CHAPTER 3 or GC

GHOST CIRCLES

June 30, 1999

In Chapter AM, we saw how traces of the invariant circles of the completely integrable map persist,
sometime in the weak form of invariant Cantor sets, in any twist map. The main result of this chapter, Theorem
GCthmamordered, provides a vertical ordering of these Aubry-Mather sets in the cylinder, by showing that
they belong to family of nontrivial ???circles that are graph over the circle {y = 0}. These circles are mutually
disjoint and are ordered according to the rotation number of the Aubry-Mather sets. This result was written in
Angenent & Golé (1991).

To do this, we establish important properties of the gradient flow of the action functional in the space of
sequences. The central property, given by the Sturmian Lemma, is that the intersection index of two sequences
cannot increase under the gradient flow of the action. One important consequence is that the flow is monotone:
it preserves the natural order between sequences. This fact yields a new proof of the Aubry-Mather Theorem.
It also enables us to define special invariant sets for the gradient flow that we called ghost circles, which we
study in some detail here. The family of circles that neatly arranges the Aubry-Mather sets are projections of

ghost circles in the cylinder.

14. Gradient Flow of the Action
A. Definition of the Flow

We consider a twist map f of the cylinder and its lift © whose generating function .S is C2. For simplicity,
we will assume that the second derivative of .S is bounded. This assumption is satisfied for twist maps of
the bounded annulus which are extended to maps of the cylinder as in AMlemmaextend. In this section we
investigate the property of the “gradient” flow of the action associated to the generating function S of F'

solution to:
(14.1) 7VW(J))]C = I = 7[315(Ik,1‘k+1) + (923(:17]6,1, ”Ek)]

Since this is an infinite system of ODEs, we need to set up the proper spaces to talk about such a flow.

We endow IRZ with the norm :

We let X be the subspace of IRZ of elements of bounded norm, which is a Banach space. On bounded subsets
of X, the topology given by the above norm is equivalent to the product topology, itself equivalent to the
topology of pointwise convergence. Remember from Chapter AM that Z? acts on IR by:
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(Tm,nw)k = Tktm TN

The map 7p ;1 which we also denote by 7" has the effect of translating each term of the sequence by 1. The
map 71 o which we denote also by ¢ is called the shift map, as it shifts the indices of a sequences by 1.

We define X/Z := X /7j,1 and we can choose as a representative of a sequence & one such that z € [0, 1).
More generally, in this chapter, the quotient of any subset of IRZ by Z will be with respect to the action of

the translation 7' = 7 ;.

Proposition 14.1 Suppose that the generating function S is C? with bounded second derivative. The
infinite system of O.D.E’s

(14.2) VW (x) = & = —[015(xk, Trr1) + 025 (21, x1))

defines a C* local flow ¢t on X as well as on X/Z, for the topology of pointwise convergence. The

rest points of C* on X correspond to orbits of the map F.

Proof. We prove that the vector field —VIW is C'! by exhibiting its differential. The proposition follows
from general theorems on existence and uniqueness of solutions of ODEs in Banach spaces (eg. Lang (1983)

, Theorems 3.1 and 4.3). The following map is the derivative of x — — VIV (z):
L:{vrtkez = {Brvk—1 + arVk + Bri1Vk+1 frez
o = =028 (1, 7k) — O S(Thy Thv1), Bk = —012S(vh—1, Tk)
Indeed, this map is linear with (uniformly) bounded coefficients, hence a continuous linear operator. Clearly:
—VW(z)v — L(v) = ||[v] 9(v)

with lim,_,0 ¢ (v) = 0. O

B. Order Properties of the Flow
IRZ is partially ordered by:

<y Vez Tk < Y-
We also define < y to mean © < y, but  # y; and we write z < y to denote the condition z; < y; for all
j € Z.The order interval [x,y] is defined by:

w.y) ={z € R* [z <2<y}

and the positive order cone at x

Vi(@)={yeX|z<y}

with a similar definition for V_(x). These cones are closed for the topology of pointwise convergence.
The following statement and was observed in Angenent (1988), and is related to the maximum principle

for parabolic PDEs.

Theorem 14.2 (Strict Monotonicity of () For x,y € X with * < y one has (*(x) < (*(y) for all
t> 0.
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We will give a simple proof of this theorem in the appendix to this chapter ???. It is also a consequence of
the Sturmian Lemma (see below), which was stated in Angenent (1988). Both ??? were communicated to the
author by Sigurd Angenent. In Chapter AM, we defined the notion of crossing of two sequences «, y in RZ
in terms of their Aubry diagrams. We remind the reader that such crossing occurs when there isa k € Z at
which either x; — yi and z;1 — yi+1 have opposite signs, or z;, = y and rj_1 — yx—1 and Try1 — Yr+1
have opposite signs. We say that two sequences are transverse if they have no tangency, i.e. thereisno k € Z
at which x;, = y, and 1 — yx—1 and z; 1 — yr+1 have same sign. We now define the intersection index

I(zx, y) to be the number of such crossings.

Lemma 14.3 (Sturmian Lemma) Let x,y € X have different rotation numbers. If x,y are not

transverse, then for all sufficiently small € > 0 o™z, p**y are and:

I(pz, 0 y) > 1 (p°x, ¢y).

Otherwise, as long as x and y stay transverse, their intersection index does not change.
Figure of tangency???
Proof. See the appendix.

Corollary 14.4 The sets CO, COy, and X,, are all invariant under the flow ¢*, and so are their

quotients by the action of T' = 79 1.

Proof. The inequalities of the type < 7, ,, which define the sets CO and CO,, are all preserved under
(*. The invariance of X, comes from the periodicity of the generating function S and its derivatives: when
x € X, the infinite dimensional vector field VIV for the the ODE (14.1) is a sequence of period n (made of
subsequences of length n equal to VIWp,,).

15. The Gradient Flow and the Aubry-Mather Theorem

In this section, we show how the existence of CO orbits of all rotation numbers can be recovered from the
monotonicity of the “gradient” flow (¢. From Lemma 9.2 and Corollary 14.4, we know that the set CO,,/Z is
compact and invariant under the flow (*. Rest points of the flow in this set lift to CO orbits of rotation number
w. It turns out that, even though ¢® is not the gradient flow of any function, we can still make it gradient like
when restricted to the appropriate subsets.

Denote by X = {z € X | supyegz |7x — 71| < K}.

Theorem 15.1 Let C C XX /Z be a compact invariant set for the flow ¢t. Then C must contain a
rest point for the flow. In particular COy/Z contains a restpoint and thus the map has a CO orbit

of rotation number w.
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Proof. Assume, by contradiction, that there are no rest points in C'. We show that, for some large enough
N, the truncated energy function Wy = ZJXN S(x, 1) is a strict Lyapunov function for the flow ¢* on
C'. More precisely, we find a real a > 0 such that é—iWN(w) < —a for all  in C. This immediately yields a
contradiction since on one hand Wy decreases to —oc on any orbit in C, on the other hand, the continuous

Wy is bounded on the compact K. To show that Wy is a Lyapunov function for some /V, we start with:

Lemma 15.2 Let C be as in Theorem 15.1. Suppose that there are no rest points in C. Then, there
exist a real €9 > 0, a positive integer Ny such that, for all x € C
J+N
. 2
N>No=VieZ Y (VW(x))’ > .
J

Proof. Suppose by contradiction that there exist sequences 7j,,, IV,, and (™) with N,, — oo such that

(15.1) 3 (VW(m("))k> 0.
Jn
Let m(n) = —j, — [N,/2] where [] is the integer part function, and let '™ = ¢™(™ ("), This new

sequence x'(") is still in C, and satisfies:

No—[N, /2] )
Z (VW(m("))k> —0 asn — oo.
k=—[N,/2]

By compactness of C, it has a subsequence that converges pointwise (i.e. in the product topology) to some x>°
in C. Clearly, VW (2>); = lim,, oo VW (2/™), = 0 for all k and thus 2> is a rest point, a contradiction.
O

We now show that Wy is a strict Lyapunov function on C'. By chain rule:

