
H-vJ.2

htt V\Jold

case study

,r~ ~

1.2.1 RulesfortheGameoflife

definitions

transition rules

1.2.2 Examples

Life is really a simulation, not a game with players. It takes place on an unboundedrect-
angular grid in which each cell can either be occupied by an organismor not. Occupied
cells are called alive; unoccupied cells are called dead. Which cells are alive changes
from generation to generation according to the number of neighboringcells that are alive,
as follows:

1. The neighbors of a given cell are the eight cells that touch it vertically,horizontally,
or diagonally.

2. If a cell is alive but either has no neighboring cells alive or only one alive, then in
the next generation the cell dies of loneliness.

3. If a cell is alive and has four or more neighboring cells also alive, then in the next
generation the cell dies of overcrowding.

4. A living cell with either two or three living neighbors remains alive in the next
generation.

5. If a cell is dead, then in the next generation it will become alive if it has exactly
three neighboring cells, no more or fewer, that are already alive. All other dead
cells remain dead in the next generation.

6. All births and deaths take place at exactly the same time, so that dying cells can
help to give birth to another, but cannot prevent the death of others by reducing
overcrowding, nor can cells being born either preserve or kill cells living in the
previous generation.

As a first example, consider the community

The counts of living neighbors for the cells are as follows:

. .

'.,

':"':-" 0 "',.,,

E R

large by
, that we
metimes

general

chapters

J by the

Jedrect-

>CCupied
changes
Ife alive,

lOntally,

, then in

the next

the next

; exactly
nerdead

;ells can
reducing
Ig in the

1 SECTION TheGameofLIfe
5r

\.

1 . 2

moribund example

By rule 2 both the living cells will die in thecominggeneration,andrule 5 shows that
no cells will become alive, so the community dies out.

On the other hand, the community

stability

,r,
00"'-,

hasthe neighborcountsasshown.Eachof the livingcellshasa neighborcountofthree,
and hence remains alive, but the dead cells all have neighbor counts of two or less, and
hence none of them becomes alive.

The two communities

alternation
and

continue to alternate from generation to generation, as indicated by the neighbor counts
shown.

It is a surprising fact that, from very simple initial configurations, quite complicated
progressions of Life communities can develop, lasting many generations, and it is usually

0 0 0 0 0 0

0 1 2 2 1 0

8 8
0 1 1 1 1 0

0 1 2 2 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 2 2 1 0

0 2 83 83 2 0

8 8
0 2 3 3 2 0

0 1 2 2 1 0

0 0 0 0 0 0

0 0 0 0 0

1 2 3 2 1

8
82

8
1 1 1 1

1 2 3 2 1

0 0 0 0 0

0 1 1 1 0

.
0 2 1 2 0

8
0 3 2 3 0

.
0 2 1 2 0

0 1 1 1 0

variety

ProgrammingPrinciples CHAPTER6

popularity

1.2.3TheSolution

method

algorithm

not obvious what changes will happen as generations progress. Some very small initial
configurations will grow into large communities; others will slowly die out; many will
reach a state where they do not change, or where they go through a repeating pattern
every few generations.

Not long after its invention, MARTIN GARDNER discussed the Life game in his column
in Scientific American, and, from that time on, it has fascinated many people, so that for
several years there was even a quarterly newsletter devoted to related topics. It makes
an ideal display for microcomputers.

Our first goal, of course, is to write a program that will show how an initial com-
munity will change from generation to generation.

At most a few minutes' thought will show that the solution to the Life problem is so
simple that it would be a good exercise tor the members of a beginning programming
class who had just learned about arrays. All we need to do is to set up a large rectangular
array whose entries correspond to the Life cells and will be marked with the status of the
cell, either alive or dead. To determine what happens from one generation to the next,
we then need only count the number of living neighbors of each cell and apply the rules.
Since, however, we shall be using loops to go through the array, we must be careful not
to violate rule 6 by allowing changes made earlier to affect the count of neighbors for
cells studied later. The easiest way to avoid this pitfall is to set up a second array that
will represent the community a~ the next generation and, after it has been completely
calculated, then make the generation change by copying it to the original array.

Next let us rewrite this method as the steps of an informal algorithm.

