CHAPTER 9*

GENERALIZATIONS OF THE AUBRY-
MATHER THEOREM

There are, strictly speaking, no full generalizations of the Aubry-Mather Theorem
in higher dimensions. we will see in this chapter examples of fiber convex Lagrangian
systems whose set of minimizers achievesonly very few rotation directions. However some
attempts of generalizations in higher dimensions are quite successful in what they try to
achieve. In Section 45, we survey some results by de la Llave and his collaborators. Their
setting is explicitly non dynamical but generalizes naturally the Frenkel-Kontorova model
to functions on lattices of any dimension. They are entirely successful in proving an Aubry-
Mather type theorem in this setting, as well asin some PDE cases, aswell asin the context
of minimal surface laminations. In Section 46, we review the work of Angenent (1990)
which generalizes twist mapsto acertain type of mapsof $* x IR™ and proves, among other
results, an Aubry-Mather type theorem for these maps. In Section 47, welook at the work of
MacKay & Meiss (1992) who construct higher dimensional analogs of Aubry-Mather sets
in symplectic twist maps that are close to the anti-integrable limit: one where the potential
term in the generating function of a standard type map dominates. In Section 48, we survey
the work of Mather on minimal measuresin convex Lagrangian systems. Thisisthe closest
to a generdization of the Aubry-Mather theory as one can get in the setting of general
convex Lagrangian systems (as well as symplectic twist maps). We start this section by
introducing the notion of minimizers and reviewing some ergodic theory. We then survey
Mather’s fundamental graph theorem and finish the section by pointing at the limitations
of the theory. Section 49 surveys the work of Boyland and the author which shows that
some of these limitations can be aleviated if one considers systems on cotangent bundles
of hyperbolic manifolds.
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45.* Functions on Lattices, PDE’s and Minimal Surfaces

A*. Functions on Lattices

Remember from Chapter 1 that the Frenkel-Kontorova model describes configurations of
interacting particlesin aperiodic potential. For simplicity, these configurations are assumed
to be one dimensional, and the interactions only involve nearest neighbors. The resulting
action function is the familiar:

Wia) = 5 3 (@ — i) — 3 Vi)

keZ keZ
where the potential function V' has period 1. W coincides with the action function for the
standard map with generating function S(z, X) = 1(X — z)? — V(z). Asnoted in Section
14, the variational equation VW = 0 for this action function is

(—Am)k — V/<.’13k) =0

where A(x), = —2z + xx—1 + xx+1 iSthe discretized Laplacian. Note that the config-
uration x can be seen as afunction Z — IR which to the integer k£ makes correspond the
real x;. One obtains (see Blank (1989), Koch & a. (1994) , Candel & delaLlave (1997) ,
delaLlave (1999)) anatural generalization of thismodel, relevant to Statistical Mechanics,
by asking that = : Z? — IR be afunction on alattice of dimension d. We assume nearest
neighbor interaction here. The energy becomes:

W(z) = % S )= Y Vi),

{(k.5)€Z?| |k—j|=1} kez?

Again V isof period 1 and the corresponding variational equation is still of the form:
(45.1) (—Aw)k — V/(.’L'k) =0

where (Az), = ;=1 ¥; — 2dzy, isthe d—dimensional discrete Laplacian. In fact, the
theory in Candel & delaLlave (1997) appliesto substantially more general settings, where
k can belong to aset A onwhich acertain type of groupsactsinamildly prescribed way, and
where the interactions involves not just nearest neighbors, but all possible pairs of particles
(with some decay condition at infinity).

Remember that the solutions « : Z — IR found by Aubry and Mather for the Frenkel—
Kontorovamodel aresuchthat |z, — kw| < co. Oneway to expressthisisby saying that the
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graphof = : Z — IR isat bounded distance from aline of Sopew in IR x IR. Likewise, the
following generalization of the Aubry-Mather Theorem finds configurations whose graphs
are at bounded distances from hyperplanes of “slopes’ w € IR¢. Thisversion istaken from
Candel & delalLlave (1997) :

Theorem 45.1 For every w € R, there exists a solution of (45.1) such that

sup |z —w - k| < oo.
kez?