%WN(:::) _ lZN 018 (20, 041 ) VIV ()5 + OnS x,cﬂ)vvv(w)w]

N N+1
=— lz als(wk, :Ek+1)VW(:B)k + Z (925($k_1, xk)VW(a:)k]
-N —N+1

= — 615(1],]\[, .CE,N+1)VW(CE),N - 825($N, .CEN+1)VW<CE)N+1

_ f: (VW (2)i)

—N+1

(15.2)

For all z in X ¥, we have |z}, — ;1| < K and hence, by periodicity, S(x1,_1, 1), its partial derivatives

and thus VIV, are all bounded on that set. In particular, we can find some M depending only on K such that
|—815(1‘7N, ?[37N+1)VW(:13)7N — 825(xN, ?L‘N+1)VW(:E)N+1 ‘ <M

for all  in XX and all integer k. We claim that for N > (M + 2)Ny/(2¢0) (Where Ny, £ are as in Lemma
15.2), Wy is a Lyapunov function. Indeed, N > (p + 1) Ny where p > M /ey and we can split the sum
ZJXN 41 (VW(:L’);JZ into p sums of length greater than Ny. By Lemma 15.2, each of these sums must be
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greater than €, and thus the total sum must be greater than M + 2¢,, making the expression in (15.2) less

than —2¢g. O

Remark 15.3 As in Chapter AM, we can derive from Theorem 15.1 the existence of Aubry-Mather sets of
all rotation numbers. This proof does not yield the fact that the orbits found are minimizers. This apparent
weakness may be an asset in considering possible generalizations of this theorem to higher dimensions (see
777). This proof is a variation of the one given in Golé (1992 b). It was inspired by arguments found in Koch
& al. (1994) , who prove an interesting generalization of the Aubry-Mather Theorem for functions on lattices

of any dimensions.

16. Ghost Circles

Definition 16.1 A subset I" C IRZ is a Ghost Circle, hereafter GC, if it is
1. strictly ordered: z,y € I' = x < yory < x.
2. invariant under the Z2 action (bY Tin,n), as well as under the flow (*,

3. closed and connected.

We think of the GC’s as the surviving traces in the sequence space IRZ of the invariant circles of the
twist map as one follows a one parameter family of maps away from a completely integrable map. We will
see in the Section 17 that GC’s can be constructed by bridging the gaps of the Aubry-Mather sets (identified
to their corresponding subsets of rest points in IR%) with connecting orbits of the gradient flow (.

Any sequence « in a GC I'" is CO: since 7,,,,« must also lie in I, which is ordered, we must have
T < T OF Ty, & < . Moreover, the fact that /" is ordered implies, by Lemma 13.2, that all sequences

in I" have same rotation number. We will call this p(I"), the rotation number of the ghost circle.

Proposition 16.3 Let I be a ghost circle.

a) The coordinate projection map RZ — R defined by © — xo induces a homeomorphism of I" to
IR. The corresponding projection map ]RZ/Z — IR/Z induces a homeomorphism between I'/Z and
the circle.

b) The set of ghost circles is closed in the Hausdorff topology of closed sets of RZ, and it is compact

in COyqp/Z. The rotation number on GCs is continuous in this topology.

We will see in GClemmonlimgcthat part b) of this proposition can be improved: monotonic (for the order

on GCs defined at the end of this section) sequences of GCs with bounded rotation numbers converge uniquely.

Proof of Proposition 16.3 We show that, for any x,y in [, the projection § : * +— 1z defines a
homeomorphism from [z, y] N I” to the interval [z, 3] in IR. As before, we give IRZ the product topology.

The projection map ¢ is continuous and the set [x, y| is compact, by Tychonov Theorem, as a product of



52 CH 5 or GC: GHOST CIRCLES

closed intervals. Clearly  preserves the strict order: © < y = xo < o and hence it is one to one on I". Take
any two points < y in I". As a continuous injection, the map  defines a homeomorphism on the compact
set I' N [x,y]. We show that 6(I" N [z, y]) = [6(x), d(y)]. For this, it suffices to show that I" N [z, y] is
connected. Suppose not and I"' N [z, y] = A U B where A and B are closed and disjoint in I" N [x, y]. There
are two possibilities: either both x and y belong to the same set, say A orelse x € A,y € B.In the first case,

we could write I as the union of two disjoint closed sets:

[=[(V_(2)n ) UAU (Vi(y) N )| J B,
+

a contradiction since I is connected. The other case yields the same contradiction. Since I is ordered, any
bounded open ball for the product topology intersects I” inside an interval [x, y]|. Hence what we have shown
above implies in particular that J is a local homeomorphism on I". To show that it is a global homeomorphism,
it suffices to show that it is onto. Since /" is T—invariant, if « is a point of I, then 7,,, g is as well, and hence
the set {zg +m | m € Z} is in §(I"). By what we proved above, all the points in between are also in 4(I")
and hence § is onto IR.

This proves a). To prove b), note that if I, — I" as k¥ — oo then any point « € I is limit (in the product
topology of R%) of points x(®) ¢ I,. Since Tm,n and the flow ¢* are continuous, I” must be invariant under
these maps. “Close” and “connected” are adjectives that also behave well under Hausdorff limits. Finally,
to see that I is strictly ordered, note that if «,y are in I", we can find sequences =(*),y*) € I}, with
x = limz®, y = lim y*). By restricting to a subsequence, we can assume x*) < y*) for all k. Since I,
is strictly ordered and (*-invariant, we must have ¢ *xz(*) < ¢~*y(*) and hence ¢tz < ¢'y. The strict
monotonicity of the flow now implies: < y. The continuity of the rotation number is a direct consequences
of the continuity o on CO sequences, given by Lemma 9.1. a

It follows from this proposition that any GC has a parametrization £ € IR — z(§) € I of the form

(16.1) (&) = (- 7-1(8), & 71 (8), w2(8), - ++) -

where the z;(£) are strictly increasing and continuous functions of £. In particular { +— z(£) is a homeo-

morphism of IR. Invariance of I” under the Z? action 7 implies that 2; (£ 4+ 1) = x;(£) + 1, so that the
define homeomorphisms of the circle as well; 7-invariance also implies that 22(€) = x1(x1(£)), and more
generally that the z,, are iterates of .

Any GC projects naturally to a circle 71" in the annulus, where the projection 7 : IRZ — A is defined by

m(x) = (z0, —015(x0, 1))

Proposition 16.3 Let I be a GC for the twist map f. Then wI" and f(wI") are periodic graphs over
the x axis in IR®. More precisely they are graphs of functions o(x) and (x) such that there is a

constant L < oo, depending only on the map, and, where the derivatives are defined,

J@)>-L (@<L

Proof. 1If one parametrizes " as in (16.1) , then 7 [ is the graph of
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(16.2) y =—015(& 71(8)) = »(§).
The image f(wI") is the graph of y = 925(x_1(£), £). We now give a proof of the Lipschitz estimate. Using

the parametrization of the projection of our GC as in (16.2) , it is enough to prove that the derivative of ¢ is
bounded below. The same proof would hold for the estimate for the image f(7I") of our circle. Applying the
chain rule to (16.2) , we find: i
¢ =—0115 — 0128 - d—§1 > —011S.

This last term is bounded below by our assumption on the second derivative of .S. a

We end this section by giving a condition that insures that GCs do not intersect. We can define a partial
ordering on GC’s as follows. Let I, I be GCs: then we say [ < I3 if

() forallxz € I',a’ € [Lonehasx M =’ and I(x,x’) = 1;

(i) p(I11) < p(I2),ie.p(x) < p(x’).

Lemma 16.4 Graph Ordering Lemma If [} < I then the circle wl lies below 7wl5.

Proof. Let :m(f ) (¢) be parametrizations of the form (16.1) for I'; (j = 1,2). Then 7/ is the graph of
(&) = (& —-nS(&, xgj) (€)). We claim that xgl) € < :1;52)(5) for all £. Indeed, for a given £ the sequences
:Esll)(f) and 27 (&) intersect at site n = 0. Since they are transverse, we must have xgl)(f ) # x§2> (&); by
comparing rotation numbers we then get xgl) &) < :c§2)(5 ). By combining this inequality with the twist

condition 0125 < 0 we then conclude that 1 (£) < p2(€), as claimed. O

Exercise 16.5 Prove that the set of x sequences corresponding to orbits of an nontrivial invariant circle for
the map is a GC. (If the map has a transitive invariant circle of rotation number w, then its associated GC
is the only GC with rotation number w (Golé (1992 a), Lemma 4.22). We conjecture that this remains true
when the invariant circle is not transitive (i.e., of Denjoy type)).