Initialize an array called map to contain the initial configurationof living cells.

Repeat the following steps for as long as desired:

For each cell in the array do the following:

Count the number of living neighbors of the cell.

ff the count is 0, I, 4, 5, 6, 7, or 8, then set the corresponding cell in
another 8JT3.ycalled newmap to be dead; if the count is 3, then set
the corresponding cell to be alive; and if the count is 2, then set the
corresponding cell to be the same as the cell in 8JT3.ymap (since the
status of a cell with count 2 does not change).

Copy the 8JT3.ynewmap into the array map.

Print the array map for the user.

1.2.4 Life:TheMainProgram

The preceding outline of an algorithm for the game of Life translates into the following
C program.

. "

<

,1~ "

P T E R
SECTION 1 . 2

('
TheGameoflife 7

small initial
It; many will
ating pattern

1* Simulation of Conway's game of Life on a bounded grid *1
1* Version 1 *1

n his column

'e. so that for
cSo It makes

#include "general.h"
#include "Iifedef.h"
#include "calls.h"

void main (void)
{

1* common include files and definitions

f* Life's defines and typedefs
f* Life's function declarations

*1
*1
*1

I initial com- int row, col;
GridJype map;
GridJype newmap;

1* current generation
1* next generation

*1
*1

initialization Initialize(map) ;
WriteMap(map) ;
do {

,roblem is so

>rogramming
e rectangular
status of the

I to the next,
ply the rules.
oecareful not

teighbors for
nd array that
1 completely
my.

calculate changes for (row = 0; row < MAXROW;row++)
for (col = 0; cor < MAXCOL;col++)

switch(NeighborCount(row, col, map)) {
case 0:
case 1:

newmap [row] [co!] = DEAD;
break;

case 2:
newmap [row] [col] =map [row] [col];
break;

case 3:
newmap [row] [cor] =ALIVE;

break;
case 4:
case 5:
case 6:
case 7:
case 8:

newmap[row] [co!] = DEAD;
break;

r'.

,-

i.

}
CopyMap(map. newmap);
WriteMap(map);

} while (Enquire ());

~ cell in
then set

. , setthe
:ince the

}

Before we discuss the C program above we need to establish what is included with the
#include preprocessor command. There are three files: general.h. lifedef.h. and calls.h.

" I: The file general.h contains the definitions and #include statements for the standard
:'(1::files that appear in many programs and will be used throughout this book. The file

".dncludes

""~

l.l

8 ProgrammingPrinciples CHAPTER

#include <stdio.h>
#include <stdlib.h>

typedefanum booleanJag { FALSE,TRUE} BooleanJype;

void Error(char *);

The function Error is a simple function we use throughout the book. Error displays an
error message and terminates execution. Here is the function.

,,'.

1* Error:print error message and terminate the program. *1
void Error(char *s)
{

fprintf(stderr, "%s\n", s);
exit (1) ;

}

The file lifedef.h contains the definitions for the Life program:

#define MAXROW50 1*maximumnumberof rows
#define MAXCOL80 1*maximum number of columns

typedef anum status..tag{ DEAD,ALIVE} Status_type;

typedef Status_typeGrid_type[MAXROW][MAXCOL];

*1
*1

functions and calls.h contains the function prototypes for the Life program:

void CopyMap(Grid_type, Grid_type);
Boolean_type Enquire(void);
void Initialize(Grid..type) ;
int NeighborCount (int, int, Grid_type);
void WriteMap(Grid..type) ;

We create a new calls.h file with the function prototypes for each program we write. In
this program we still must write the functions Initializeand WriteMapthat willdo the input
and output, the function Enquire that will determine whether or not to go on to the next
generation, the function CopyMap that will copy the updated grid, newmap, into map,
and the function NelghborCount that will count the number of cells neighboringthe one
in row,col that are occupied in the array map. The program is entirely straightforward.
First, we read in the initial situation to establish the first configurationof occupiedcells.
Then we commence a loop that makes one pass for each generation. Within this loop
we first have a nested pair of loops on row and col that will run over all entries in the
array map. The body of these nested loops consists of the one special statement

switch{ ...}.

which is a multiway selection statement. In the present application the function Neigh-
borCount will return one of the values 0, I, ..., 8, and for each of these cases we can
take a separate action, or, as in our program, some of the cases may lead to the same
action. You should check that the action prescribed in each case correspondscorrectlyto
the rules 2.3,4, and 5 of Section 1.2.1. Finally, after using the nested loops andswitch

~t~ t"

P T E R SECTION 1 . 3 ProgrammingStyle 9
r-

statement to set up the array newmap. the function CopyMap copies array newmap irilu
array map. and the function WriteMap writes out the result.