Themethod of proof isvery similar to the proof of the Aubry-Mather Theorem presented
in Chapter 3. One considers the analog of CO sequences, called Birkhoff configurations by
these authors. In complete analogy to the CO sequences, they satisfy:

Tprj+1>ap, Ve €ZY or xpy;+1 <y, Vk e Z°

The analog to the set of CO sequences of rotation number w, which we denoted by CO,, in
Chapter 3is:
B, ={x | x is Birkhoff and sup |z — k- w| < oo}
kez?d

In away analogous to the proof of Theorem 15.1, one shows that the gradient flow of W
(that these authors, justifiably, call the heat flow) preserves order among configurations and
issuitably periodic, so that the set B, isinvariant under the flow. The same argument asin
the proof of Theorem 15.1 is then used to show that W must have a critical point inside
B,,. S0, asin the classical Aubry-Mather Theorem, one not only finds solutions that have
asymptotic slope w, but these solutions have strong order properties, expressed hereinterms
of non intersection: they are Birkhoff.

B*. PDE's

As Equation (45.1) suggests, the above theory smells of discretized PDE's. It is therefore
not too surprising that the same kind of methods can be applied to certain PDE problems.
The main ingredients necessary are some translation invariance and a heat flow that satisfies
a comparison principle v > v = ¢'u > ¢'v, which occurs in parabolic PDE’s. The
method can be applied (see de la Llave (1999)) to the following PDE situations, to obtain
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solutions whose graphs are at bounded distance from planes with prescribed slopes, and
have nonintersection properties:

(45.2) Au+V'(z,u) =0

where V(z +e,u+ ) = V(z,u) Vz € R, u e R,e € Z%, 1 € Z.

k
(45.3) S LI+ V(zu)=0

=1
where L; are Z¢ periodic vector fields satisfying Hormander's hypoellipticity conditions
and V' isasin the previous case.

(45.4) (=20 4+ V' (z,u) =0

with V' as above. de laLlave (1999) aso looks at the following PDE:

Ou=uy — Ugy = —V(u) + f(x,t)
(45.5)
u(x+ 1,t) =u(z,t + T) = u(x,t)

where the function f also has the periodicity:
(45.6) fle+ 1) = f(z,t+T) = f(a,1).

We say that the real number T is of constant type if its continued fraction expansion is
bounded. For instance, noble numbers are of constant type.

Theorem 45.2 (de la Llave) Let T be a number of constant type, let f € L? satisfy
(45.6) and let V : R — IR satisfy

(1) 0 < a < V' < 3 where a is any positive number and (3 only depends on T (in
an explicit manner)

(i) V7 (z)| < K

Then there exists a weak solution u € L? to Equation (45.5) . Moreover, if f € H"
and V € C™2 has small enough C™2 norm, then there is a solution w € H" of

(45.5) which is unique in a ball in H" around the origin.
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The method of proof is different from that of the above PDE’s, but still involves a
variational approach.

C*. Laminations by Minimal Surfaces

Moser (1986b) proposed ageneralization of the Aubry-Mather theory to certain minimizing
hypersurfaces in IR™ (according to some specific variational problem). There, Moser asks
if such aresult would also work when “minimizing” is understood in the classical sense of
minimal area, i.e. minimal surfaces. Caffarelli & de la Llave (2000) answers the question
positively in the following theorem:

Theorem 45.3 (Caffarelli & de la Llave) Let g be a C? strictly positive metric in IR"
invariant under integer translations. Then we can find a number M depending only
on the oscillation properties of the metric such that, for every n — 1 dimensional

hyperplane I1, we can find a minimal surface X such that Dis(X, IT) < M.

DownonthetorusT" = IR"/Z", each surface X givesriseto alamination, periodic if
the plane 11 hasrational slope, “quasiperiodic” otherwise. The full result in Caffarelli & de
laLlave (2000) is actually much more general, in that it deals with alarge class of periodic
minimization problems, those involving integrals with elliptic integrands. Moreover, asin
Theorem 45.1, this result holds for manifolds whose fundamental group satisfies mild
conditions, in particular manifolds of negative curvature.

Minimal Geodesics. An important special case of the above theorem iswhen n = 2. The
minimal surfacesarethen minimal geodesics (inthe sensethat they globally minimizelength
between any two of their points) for periodic metrics, eg. metrics on thetorus T?. This case
had been thoroughly studied by Hedlund (1932), who had obtained a similar result to the
abovein this case. Morse (1924) had previously treated the case of surfaces of negative

curvature. Theanalogy of Hedlund’swork with the Aubry-Mather theoremismade clear
in Bangert (1988), where he shows that both theories are part of a third one. We will see
in alater section that Mather (1991b) also arrives at the same kind of conclusion, with his
theory of minimal measures.
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46.* Monotone Recurrence Relations

Angenent (1990) proposes ageneralization of twist maps of theannulusto mapsof $* x IR™Y
which are defined by solving a recurrence relation:

(471) A(:L‘k,l, e ,.’L‘ker) =0

which generalizes 055 (z;_1, k) + 01.S(zk, k1) = 0 intwist maps, where k = [ = 1.
The function A isrequired to satisfy the conditions:

a) Monotonicity A(x_y, . ..,z )isanondecreasing function of all the x;, except possibly
for k = 0. Moreover, it isstrictly increasing in the variables x_; and x,,.

b) Periodicity A(xk—iy. .., Tpym) = A(xp—1+ 1, ..., Thpm + 1).