17. Construction of Ghost Circles

This section will show that GCs are plentifull. In the first subsection we construct GCs whose projection
passes through any given Aubry-Mather set. The next subsection will specialize to GCs with rational rotation
numbers. For generical twist maps, we construct smooth GCs containing periodic minimizers. In Section 18

we will refine this construction to obtain ordered sets of GCs, whose projections do not intersect.

A. Ghost Circles Through Any Aubry-Mather Sets

Let M, the minimal, recurrent Aubry-Mather set of rotation number w. It corresponds bijectively to the set,
callit X, of « sequences of orbits in M. By Aubry’s Fundamental Lemma 10.2, X/, is a completely ordered
subset of CO,,. If « is a recurrent minimizer, than so is 7,, ,x for any m,n € Z, so X/, is invariant under 7.
Each point of X, corresponds to an orbit of I, and thus is a rest point of ¢¢. In Golé (1992 a), we proved the

following theorem:

Theorem 17.1 The set X, is included in a ghost circle I', and hence the Aubry-Mather set M,, is

included in the projection wI' of a ghost circle.



54 CH 5 or GC: GHOST CIRCLES

Proof (Sketch) X, is a Cantor set whose complementary gaps are included in order intervals of the type
|z, y[ where &, y € X,,. A theorem of Dancer and Hess (1991) on monotone flows implies that, in conditions
that are satisfied in the present case, if £ < y are two rest points for the strictly monotone flow (¢ and there
is no other restpoint in [z, y| then there must be a monotone orbit (i.e. completely ordered) of (¢ joining x
and y. Hence we can bridge all the gaps of X, with ordered orbits of (?, taking care to do so in an equivariant

way with respect to the 7 action. The resulting set is a GC. O

B. Smooth, Rational Ghost Circles

We now build rational Ghost Circles by piecing together the unstable manifolds of mountain pass points for
W, ¢ in X, 4. This construction will be crucial when we build disjoint GCs in Section 18. Let w = p/q be

given. Beginning here and throughout Sections 18 and 19 , we shall assume the following:
For any p/q € Q Wy is a Morse—function on Xpq. (17.1)

This is a generic condition on twist maps, as will be proven in Proposition STMPpropgeneric. Since a
GC consists of CO sequences we may assume that p and ¢ have no common divisor (see Exercise AMexow-
ellordering). Let x € X, be a critical point of IW,,,. The second derivative of W), at x is a Jacobi matrix: it

is tridiagonal (with positive “corner” elements as well) with positive subdiagonal terms:

o P 0 - [y
fr az B2 e 0
(17.2) —VQqu(:I}) = 0 52 Qa3 s
ﬂqfl
ﬂq 0 . ﬂqfl Oy
where a; = —8225(1']',1,:17]') — 8118($j,Ij+1), and 6j = —8125(%,1,;5]-) > (. Due to the Perron—

Frobenius theorem, the largest eigenvalue \g of —V?W,,(z) is simple, and the eigenvector & = (&) corre-
sponding to A\ can be chosen to be positive: {; > 0,7 = 1,...,q. (See Angenent (1988), Proposition 3.2
and Lemma 3 4). If x is a critical point of index 1, there exist two orbits .y (x;t), ¢ € IR of the gradient flow

¢ of Wy, with ay (x;t) — = as t — —oo, and with
ap(zt) =z e+ 0(M).

These two orbits, together with  itself, form the unstable manifold of «. The orbits «v.(x; t) are monotone,
oy being increasing, and «_ decreasing; since 74+ o = @ % 1 are also critical points, we have x — 1 <
ay (x;t) <z + 1 so that the o1 (¢) are bounded. Hence the limits

w4 (x) = lim ay(x;t)

t—o00

exist; they are critical points of 1, and there are no other critical points y with w_(2) < y < @ or
x <y < wi(x).If y > x is another critical point, then y > w, (x). refangenentperiodic, Theorem 1,
shows that the points w, () are local minima of W,,. We now show that the orbits a1 (x;t) converge to
these points along their “slow stable manifold”, tangent to the largest eigenvalue of —V?W,,(w. (z)).Indeed,
since w (x) are minima, all the eigenvalues are negative, and thus the largest one has the smallest modulus.

All orbits in the stable manifold of w (x) except for a finite number that are tangent to the eigenspaces of
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the other eigenvalues, are tangent to this “’slow stable manifold”. But the other eigenvectors are in different
orthants than the positive or negative ones ( Angenent (1988)). Hence oy (x;t), which are in the positive or
negative orthant of w4 (), must converge to w (x) tangentially to the eigenvector of largest eigenvalue.

To construct a GC in W,,, we first consider the set of critical points such a GC must contain.

Definition 17.2 A subset A C X, is a skeleton if the following hold.
S1 A consists of critical points of W, with Morse index < 1,
S5 A is invariant under the Z2 action 7,
Ss A is completely ordered.
A skeleton A is maximal if the only skeleton A’ with A C A" C X, is A itself.

Lemma 17.3 A mazximal skeleton A for W, exists.

Proof. Choose r, s with 7p + ¢s = 1 and define 7 = 7, 5 as in Exercise AMexowellordering. By Aubry’s
fundamental lemma the set Ay of absolute minimisers of W), is a skeleton. We fix some element x € Ay.

Any skeleton .4 D Ay is completely determined by
B=Anz,7(x)]={z€ A:x < z < 7(x)}.

Indeed, given BB we can reconstruct .4 as follows:

o0

(17.3) A= |J 7 B).

Jj=—0o0
Conversely, any ordered set of critical points B C [z, 7(x)] determines a skeleton .A D A by ((17.3) ). The
closed order interval [z, 7(x)] is compact and W, is a Morse function, so there are only finitely many critical
points in [z, 7(x)]. We can therefore choose a maximal ordered set of critical points 5 C [z, 7(x)] and be

sure that the corresponding .4 is a maximal skeleton. O

Lemma 17.4 Mountain Pass Lemma If the skeleton A is maximal, then every other point (according

to the order) is a local minimum; the remaining points are minimaxes.

Proof. If & < y are consecutive elements of A then we must show that « and y cannot both be local
minima, while one of them must be a local minimum.
Step 1. If z and y both are local minima then the following standard minimax argument shows that

there is a third critical point with index 1 between @ and y. Define () = [z, y] and consider

Q= {ze@: qu(z) <~}

Each (), is compact, and if v > max W, then (), = @ is connected. On the other hand, @),, with

q }Q
7o = max (Wpq (@), Wpe(y)) is not connected, since & and y are local minima of . Consider

1 = inf{y > 70 : @, connected}.
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By compactness (), itself is connected, and hence v; > <. Suppose there is no critical point of W, in
|, y[- Recall that  is forward invariant under the gradient flow: (*(Q) C @ for ¢ > 0. By compactness of
Q~, = Ny>~, @ there is an £ > 0 such that ' (Q+,) C @, —-, which implies that ), _. is also connected,
a contradiction. Hence there is at least one critical point z €|x, y[, with W, (2) = 71. If the Morse index of
all such z were 2 or more, then the Morse Lemma TOPOlemmorsewould show that ()., with y slightly less
than ~v; would still be connected — so the index of at least one such z is 1. But now we have a contradiction:
if ¢ and y are both local minima, then there is a minimax point z €]z, y[and AU {7, ,z : m,n € Z} isa
skeleton; this cannot be since A was maximal.

Step 2. Next we show that either  or y is a local minimum.If x is not a local minimum, then
wy(x) =lim;_ oo ay (; t) is a local minimum. But w, (z) < y, so w, (x) = y, and we find that y must be
a local minimum. Likewise, if y is not a local minimum, then = w_ (y) must be one. ad

We have all the ingredients necessary to show the following, which was proven in a slightly different form
in Golé (1992 a), Theorem 3.6.