Exercises
1.2

Determine by hand calculation what will happen to each of the communities shown in

Figure 1.1 over the course of five generations. [Suggestion: Set up the Life configuration

on a checkerboard. Use one color of checkers for living cells in the c;urrent generation

and a second color to mark those that will be born or die in the next generation.]
)f displays an

IS

*1
*1

, "

iii.. .
'.,

Ik

.

). III

.

.,.J.. ..
r-"

l.;"" ,

\..'

Unction Neigh-
e caseswe can
ad to the same
nds correctly to .'

lOpSand switch

\ Figure 1.1. Life configurations
\.,.\)J

n we write. In
ill do the input
on to the next

nap, into map,
.boring the one
traightforward.
occupied cells.
fathin this loop
I entries in the
atement

~ ~JtOGRAMM
f~~" Beforew~ to writingthe fun~ons fortheLifegame,letuspauseto considerseveral

,.. principles tha~ should be ~ful to employ in programming.

In the story of creatio (Ge is 2: 19), God brought all the animals to ADAMto see
what names he woul ive them. ccording to an old Jewish tradition, it was only when
ADAMhad named animal that it s g to life. This story brings an importantmoral
to computer pro ming: Even if data d algorithmsexist before, it is only when they

, are given m . gful names that their pIa in the programcan be properly recognized
",:,.. and appreciat ,that they first acquire a life. their own.
.ff.. For a gram to work properly it is of the !most importanceto know exactly what

"';; each v . Ie represents, and to know exactly what each functiondoes. Documentation

i .f' :,. .
(

(It&§
(b)

am
(cJ M!1i

'" -
Id)II Ie) . (f)-"

19)

.
-:11

"'-
.....J .." ...

.' .~ .

P T E R 1 SECTION 1 . 4 Coding,Testing, andFurtherReflnemenl 1",

I

I

I

plotting

y = (2*y + x/(y*y))/3

until fabs(y*y*y - x) <= 0.00001. //
c. Which of these tasks is easier?

E5. The mean of a sequence of real numbers is eir sum divided by the count of
numbers in the sequence. The (population) nance of the sequence is the mean
of the squares of all numbers in the seque e, minus the square of the mean of the

mbers in the sequence. The standard eviation is the square root of the variance.
W~I a well-structured C function to alculate the standard deviation of a sequence
of n mbers, where n is a const t and the numbers are in an array indexed from
0 to n ,I, where n is a par eter to the function. Write, then use, subsidiary
functions t' calculate the me n and variance.

E6. Design a pro am that w' plot a given set of points on a graph. The input to the
program will be tex Ie, each line of which contains two numbers that are the
x and y coordina of a point to be plotted. The program will use a routine to
plot one such p' 0 coordinates. The details of the routine involve the specific
method of pi ing and annot be written since they depend on the requirements
of the plot' g equipment, hich we do not know. Before plotting the points the
progra eeds to know the imum and minimum values of x and y that appear
in it nput file. The program ould therefore use another routine Bounds that
w' read the whole file and dete 'ne these four maxima and minima. Afterward,
nother routine is used to draw and I I the axes; then the file can be reset and the

individual points plotted.

a. Write the main program, not inc1udi~ the routines.
b. Write the function Bounds.
c. Write the header lines for the remaining functions together with appropriate

documentation showing their purposes and their requirements.

'lree integers.

