrary triangulation can be maintained using
only collinearity tests and might well perform better than
BGHI7-CH for small n.

7 Conclusion

In this paper, we reported the implementation of and exper-
imentation with several data structures for maintaining the

Various convex hull algorithms, n bounces, square dist
le+10 T

T
kineticwalls-n.square ——

delaunaywalls-n square ---x---
brutewalls-n.square ----

1e+09 | i
1e+08 |- ]
1e+07
1e+06

100000

Weighted cost of solving equations

10000

1000 . .
10 100 1000 10000
Number of points

Table 2: Cost (weighted sum of the number of equations
solved) of the three methods for maintaining the convex hull,
when the points bounce inside a square. The simulation was
run until there were n bounces (n is the number of points).

convex hull of points continuously moving in the plane. Our
primary finding is that kinetic data structures do not pose
major implementation problems and perform well on several
natural distributions. For a large number of points, alterna-
tive data structures suffer from non-locality or the expensive
root-finding operations they perform. However, all methods
stand to gain from more careful implementation. Particular
advantage can be gained by using simpler data structures
when the number of points is small.

Several other kinetic data structures can be imagined
for maintaining the convex hull. As mentioned above, it
is enough to maintain any triangulation, not just the De-
launay one. These alternative data structures can be eval-
uated both in the theoretical framework of [BGH97], in a
probabilistic setting [BDIZ], and in the experimental frame-
work of this paper. We will report in a forthcoming paper
on experiments with kinetic data structures for maintaining
other configuration functions, such as the closest pair and
the maximum.

A program demonstrating kinetic data structures is avail-
able at http://graphics.stanford.edu/~ jbasch/demokin.

Acknowledgments

We wish to thank Aris Gionis and Piotr Indyk for useful
discussions.

References

[BDIZ] J. Basch, H. Devarajan, P. Indyk, and L. Zhang.

Probabilistic analysis for combinatorial functions

of moving points. This volume.

[BGH97] J. Basch, L. J. Guibas, and J. Hershberger. Data
structures for mobile data. In 8th Symposium on
Discrete Algorithms, pages 747-756, 1997.

[GMRY1] L. Guibas, J. S. B. Mitchell, and T. Roos. Voronoi
diagrams of moving points in the plane. In Proc.
17th Internat. Workshop Graph-Theoret. Con-
cepts Comput. Sci., volume 570 of Lecture Notes
in Computer Science, pages 113-125. Springer-
Verlag, 1991.