Theorem 17.5 Assume W, is a Morse function. If A is a mazimal skeleton, then
I'y ={ax(xz;t) : t € Ryx € A is a minimaz} U A

is a C1 Ghost Circle.

Proof. Itis simple to check that, by maximality, [ 4 is connected, and a ghost circle. As a union of unstable
manifolds, I'4 is smooth except perhaps where different unstable manifold meet, at the minima. But we
showed above how the orbits o1 (x; t) must converge tangentially to the one dimensional eigenspace in the

positive-negative cone of the minima. Hence the GC constructed is also smooth at the minima. O

Exercise 17.6 Check that I'4 is indeed a GC.

18. Construction of disjoint Ghost Circles

We now arrive at the main result of this Chapter, which provides a vertical ordering of Aubry-Mather sets:

Theorem 18.1 (Ordering of Aubry-Mather Sets) Given any interval [a,b] in IR there is a family of
nontrivial circles C,,w € [a,b] in the cylinder such that:

(a) Each C,, is the projection of a GC I, and hence is a graph over {y =0} (as is f(Cy,)).

(b) The C,, are mutually disjoint and if w > ', C,, is above Cyy.

(¢) Each C,, contains the Aubry-Mather set M, of recurrent minimizer of rotation number w.

This section and the next two are devoted to the proof of this theorem. We will first construct, in this
section and next one, finite families of rational ghost circles. In Section 20, we will take limits of such families

and conclude the proof of the theorem.
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Let wy,...,wy be distinct rational numbers. The construction of the preceding section provides us with
maximal skeletons Aj, ..., A; and corresponding GC’s I'4,, ..., I 4, . It is not immediatly clear from this
construction that the projections C; = 714, are disjoint. In this section we show that the skeletons can be
chosen so that the C'; are indeed disjoint.
Definition 18.2 A family of skeletons .4; C X, . is minimally linked if any pair x € A;,y € A; withi # j

i

is transverse with I(z,y) = 1.

Theorem 18.3 Disjointness Theorem If A; C X, . is a minimally linked family of mazimal skeletons,

then the projected GC’s Cj = nl'y; are disjoint.

Proof. Order the A; so that their rotation numbers p; = p;/q; are increasing. Then we claim that
(181) Ty = Ty < Tay <+ < T'a.

Disjointness of the projected GCs then follows directly from the Graph Ordering Lemma. To see why (18.1)

holds, we consider any pair z(*) € I’ Ai» ) er 4; and assume that they are not transverse. By the Sturmian

Lemma

(18.2) I (Ctm(i),Ctm(j)) >1

for all those ¢ < 0 at which (*x(® ) ¢t2(), Butlim; . o ¢tz = y® for some y») € A, (I = i, ). Since
the A; are minimally linked we must have I(y(*), y)) = 1, which contradicts (18.2) . |
Theorem 18.4 For any k-tuple w1, . .. ,wy of rational numbers there exists a minimally linked family
of skeletons A, ..., A such that each A; is a mazimal skeleton.

This theorem, combined with the Disjointness Theorem, provides us with a disjoint family of circles
Cj = wl4; in the annulus. The construction of the .A;’s will be such that they automatically contain the
absolute minimizers of W,,,, which by Proposition 10.4 are the minimal energy orbits of Aubry—Mather. In
our proof of Theorem 18.4 we begin with constructing a maximal k-tuple of skeletons, and then show that

each skeleton in this k-tuple is maximal.

Proof of Theorem 18.4 Let M be the set of absolute minimizers of W, on X, ;.. Aubry’s fundamental
lemma implies that M,..., M, is a minimally linked family of skeletons. As in the proof of Lemma
17 3one easily finds a maximal k-tuple of skeletons A, ..., A, with M; C A;, by observing that there are
only finitely many of such extensions. We shall now show that each .A; is a maximal skeleton.

Assume that one of the A;, say A; is not maximal. Then there is a critical point z € W), 4, with index

1491
0 or 1, such that A; U {z} is completely ordered. In particular, there must exist a couple of adjacent critical
points ¢ < y in A; with z €]z, y[. We must deal with two different cases:

A. Both  and y are local minima of W, ;.

B. At least one of the critical points x or y has index 1.
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Case A. By a minimax argument we will show that there is a critical point between « and y which allows
us to extend A4 to a larger skeleton A} for which (A],...,.A) is still minimally linked. This would then
contradict maximality of (Aj, ..., A), and thereby show that Case A cannot occur. To carry out the minimax

argument we consider
R={weW,q x<w< Y, Vj>2Voes,; v M w and I(v,w) = 1}.

and its closure () = 2. The Sturmian theorem again implies that {2 and hence () is forward invariant under the
gradient flow (*. Also, as in Lemma ???, ) is compact, as are the sublevel sets Q, = {w € Q : W, 4, (w) <
~}. To obtain a critical point other than  and y in ) we must show that not all the (), ’s have the same topology.
If 7o = max (W, 4, (), Wp, 4, (y)), then Q. is again not connected, since « and y are local minima. On the

other hand we have
Lemma 185 Q = 2 is connected.

Postponing the proof of this statement to the next section, we can now easily complete the minimax

argument. Indeed, as in Lemma 174,
y1 = inf (7 > o : Q~ connected)

is a critical value of W), 4, , so there must be a third critical point w € (). By the Sturmian Lemma w must lie

in (2, and it follows from the Morse lemma that w has index 1. Put

(18.3) Al =AU {1y yw :m,n € Z};
then (A},...,.Ax) is a minimally linked family of skeletons extending (A, ...,.As), and we have our
contradiction.

Case B. Assume that x is not a local minimum, and put w = w. (x). Then w is a critical point of W), 4,
and is therefore transverse to any v € A; with j > 2, by Lemma 3.5. We claim that I (w, v) = 1. Indeed, for
t — —oo we have oy (x;¢) — x. Since (Aj,...,.Ax) is minimally linked, we find that for all ¢ sufficiently
large negative oy (x; t) and v are transverse with I (« (z;t),v) = 1. By the Sturmian Lemma I (v (; 1), v)
cannot increase, and since oy (x; t) and v have different rotation numbers I (o (x;t),v) > 1 for all ¢: hence
I{ay(z;t),v) = 1 for all . Letting t — 400 we get I(w,v) = 1, as claimed. Defining .4] as in ((18.3))
we again get a larger minimally linked family of skeletons, a contradiction. If x is a local minimum then y

cannot be one, and consideration of w_(y) leads to a similar contradiction. ad

19. Proof of Lemma 18.5

We must show that () = (2 is connected. We shall do this by showing that any w € (2 can be connected to
viaapath~y:[0,1] — 2 U {x}.
Forany j € Z and any =, w € X, 4, we put

Aj(x:w)={vj:v €A U---UA}N[z;,w;).
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For simplicity we shall write x | A U - - - U A, when we mean that 2 ) v forevery v € Ay U --- U Ay.

Proposition 19.1

(1) Aj(x: w) is finite, for each j.

(ii) Ajiq,(@:w) = A; +p1.

(iti) If z € Xpp,q0 and © < z < w, then zM Ay U---U Ay, if and only if they are tranverse in the
index range 0 < 7 < ¢q.

Proof. (1) : W,

the action of 7,,, ,,, m,n € Z. (iii) is a consequence of (ii). a

;¢; 18 @ Morse function. (ii) holds because x, w € X, ,, and the A; are invariant under

We define the height of w over x by

If the height /. (x : w) vanishes then all the A;(x : w) are empty and we can define v(t) = tw + (1 —t)x.
Since z; < 7;(t) < w; forall j and 0 < ¢t < 1, it follows from part (iii) of our last proposition that
y#) M Ay U---U A, for 0 <t < 1,so that y(t) stays within (. Call this a move of type 0.

We will now assume that h(x : w) > 0, and will show how to decrease it to zero. Suppose that for some
[ one has w; = v; > x; for some v € Ay U---U Ag. Then there is an ¢ such that 0 < ¢ < w; — x; and

(w; —e,w;) N Aj(z : w) is empty and we can define

, wj —e if j =lmod q,
wsr = .
J wy otherwise.