S/aI;SI;CS

s, only six of
and eliminate

suit.

y the NEWTON

cube root of

1~C~NG. T~~=:i~=~t~~~bo~~:~~~~~-:d oM must be done togdW. y~ it i

"V~ y \ \ important to keep them separate in our thinking, since each requires its own approachant

~\.." , method. Coding, of course, is the process of writing an algorithm in the conect synta'~ . (grammar) of a computer language like C, and testing is the process of running th,
\ \0 programon sampledatachosento finderrors if theyarepresent Forfurtherrefinement
\)"- we turn to the functions not yet written and repeat these steps.

1.4.1Stubs

"heextra vari-
:r layout, and early debugging

and testing

After coding the main program, most programmers will wish to complete the writing an
coding of the functions as soon as possible, to see if the whole project will work. For
project as small as the Life game, this approach may work, but for largerprojects, writin
and coding all the functions will be such a large job that, by the time it is complet
many of the details of the main program and functions that were written early will ha'
been forgotten. In fact, different peOple may be writing different functions, and son

.he mathemat-

:ating

. .' .

18 ProgrammingPrinciples CHAPTER

stubs

of those who started the project may have lef! it before all functions are wrillen. II is
much easier to understand and debug a program when it is fresh in your mind. Hence,
for larger projects, it is much more efficienl to debug and test each function as soon as
it is wrillen than it is to wait until the project has been completely coded.

Even for smaller projects, there are good reasons for debugging functions one at a
time. We might, for example, be unsure of some point of C syntax that will appear in
several places through the program. If we can compile each function separately, then
we shall quickly learn to avoid errors in syntax in later functions. As a second example,
suppose that we have decided that the major steps of the program should be done in a
certain order. If we test the main program as soon as it is written, then we may find
that sometimes the major steps are done in the wrong order, and we can quickly correct
the problem, doing so more easily than if we waited until the major steps were perhaps
obscured by the many details contained in each of them.

To compile the program correctly, there must be something in the place of each
function that is used, and hence we must put in short, dummy functions, called stubs.
The simplest stubs are those that do nothing at all:

1* Initialize: initialize grid map. *1
void Initialize (GridJype map)
{
}

1* WriteMap: write grid map. *1
void WriteMap(Grid_type map)
{
}

1* NeighborCount: count neighbors of row,co!. *1
int NeighborCount(int row, int col, Grid_type map)
{

return 1;
}

Even with these stubs we can at least compile the programand make sure that the
declarations of types and variables are syntactically correct. Normally, however, each
stub should print a message stating that the function was invoked. When we execute the
program, we find that some variables are used without initialization,and hence, to avoid
these errors, we can add code to function Initialize.Hence the stub can slowly grow and
be refined into the final form of the function. For a small project like the Life game, we
can simply write each function in turn, substitute it for its stub, and observe the effect
on program execution.

1.4.2 CountingNeighbors ~Let us now fine our pro er. The function that counts neighbors of the cell
/undion in rem. col reqUI ha ...,- oak in the ei:' adjo;uing "",;1;0"'. We ,hall Me a pait of

NeighborCount for loops to do !lUs,one ru . usually from row-1 to row + 1 and the other usually

from co~ cot + 1. We need careful, when row, col is on a boundary of the

-at we look only at legitimate poSt .~ the grid. To do so we introduce four

'" ,

Ex~ ~~jU~l1dJAT
~~~ ~--crv~-~

m....

APT E R C HAP T E R 1

rameters, which

nallest integer
-romon multiple

into ascending
R Pentomino

I variable n - 1

5; Cheshire Cat

e that it works

1.3. Tumbler

: it

agram.

Irt separately.

!>emore than

4Igging. BarberPole

Always use

~ debugging

Japrogram

and it better

ReviewQuestions

Virus

Harvester

The Glider Gun

Figure 1.3. Life configurations

... .. . ... ... ... ... .. .....

. ... ... .. .. .. ... ..

.. .... ... .. . . .. . . ... ..

... .
. .

.

. .
. .

. ...

.. .. .. .. .. .. .... .. .. .. .. .. .... .. .. .. .. .. .... .. .. .. .. .. .... .. .. .. .. .. .... .. .. .. .. .. ..... .. .. .. .. .. .... .. .. .. .. .. .... .. .. .. .. .. .... .. .. .. .. .. .... .. .. .. .. .. .... .. .. .. .. .. ..

............. ,... '. I. I. I

. i..
......... ..