) Coercionlimy, 100 A(T_p, ..., Tp) =lim,, 400 A(z_y,...,2m) = Lo0.

Under these conditions, Angenent calls (47.1) amonotone recurrence relation. Condi-
tions a) and c) imply that one can solvefor xj,,, intermsof agiven (zx_;, ..., Tktm—1)-
Hencethisdefinesamap Fa : (€x—1, .-+ Tham—1) — (Th—ig1s - -, Thpm) from RIT™
to itself. Condition b) implies that this maps descends to amap on $* x IR'*™~ 1. Hence
the NV aboveis N =1+ m — 1.

Thenotion of CO configurations, rotation number and partial order on sequencesetc... of
Chapter 2 and Chapter 3are till entirely valid here, sincethe variables x;, are 1 dimensional
(Angenent aso calls CO sequences Birkhoff). An interesting notion that Angenent (1990)
introduces, inspired by PDE methods, is that of sub— or supersolution of the monotone
recurrence relation (47.1) : x isasubsolution if A(xy_;,...,24,,,) <0, Vk € Zanda
supersolutionif A(zy_;,...,25,,,) >0, Vk € Z.

Theorem 47.1 (Angenent) Let x,x be sub— and supersolutions respectively, which
are ordered: < T. Then there is at least one solution of (47.1), say x, for which
x < x <= holds.

Using this theorem (whose proof is ssmple), Angenent (1990) is able to generalize a
theorem of Hall (1984), itself ageneralization of the Aubry-Mather theorem: if atwist map
of the annulus, which is not necessarily area preserving, has a (m, n)-periodic orbit, then
it must have a CO (m, n)-periodic orbit. If the map is also area preserving, this implies,
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taking limits, the existence of CO orbits of all rotation numbers. Analogously, Angenent
provesthat if thereisan orbit of F, with rotation number w € IR, then F4 must aso have
a CO orbit of rotation number w.

Suppose that two solutions « and w of (47.1) “exchange rotation numbers’ in the sense
that:

lim zp/k>w; > lim wg/k
n——4oo n——oo

and

lim w/k <wy < lim xi/k

n—-+oo
holdsfor somewy < w;. Then Angenent provesthat there must be CO orbits of any rotation
number w € |wy, w1|. Moreover thisexchange of rotation numbers condition implies chaos:
thetopological entropy h,,(FA) > 0, inthat thereisacompact invariant set semi conjugate
to a Bernouilli shift. This also generalizes shadowing results of Hall (1989) and Mather
(19914). Angenent (1992) uses similar techniquesto prove the following beautiful theorem:

Theorem 47.2 Let f be a twist map of the compact annulus. Let py < p1 be the
rotation number of f restricted to the boundaries. If the topological entropy hiop(f)

of f vanishes, then f must have an invariant circle of rotation number w € [po, p1]-

48.* Anti—Integrable Limit

MacKay & Meiss(1992) explore the existence of Aubry-Mather sets (aswell as many other
possible configurations) close to the anti-integrable limit, where the potential of a standard
like map becomes all powerful. Consider a family F. of symplectic twist maps of 7*T"
given by the generating functions:

Se(q,Q) =€T(q,Q) +V(q)
where, for simplicity, we can assume
7(4,Q) = 5@ a)*

although more general 7" s can be considered. Asusual, orbits of F,. correspond to solutions
of
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(48.1) 025¢(qr_1,qy) + 015¢(qy,, @y 1) = 0.

Even though Fj isnot defined, it is perfectly acceptableto set e = 0 in Formula(48.1) . This
is caled the anti-integrable limit , anotion that seems to have appeared independently in
Aubry & Abramovici (1990) and Tangerman & Veerman (1991). Theforce of thisconceptis
that the solutions of (48.1) at ¢ = 0 are perfectly understood: they are simply allocations of
q,, tooneof thecritical pointsof V: (48.1) isjustdV (q,) = 0whene = 0.1f V isaMorse
function, it hasfinitely many critical pointsmodulo Z™ and they are all nondegenerate. This
has the following consequence:

Theorem 48.1 (MacKay—Meiss) Any solution q(0) of (48.1) for e =0 continues to

a solution q(e) when € is small.