As before one can connect w and w’ by y(t) = tw + (1 — ¢)w’ without leaving (. Call this a move of type 1.

Assuming now that w; # v; for all 7, we will move the sequence w down by interpolating it linearly to:

L0 _ max A;(x : w) ifi=1mod ¢,
¢ w; otherwise

for some judiciously chosen [. Call this is a move of type 2. Clearly () e Xpigy and = < 20 < w,
20 = 2(49) and h(z : zgl)) = h(z : w) — 1. We need to show that for at least one [ € Z, this move does
not change the intersection index of w with the elements of A5 U - - - U Ay. Consider the set of elements in

As U - - - U Ay, that are immediately below w:

a;’ =ger max A;(x : w).

Assume that, among the sequences a® at least one has rotation number greater than that of = and pick the
one, say a® which has the largest rotation number (If all ¢®¢ have lower rotation number than x, pick the
one that has the lowest and proceed similarly). In the following, we only worry about the possible changes of
intersection index in the range 0 < j < q. The periodicity condition (ii) of Proposition 19.1 insures that if

there are changes of index, they must occur periodically. There are three cases (see Figure 19. 1) to consider:
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R p———

1
1
1
1
m
Xj-

Case 2

Fig. 19. 1. The two possible moves of type 2

Case 1: ajﬂrl > wjgq
Choose | = j and move w to z(!) as defined above. This could only change the intersection index of w with
a®i . Butin this case this intersection index remains the same: since p(a®/) > p(w) = p(x),and I(a% ,w) =1,
we must have a3’ ; < a;’' < w; ;. Hence the one crossing of w and a*, which occured between j and
7 + 1 is now moved to a crossing that occurs at j, with no other crossing introduced with this or any other
sequence of A U --- U Ay.

. S Sji+1
Case 2:a;’; <aj}y
Sj+1 Si+1
J J
a;j . Now choose | = j + 1 and move w to z(!): the one crossing of w and a®+', which occured between j

Since by assumption p(a®+1) < p(a®i), we must have a > aj-j and thus a > wj, by maximality of

and j + 1 is now moved to a crossing that occurs at j + 1.
. S _ Sji+1
Case 3: 4’| = a;};
The equality a;’ = a* cannot be true for all i > j since otherwise w and a*/ would have same rotation
number. Hence for some 7 > j, Case 1 or 2 must occur. Apply the procedure for these cases there.
Concatenating moves alternating between type 1 and 2, we get a curve in () between w and and a sequence

which has zero height. Concatenate this with a move of type O to get a curve in () between w and x. o
20. Proof of Theorem 18.1

Let wy, ws, - - - be an enumeration of the rational numbers in the interval (a, b).

Proposition 20.1 There is a family of GCs {Fln), ey T(Ln)}, where [’j(") has rotation number w;, and
where Fi(n) = Fj(n) if wi <w;. Each Fi(n) contains at least one minimizing periodic orbit of rotation

number w;, and generically all of them.

Proof. If one assumes that the map f is such that the Morse property 17.1 holds, then, according to
Theorem 18.4,one can find a minimally linked family of maximal skeletons {Ag’”) A } such that Ag-n)
has rotation number w; and contains all the absolute minimizers of that rotation number. The corresponding

GCs Fi(n) = I' () then satisfy the required conditions.

K3
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In general, when the Morse property 17.1 is not satisfied, one can approximate f by smooth twist maps f.
which do satisfy 17.1 (since this condition is generic); One thus obtains GCs Fj(;l) , and by the compactness
of the set of GCs with a fixed rotation number (Proposition 16.3) one can extract a convergent subsequence
whose limit will then be a family {Fl("), ceey F,(Ln)} of GCs. But we need to make sure that limits of strictly
ordered rational GCs stay strictly ordered. To see this, notice that the set Fi(f;) X FJ-(Z) is, when ¢ # j,included
in:

2;; = {(v,w) € PCO,, x PCO,, : vM w and I(v,w)=1}

where PCQ,, is the set of periodic CO sequences of rotation number w:
PCOp/q = COp/q N Xpg-

The set (2;; is, by the Sturmian lemma, positively invariant under the product gradient flow ¢* x ¢* corre-
sponding to any twist map. In fact: (¢* x ¢*)(Clos £2;;) C (Int §2;;), as can easily be checked (i.e. Clos §2;;
is an “attractor block” in the sense of Conley.) As Hausdorff limit of compact sets in {2;;, the set Fi(”) X Fj(")
is in Clos £2;;. But, since it is both positively and negatively invariant under ¢* x ¢*, I 'z-(n) X Fj(n) must in
fact be in Int (2;; where the intersection number is well defined and always equal to 1. In other words, we
have shown that, whenever w; < w; one must have I'™ < I’ j(”). Finally, the set I'™ contains at least a
minimizing periodic orbit, since the sets I Z-(;Z) contain by construction al/l the minimizing periodic orbits of

period w; for f., and limits of minimizers are minimizers. O

Rational C_’s

We now construct the C,,’s of Theorem 18.1, starting with all the rational w € [a,b]. Again, we use the
compactness of the set of GCs: For each n the proposition provides us with GCs F‘l("), A F,(ln) with rotation
numbers w1, . .., w,. By compactness we can extract a subsequence {n;} for which the Fl("j ) converge as
j — oo to a GC of rotation number w; . Using compactness again, we can extract a further subsequence n; for

which Fl(nj ) and FQ(nj ) both converge; repetition of this argument and application of the diagonal trick then

) converge to some limiting GC I ',Eoo) (of rotation number

finally gives a subsequence n’; for which all F,in;'l
wg) as j — oo. By the same argument as in the previous proposition, the limits F,EOO) satisfy Fi(oo) =< Fj(oo)
whenever w; < w;. We then define C,,,, = 71 k(,oo) and by the Graph Ordering Lemma 16.4, the C,,,’s are
disjoint. In the generic case, each Fi(") contains all the periodic minimizers of rotation number w;, and hence

)

so must the limit FZ-(OO . In the non generic case, I 'Z-(oo) must contain at least one periodic minimizer of the

energy.

Irrational C_’s

To complete our family of rational GCs with irrational ones, we once again take a limit. We could proceed
in a way similar to what we did in order to get all rational GCs, but we would have to appeal to the axiom
of choice (no diagonal tricks on uncountable sets!). To avoid this, we first prove a proposition of monotone
convergence of GCs. We shall write I} < I if either Iy < I or p(11) = p(I3) and 717 is ( not necessarily
strictly) below 71 .This last condition is equivalent to mgl) &) < x§2) (€) in the notation of the proof of the
Graph Ordering Lemma 16 4.
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Proposition 20.2 Monotone Convergence for Ghost Circles Let I'7) be an increasing sequence of GCs,
i.e. assume that

r®<r@<pre <.
Assume also that the rotation numbers p; = p(I" @)Y are bounded from above. Then there is a unique
GC I'™) such that I'D — (%) g j — 0o0. Moreover, if x(j)(f) is the parametrization of I'Y) with
sc(()j)(g) =&, then the T]EJ)(f) converge monotonically and uniformly to m,goo)(f), where (%) (€) is the
parametrization of I'°) with g;f;’")(g) =¢

Of course, the corresponding theorem for decreasing sequences also holds. We postpone the proof of this
proposition till the end of this section.

Assume now that we have constructed the rational GCs I k(:oo) as above. For any number w € (a, b), rational
or otherwise, we can then define two GCs Fj: as follows. Choose a sequence of rational numbers wp,; Which
increases monotonically to w. The Monotone Convergence Theorem tells us that the limit of the corresponding
GGCs I ,§j°) must exist. We denote this limit by I, . This procedure might produce an ambiguous definition of
I, since the result could depend on the choice of the sequence n;: If one has two such sequences, n; and
n; ,then the F,g?o) and [’ 7520) might have two different limits /" and I". However, one can take the union of the
two sequences to obtain a third sequence 7/, i.e. {n}} = {n;} U {n’}. The wy then also increase to w, so
that the I” 75(,),0) also must converge to some GC /™. Since n; and n; are subsequences of 7/, both sequences
n; and n; I]nust produce the same limiting GC: hence I = I" = I, and the definition of I is independent
of the choice of the n;. We choose to define C,, = w1, (or 71}, but with the same choice of + or — for all
w in order to avoid using the axiom of choice...).

We now check that, for w irrational, the unique Aubry-Mather set M, of recurrent minimizers (see
Proposition 12.9) is included in C,,. We can take a sequence of periodic Aubry minimizing sequences
xk e F,goo) where wy, /' w (\, if one chose C,, = 7I'"). Then ¥ — x, an Aubry minimizing sequence in
I, . The orbit that  corresponds to is recurrent and minimizing, as limit of recurrent and minimizing orbits.

Its closure, which is also included in C,,, must be M,, . From our definition of 177, it is clear that:
wi <w<wy = I <17 F <,

for rational w;, w; and irrational w. Hence the set formed by the rational GCs I ,goo) and the irrational ones
I, is completely ordered according to their rotation numbers. By the Graph Ordering Lemma 16.4,the C,’s

(irrational and rational) that we have constructed are mutually disjoint. O

Remark 20.2 If w is a rational number, I, is no longer necessarily in PC'O,, but is certainly in CO,,. It may
contain the sequences corresponding to homo(hetero)clinic orbits joining hyperbolic periodic orbits of rotation
number w. Hence we may (and, probably, generically do) have three distinct Ghost Circles I, < I, < I."

) for some k. We will call their projections C, C,, and C.! respectively.

for each rational w where I, is I ,500
Instead of the set {C,, },c[q,p5 Of strictly non mutually intersecting curves that we have found in Theorem
18.1, one might prefer to consider the bigger set {C,, U C} U C,; },,c(a,)- It is not hard to check that this is a

closed set of GCs.

Proof of Proposition 20.2
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Proof. Tt follows from the Graph Ordering Lemma 16.4 tthat the l‘;cj )(f ) are monotone in j. We have
assumed that the rotation numbers of the I") are bounded, so we may as well assume they are bounded by
some integer M . This bound implies for [ > 0 that xl(j ) (&) <&+41(M + 1), and in view of the monotonicity
of the :z:l(j) (&) they converge to some :vl(oo) (€). For negative [ one finds that xl(j) (&) > &+ 1(M + 1), so that
the xl(j ) (&) decrease to some xl(oo) (&). Clearly x§°°> (€) is a nondecreasing function of £. We shall show that
it is strictly increasing, and continuous.

2% (€) is strictly increasing. Let € < 1 be given. Then t — ¢*(2)(¢)) and ¢ — ¢*(x() (1)) both are on
the GC I'U), so that they must be ordered in the same way for all ¢ € IR. At t = 0 we have

£ =M@ (€)o < '@V (m)o =

so this ordering must hold for all ¢. Upon taking the limit j — oo we find that ¢*(2(°)(¢)) < ¢t (2(>)(n))

holds for all ¢. By the Strict Monotonicity lemma we must have strict inequality for all ¢, unless we have

equality for all ¢. Equality cannot happen of course, since x(()oo)(é ) =¢<n= x(()oo) (n). Hence we have

2% (£) < () (); in particular z{°° (¢) < 2{° (n).

xgm)(g) is continuous. Since the :vgj )(5) are monotonically increasing in both j and &, their limit is
increasing and lower semicontinuous in . Thus we only have to show that x§°°> €)= x§°°) (€4 0). Assume
that 2 (¢) < 2{°(¢ + 0) and define @ = {!(¢) + 2{°*) (¢ + 0)} /2. Then there is a sequence §; | 0
such that () (¢ + §;) = a. As before we consider ¢! (21 (¢ + §;)) and ¢* (219)(€)), and take the limit
j — o0o. Then, after passing to a subsequence if necessary, ¢ (z\)(¢ +d;)) — (! (z*) for some z* with
zy = £ and 27 = a, while ¢* (21 (€)) — ¢! (2(°°)(£)). Moreover we will have ¢t (z*) > ¢t (2(>)(¢)) for

all ¢, again with either strict inequality for all ¢ or equality for all ¢. But this contradicts the fact that at ¢ = 0

we have 2 = £ = 207 (¢) and 27 = a > 2(°)(¢). Thus 2! (¢) is indeed continuous. Since the 2/ (¢)

increase monotonically to :1:§°°> (€), and since q;§°°) (&) is continuous, the convergence must be uniform (Dini’s

theorem). Therefore the :vl(j ) (£), being iterates of xgj ) (&) also converge uniformly.
One now easily verifies that () = {2(°®) : ¢ € R} is a GC, and that it is the limit in the Hausdorff

metric of the I's, O

Exercise 20.3 Complete the sketch of this alternating conclusion of the proof of Theorem 18.1: For each
p=(wi,...,wg) in QF, and k arbitrary, consider the set g =U I,,;, union of GC’s whose projections

. wi;Ep
do not intersect. Let

Jla,p) = closure{(z,y) € (CO[a,b])2 ‘ I(Tmpnz,y) <1, Y(m,n) e Z%}.

This is a compact attractor block for the flow on the cartesian product. Let K C Jj43 be the maximum
invariant set in Jj, ). Then K and its projection K " on the first component are both compact. Take an
increasing (for the inclusion) sequence of finite subsets p of @, say {p’};en such that UJ.E]N P =Qna,b].
Since K’ is compact, assume that the sequence {G,i}iew converges to a set L in K'. Now show that for
all w € [a,b], LN CO,, contains at least one Ghost Circle. Show that two GCs I, I',s of different rotation
numbers in £ must satisfy I, N I, = (). To construct a partition, i.e. a family of non intersecting circles ,
pick (using the axiom of choice!) one Ghost Circle of L for each w in [a, b].
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21. Remarks and Applications
A. Remarks

1) Let’s note that the techniques introduced in this chapter have a scope that goes beyond proving the vertical
ordering of Aubry-Mather sets. Angenent (1988)introduced the flow ¢ and its monotonicity. He used it
to prove, for instance, the existence of periodic orbits that, in the generic case, would come from “elliptic
islands around elliptic islands”, as well as homoclinic and heteroclinic orbits between hyperbolic points. The
remarkable fact is that his results do not make any generic assumption. Indeed, removing generic assumptions
about transversality of unstable manifolds is often a major hurdle in proofs that use hyperbolicity, and can
be seen as an advantage of variational techniques. As an example, it was this kind of technical hurdle that
barred Tangerman & Veerman (1990a)to obtain a complete proof that the Aubry-Mather sets are vertically
ordered, a fact that they conjecture in that paper. In a larger context, Angenent (1990) continued exploring
the notion of monotonicity and its relationship to the maximum principle of parabolic PDEs and obtained a
generalization of the Aubry-Mather theorem. As noted before, Koch & al. (1994) and Candel & de la Llave
(1997) use gradient flow technics to prove interesting Aubry-Mather type theorems about functions on lattices
of any dimensions. More recently MacKay et al. have ....?
2) Ghost circles first appeared in Golé (1992 a). They stem from an effort I was making in understanding the
Ghost Tori of my thesis (see Chapter 4). I had constructed circle within the Ghost Tori. My advisor G. Hall as
well as R. MacKay and J. Meiss asked me if I could prove their projections were graphs. This launched the
work in Golé (1992 a), where I also recover a result similar to that of
on existence of invariant circles In his work on toral and annulus homeomorphisms, LeCalvez (1997)proposes
another way to construct our GCs: take an ordered circle in CO,,/Z which is Y b invariant, but not
necessarily (? invariant. A simple choice is the “straight” circle with zj(¢) = kw + £. Apply the flow
¢t to this whole circle, and take a limit as the time ¢ — co. Le Calvez suggested to us that letting the
flow act on non—intersecting collections of rational GCs may be a way to prove Theorem 18.4.1In a
way that is reminiscent to Le Calvez’ construction of GCs, Fathi (???am) has obtained the generalized
Aubry-Mather sets of Mather by applying a flow in a functional analytic space of Lagrangian graphs ???.
Finally Katznelson & Ornstein (???am via trimming) find Aubry-Mather sets on a collection of pseudo—
graphs that are (not strictly) ordered vertically. They do this by iterating the map on circles in the annulus,
trimming the image of the circles at each step so that they remain pseudo—graphs (see Chapter 3). It would

be interesting to investigate the parallel between these different methods.