Proof. Rewritethe infinite system of equations (48.1) intheform
G(e,q) =0

where G : R x X — (R™)Z isgiven by G(e,q) = 325:(q,_1,q)) + 015:(q1, qi11)
and X isthe Banach space of sequences such that sup,, ||q;, — g, (0)]| < oco. The Implicit
Function Theorem on Banach spaces (see Lang (1983) ) applies here to find, for small e,
aq(e) such that G(e,q(e)) = 0 aslong as %—2’(0, q(0)) isinvertible. But thisisindeed the

case since
oG

8—q(0, q(0))r = V"(gx(0))
so that %(0, q(0)) is an infinite block diagonal matrix with the n x n diagona blocks
V" (q,(0)) al invertible and uniformly bounded. Indeed these matrices are chosen among
afinite set, since q,,(0) is necessarily acritical point of V', of which there are finitely many
mod Z", by the assumption that V' is Morse. O
One can simultaneously continue compact sets of stationary solutions from the anti-
integrable limit. Such sets can be quite complicated, since the set of al stationary con-
figurations of the anti-integrable limit can be seen as a shift on as many symbols as there
are critical points. In particular, one can find invariant Cantor setsfor F.. One can also get
orbits with al rotation vectors w € IR". To do so, consider the anti—integrable stationary

solution g(0) which is such that g, (0) is at some arbitrarily chosen critical point of V' and
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q5(0) = [kw] + q(0),

where [kw] is the integer part of the vector kw. Each g, (0) is thus on the same critical
point as q,(0), but translated by the integer vector [w]. Since g, (0) — kw| < v/n, g(0) has
rotation vector w. Now use Theorem 48.1 to continue this to an orbit of F. with rotation
vector w. One can also continue simultaneously all anti—integrable solutions as the above
with rotation vectors in a compact set: they themselves form a compact set.

Even though this seems almost too easy, the anti-integrable limit is a very useful concept
in order to understand the spectrum of all possible dynamics of symplectic twist maps. It
isfair to say that, to this date, the least understood cases are those that are neither close to
integrable nor to anti—integrable.

49.* Mather’s Theory of Minimal Measures

We now come to Mather’s theory of existence and regularity of minimizers. This theory
is quite general: it covers a wide class of convex Lagrangian systems on tangent bundles
of arbitrary compact manifolds. Note that similar, but less developed theories were created
by Bangert (1989) in the setting of minimal geodesics on compact manifolds and Katok
(1992) in the setting of perturbations of integrable symplectic twist maps. There isno doubt
that Mather’s theory could be worked out for general symplectic twist maps. Even now, the
correspondences between Lagrangian systems and symplectic twist maps given in Chapter
7 (seein particular the Bialy-Polterovitch suspension theorem 41.1) should allow an ample
transfer of Mather’s results to the symplectic twist maps case.

The lesson we get from Mather’s work is that, yes, minimizers in general manifolds
behave very much like those on the circle (the realm of the classical Aubry-Mather theory),
in that they satisfy a graph property. The bad newsis that minimizers may be much scarcer
than in the circle case: Hedlund (1932) had already constructed a Riemannian metric on T
(asetting encompassed by Mather’s) which isvery small along 3 non intersecting geodesics
which generate H, (T?). All other minimizers of a certain length are then bound to spend
a good portion of their time close to these geodesics. In particular, these three geodesics
are the only possible recurrent minimizers. This limits the possible rotation vectors of
minimizers to these three directions only. Bangert (1989) (geodesic setting) and Mather
(1991b) (Lagrangian setting) show that, in a precise sense, thisis the worst case scenario:
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there should be at least as many rotation directions represented by minimizers as there are
dimensions in H;(M,IR). And, to end on an optimistic note, Levi (1997) constructs, in
thisworst case scenario of Hedlund's example, “shadowing” locally minimizing orbits that
spend any prescribed proportion of time close to each of the minimizers. In particular, he
constructs locally minimizing orbits of al rotation vectors.

In order to introduce Mather’s theory of minimal measures, we need to define the notion
of Lagrangian minimizers, similar to that of Aubry minimizers for twist maps. In passing,
we note the connection between the notion of action minimizing and hyperbolicity.