B. Approximate action-angle variables for an arbitrary twist map

Dewar & Meiss (???flux min) attempt the construction of approximate action-angle variables using almost—
invariant circles defined through a mean square flux variational principle. We refer the reader to their paper
as to the physical relevance of such coordinates. We show here that similar approximate action variables can
easily be defined from our GC’s. Given any finite number of minimal Aubry-Mather sets, we will produce a
continuous foliation of the annulus by circles such that each of the Aubry-Mather set of our chosen collection
is contained in a different circle of the foliation. Moreover, such a construction will also produce a completely
integrable, albeit not necessarily differentiable map of the annulus that coincides with the original map on the

collection of Aubry-Mather sets and leaves the foliation invariant. We sketch here the simple construction.
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Let M,,,...,M,, be an arbitrary collection of minimal Aubry-Mather sets. From Theorem 18.1, we
know that we can produce a corresponding collection 77, ..., I',, of GC’s whose disjoint projections contain
the chosen Aubry-Mather sets. Parameterize these GC’s by their coordinate xg as in (16.1) and order them by

increasing rotation number. Between two succesive GC’s , say I} and [}, 1, construct the continuous family:

Li(6) = ( ot (6), €, 24 (€), - )
with 2} (&) = (1 —t)2{" (&) +t2{""V(¢)
5(€) = (24)7(€)

(k)

. 1
where, since both z;"’ and x&lﬁ_ )

are lifts of homeomorphisms of the circle, =} also is (it must be periodic
and monotone); (z})’ represents the jth iterate of this homeomorphism. It is not hard to see that, for ¢ # 0
or 1, I} has all the properties of a GC except for that of being invariant under the flow. In particular it is
a circle in CO,,, /701 on which the shift 7, o acts as a circle homeomorphism with rotation number w; =
(1 — t)wg + twy1. Its projection 71} is a graph in the annulus. The circles 71} do not intersect for different
t’s since in the (¢, 21) coordinates, they are the linear interpolation along the 21 axis of the non intersecting
graphs of xgk) and xgkﬂ) . Repeating this process between each pair of adjacent I';.’s in our finite collection
gives the continous foliation 7/ advertised. The completely integrable map is given by 7 ¢ acting on the
family /7 of Ghost Circles, or alternatively by m o 71 g o 7~ * acting on the annulus, which is the topologically
embedded image (by ) of the family .

Since for generic maps the rational GC’s can be made (', the above construction yields, when starting
with a generic map and rational Aubry- Mather sets, a C! foliation (after smoothing the glueing of our
interpolations). All the minimizing periodic orbits of the chosen rotation numbers are then embedded in the
construction. One can also take a limit of this process, by adding more and more Aubry- Mather sets. One
obtains an ordered continuum of circles in IRZ which contains our set £ of the proof of Theorem 18.1.
Alternatively, we could have started with the set £ of GCs and filled its gaps as above, all at once (gaps will
occur between the I and the I of a given rotation number).

Further study of this object might be interesting in order to draw a parallel between twist maps and families

of circle maps, eg. in the theory of renormalization (see MacKay (??? wsp book)).

C. Partition for transport

In the theory of transport of MacKay, Meiss and Percival MacKay, Meiss & Percival (1984), MacKay, Meiss
& Percival (1986), it is sought to use almost invariant circles in order to form disjoint boxes containing the
“resonance zones” around the elliptic islands (or hyperbolic points with reflexion) of the periodic minimax
orbits of different rational rotation numbers.

It is not hard to see that the pairs C,, /. of projections of the p/q+ GC’s each enclose the circle C),/,
of Theorem 18.1: they are defined as limits of circles that are respectively strictly above or strictly below
Cp/q- Moreover, as in the almost invariant circles (or partial separatrices) of MacKay, Meiss & Percival
(1986), C,/, and the C,, /. all meet at the minimum p/q orbits, at least when there are finitely many of
them (i.e. generically). C,, /. (resp. C,/,_) contains the advance (resp. retrograde) homoclinic orbits (min
and minimax), by an argument of Katok (see Hasselblat & Katok (1995) ). We therefore hope that the boxes
defined by the pairs C), .+ of GC’s may be used as intended for the partial separatrices in MacKay, Meiss &
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Percival (1986). The advantage of our boxes over those formed by partial separatrices is that their boundaries
are graphs and that they are disjoint from one another (statements unproven to our knowledge for partial
separatrices in the general case. See Tangerman & Veerman (1990a) for partial results). Hence the calculation
of the flux through them does not rely on the hypothesis that the turnstiles of MacKay et al. always have the
simple shape of a figure 8. One of the advantages of their partial barriers is that they can canalise the flux
through “cheminees”, i.e., points exit a resonance zone through one turnstile (as opposed to infinitely many
in our case). We refer the reader to MacKay & Muldoon for further arguments in favor of the use of Ghost

Circles in transport theory, as well as some very intersesting pictures.

D. An extension of Aubry’s Fundamental Lemma

As a consequence of Theorem 18.4, we get that any pairs of points in two unlinked maximal skeletons
of distinct rotation numbers have intersection index 1. By Aubry Lemma, we knew this to be the case for
minimizers, but our results shows that it is also true for the minimaxes and local minima in the skeletons. The
relevance of this appears clearer in the light of LeCalvez (astérisque) , where he shows that this intersection
number is in fact a linking number for the corresponding orbits of the suspension flow of the map. Extending
an idea of Hall (1984), he shows that this linking is an obstruction to continue periodic orbits simultaneously,
through paths of periodic orbits in an isotopy of the map to some completely integrable twist map. In our
terminology, his result implies that the periodic orbits corresponding to critical sequences in a minimally
linked set can “continue” simultaneously through curves of periodic orbits of an isotopy of our map to a well
chosen completely integrable map. In particular, LeCalvez already noted that, because of Aubry’s Fundamental
Lemma, any collection of minimum periodic orbits can be continued simultaneously to orbits of a completely
integrable map. A consequence of Theorem 18.4, where we construct minimally linked sets that contain
minimum and minimax orbits, we get, using LeCalvez’ result, orbits of minimax type as well as periodic
minimizers continuing simultaneously to orbits of a completely integrable map fj, through paths of periodic

orbits of a curve of maps joining f to fj.
22. Appendix: Proofs of Monotonicity and the Sturmian Lemma

In this appendix, we give the proofs of Theorem 14.2 and Lemma 14.3. Eventhough it is a consequence of

the latter, we start with a simpler, direct proof of the former. Both proofs are by S. Angenent.

A. Proof of Strict Monotonicity
We let the reader show that if the operator solution of the linearised equation:
(22.1) u(t) = Lu(t)

with
L: {ve}rez = {Brve—1 + arvk + Brr1Vis1frez
ap = —(9225(1'k_1,1'k) — alls(wkaxk+l)7 Bk = _8125(3716—17 xk)
is strictly positive, then the flow is strictly monotone. L(x(t)) is an infinite tridiagonal matrix with posi-

tive off diagonal terms —012.5 (2, 2,11) (see 17.1 for a finite dimensional version) . The diagonal terms
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0115(xk, 1) + 022025 ()1, x1) are uniformaly bounded by assumption. Hence, for any 7' > 0 for which
x(t) is defined when 0 < ¢t < T', we can find a positive A such that:

B(t) = L(z(t)) + Md

is a positive matrix with strictly positive off diagonal terms. If w(t) is solution of the equation (22.1) then

e Mu(t) is solution of :

(22.2) v(t) = B(t)v(t),
hence the strict positivity of the solution operator for(22.1) is equivalent to that of (22.2) . Looking at the
integral equation:

w(t) = v(0) + /0 B(s)v(s)ds,

one sees that Picard’s iteration will give positive solutions for positive vector v(0). This will imply, assuming
that v (0) > 0,v;(0) > 0, for l # k:

t
Vo1 (t) > vesa (0) + / Brs (s)oe(s)ds > 0
0

The same holding for v;, ;. By induction, vi(t) > 0,Vk € Z and the operator solution is strictly positive.
This finishes the proof of Theorem 14.2. a

B. Proof of the Sturmian Lemma

Let z;(t) (ip < i <i1,—T <t < t) be a solution of

dzr i
dt

(223) = ai(t)mi,l + bz<t)IZ(t) + ci(t)ariJrl(t) (’LO <1< Zl)

where we assume that the coefficients a;(t), b;(t), ¢;(t) are continuous and satisfy
(224) ai(t),ci(t) Z 5, ai,bi,ci S M

forall -7 <t <T,ig < i< i1,and for some constants 5, M > 0.
Lemma 22.1 Assume
=0 forig<i<i
mZ(O){# 0 ifi=ip ori=ip.

Then the sequence {xi,(t),...,x;, (t)} has less sign changes when t > 0 than when t < 0.

Proof. First a few reductions. Consider

with b;(t) = exp{— f(f bi(7)dr}; then

dyi

= A;(t)yi— i(0)Yit1,
I (O)yi—1 + Ci(t)yit1

where
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Bi1(t) Bi(t)
B.(0) B
b;(t) vanish. Note that {;(¢) } and {y;(¢) } have the same sign changes.

Ai(t) =det a;(t), Ci(t) =det

In other words, we may assume that the

The coefficients A;, C; satisfy
(22.5) Se M < Ai(t), Ci(t) < MetMT

By integrating the differential equation for y;(t) we find that for i( < ¢ < 1 one has
t

(22.6 50 = [ (o) + Culhan (7))
0

Proposition 22.2 For ig < i < i1 one has
(22.7) yi(t) = Mt" =" + Nt " 4o ([t[ 7" + |t} 77) (t—0)
where the constants M; and N; are given by

M; = A;(0)A;—1(0)--- Ai0+1(0) Yio (0)

(i — o)V
N; = C(0)C41(0) - -- C"ll(o)(lylil——(of?))!'

We shall prove this by induction. The relevant property of the coefficients M;, N; is that the M; have the
same sign as y;, (0), and the IV; have the same sign as y;, (0). Furthermore, one of the two terms in (22.7) always
dominates the other, unless i —iq = i; —i,i..unless i = 0515 if§ < L0 theny,; (1) = M;t' 040 (t''0),
if i > 234 then y;(t) = N;th —¢ + o (t1 )

Proof. We may assume i; — ig > 2. The y;(t) are continuous, and hence bounded as ¢ — 0. Therefore it
follows from (22.6) that |y;(¢)| < C'|¢| for [t| < T

If iy — ¢g = 2, then the only ¢ with iy < i < ;i8¢ =49+ 1 =1; — 1, and we have

Yio+1(t) Z/O {Ais+1(0)yi,(0) + Ci,—1(0)ys, (0) + o(1) }dr
= AL’DJrlt + Nioflt + O(t),

as claimed.

If iy — ig > 2, then y;,12(t) = o(1), and (22.6) implies

¢
o (0) = [ {40} 0) + o1}
= Mi, 19, (0)t + o(2)-
Likewise (22.6) implies y;, —1(t) = N;,—1Yi, (0)t + o(t).If i1 —ig = 3 this proves the claim; if i1 —ig > 3,
then forall io+1 < i < i; — 1 one deduces from (22.6) and the estimate |y;+1(t)| < C |¢| that |y;(¢)| < Ct2.
The general induction step in the derivation of (22.7) is as follows. Assume that it has been shown that

(22.7) holds for all 7 with iqg < i < ig + k,or iy — k < i < i1; moreover assume it has been shown that
lyi ()] < Ct]* forig + k < i <iy — k.



22. Proof of Theorem 18.1 69

Ifip + k = i3 — k, then (22.7) implies

t
Yio+k(t) = / {Aig 4k (0) My k1 ™+ Ciy—k(0)Niy g™+ 0 (7771 Jar
0

= io+ktk + Ni17ktk +o0 (tk) )

with
1
Mi0+k = Ai0+k(0)EMio+k*17
1
Ni, &= Cilfk(o)%Nilkarl-

In this case the claim is proved.

Otherwise ig + k£ < 47 — k, and a similar computation shows that (22.7) holds when ¢ = iy + k and
i = i1 — k. Finally, using (22.6) again, one finds that for iq + k < i < i; — k the estimate {yiﬂ(t)| <C \t|lC
implies |y;(t)] < C |t/*"", which completes the induction step.

Lemma 22.1follows directly from the proposition. If y;,(0) and y;, (0) have the same sign, say they are
positive, then the expansion (22.7) implies that all y;(¢) are positive for ¢ > 0; For small negative ¢ the
sequence Y, (t), Yio+1(t), - - -, Yi, (t) alternates signs, except in the middle, i.e. if i1 — i¢ is odd then v, (t)
and ;o441 (t) (with k = [25"2]) will have the same sign.

Indeed, (22.7) says the sequence {y;, (t),. ..,y (t)} has the signs as the sequence

2 ko 4k k—1
(co,crt,cat®, .. cpo1t™, cpt™, cpqrt™ ", ..., Ccok_1t, Cok)
if iy —ip = 2k is even, and {y;,(t), ..., ys, (t)} will have the same signs as the sequence
2 k+1 k
(co, 1t cat?, ..., cpt™™ ™ cpqat®, L cart, cang1)

if i1 —i9p = 2k + 1 is odd; here the c;’s are positive constants, with the possible exception of the coefficient
c. of t**1 in the second sequence.

If y;,(0) and y;, (0) have opposite signs, then one can again use the expansion (22.7) to derive that the
sequence {y;(t)} has exactly one sign change for¢ > 0,and i; — iy — 1 sign changes fort < 0.1fi; —ig = 2,
then {v;, (t), Yig+1(t), Yi+2(t)} is “transverse” to the zero sequence for all small ¢, whatever the sign of
Yig+1(t) is.

Thus, if {y;, (t), ...,y (t)} is not transverse to the zero sequence at ¢ = 0, then either iy > iy + 2, or
i1 = ip + 2, and y;,(0) and y;, (0) have the same sign. In either case we have shown that the number of sign
changes of {y;,(t),...,v:, ()} drops att = 0. O

Lemma 22.1implies the following:

Lemma 22.3 If {z;,(t),..., 2, (t)} is a C* solution of ( 22..1), with x;,(t),z;, (t) # O for all ty <

t <ty, then
(a) the number of signchanges of {x;,(t),...,z;, (t)} does not increase;
(b) this number drops whenever {x;,(t),...,x;,(t)} is not transverse to the zero sequence.

Lemma 22.1also implies the fundamental theorem on intersections which we use in the paper.
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Theorem 22.4 Let (), y(-) € CO be different solutions of

dxy,
d—tk = —028(xp—1,7k) — 015 (T, Ty1) 5

then I (x(t),y(t)) does not increase, and decreases whenever x(t) and y(t) are not transverse.

Proof. By the mean value theorem the difference z(t) = x(t) — y(¢) satisfies a linear equation of the form
(22.1). If x(tg) M y(to),then I (x(t),y(t)) is constant for ¢ near #g.
If x(tp) and y(to) are not transverse, then since (o) # y(to) one can choose iy < i; such that
2z (tg) # 0, 2% (t9) # 0, while 2%(tg) = 0 for ip < i < i;. Lemma 22.1then implies the theorem. O
The other situation in which we use the result about I (x(t), y(t)), i.e. the case when x(t), y(t) belong to

different X,,’s can be dealt with in the same way.

Lemma GTClemmaxskel is 17.3, Lemma GClemgraphordering is 16.4, Lemma GClemmonlimgc is
20.2, Theorem GCthmamordered is 18.1, Theorem GCthmdisjointgc is 18.4, Lemma GClemmountainpass is
17.4, Theorem 15.1is GCthmamflowproof, Corollary GCcorocoinv is 14.4, Theorem GCthmmonotoneflow

is 142