A*. Lagrangian Minimizers

Throughout this section and the next, we consider time-periodic Lagrangian systems deter-
mined by a C2-Lagrangian functions L : TM x $! — IR, where M isacompact manifold
given a Riemannian metric g. Remember (see Appendix 1 and Chapter 7) that extremals of
the action

b
A(y) = / Ly, 4, t)dt

satisfies the Euler-Lagrange equations 2% — 2L — (. Using local coordinates these
equations yield a first order time-periodic differential equation on 7'M, and thus in the
standard way, avector fieldon 7'M x $*. Thiscan be viewed asthe Hamiltonian vector field
corresponding tothe L agrangian system, pulled back to 7" M by the L egendretransformation.
Since TM x $' is not compact it is possible that trajectories of this vector field are not
defined for all timein IR and thus do not fit together to give aglobal flow (i.e. an IR-action).

When the flow does exist, it is called the Euler-Lagrange (or E-L) flow . The following

quite general hypotheses are the setting of Mather (1991b) .

Mather’'s Hypotheses.

LisaC? function L : TM x $' — IR that satisfies:

(@) Convexity: 2% is positive definite.

(b) Completeness: The Euler-Lagrange (global) flow determined by L

exists.

(c) Superlinear: L(ﬁ“’l’}'ﬂ’” — 00 when ||v]| — 4o0.
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Mather’s Hypotheses are satisfied by mechanical Lagrangians, :.e. those of the form
1
L(J},'U,t) = 5 HUHQ - V(.fC,t),

where the norm is taken with respect to any Riemannian metric on the manifold. (In fact,
one may allow the norm to vary with time, under some conditions, see Mané (1991), page
44).

Minimizers. We know that, for twist maps, orbits on Aubry-Mather sets are minimizersin
the sense of Aubry. We have also seen in Chapter 6 that orbits on KAM tori are minimizers
for symplectic twist maps . These are natural reasons to look for minimizers in convex
Lagrangian systems. Lagrangian minimizers are defined in away analogous to the discrete
case. If M isacovering space of M (see Appendix 2), L liftsto areal valued function (also
called L) defined on TM x §*.

A curvesegment v : [a, b] — M iscalled a M-minimizing segment or an M-minimizer
if it minimizes the action among all absolutely continuous curves 3 : [a,b] — M which
have the same endpoints as . A curvey : IR — M is also called a minimizer if Viay 1S
aminimizer for al [a,b] C IR. When the domain of definition of a curve is not explicitly
givenitisassumed to be IR. In practice, the two main covering spaces that we will consider
are the universal cover (in next section) and the universal abelian cover (in this section, see
Appendix 2 for the definitions of these covering spaces).

A fundamental theorem of Tonelli (see Mather (1991b) or Man& (1991) ) impliesthat if
L satisfies Mather's Hypotheses, then given a < b and two distinct points z,, z;, € M there
awaysisaminimizer v with~(a) = x, andy(b) = x. Moreover such a~y isautomatically
C? and satisfies the Euler-L agrange equations (this uses the compl eteness of the E-L flow).
Henceitsdifferentia d~(t) = (v(t),5(t)) yieldsasolution (dv(t), t) of the E-L flow.

B*. Ergodic Theory

Most of the material in this subsection can be found in Hasselblat & Katok (1995), whereit
isthoroughly developped. We start by motivating thistheory by thefollowing trivial remark:
if Fisamap of T*T" and ¢(z) = 7(F(z)) — n(z) (w : T*T"™ — T" is the canonica
projection) then, when it exists:

Tim 23 g(FH(z) = i TEDZTEED ()
k=1

n— oo n
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the rotation vector of z under F. The expression lim,, .. = >-7'_, ¢(F*(2)) for ageneral
continuous function ¢ is called the time average of ¢. Hence the rotation vector of apoint,
when it exists, is the time average of a specific ¢. The relevance of thisis the following:

Theorem 49.1 (Birkhoff's Ergodic Theorem) Let F' : (X, u) — (X, u) be a measure
preserving transformation for a Borel measure p on a space X, and ¢ € LY(X, ).

Then the time average ¢r(z) of ¢:
_ o Iy k
¢r(z) = lim - > o(F¥(z))
k=1
exists for p — a.e. z. Moreover, if i(X) < 0o, [y ¢rdu = [ ¢pdpu.

Remember that a Borel measure on atopological space is one whose sigma-algebra of
measurable sets is generated by the open sets. The above theorem actually does not require
the measure to be Borel, but we will assumeit for therest of this section. That F' is measure
preserving means p(EF 1 (A)) = p(A) for any Borel subset of X. Animmediate corollary
of Birkhoff’s theorem is (one needs to compactify 7*T" with a point at cc):

Corollary 49.2 Let F' be a volume preserving map (eg. symplectic) of T". The rotation

vector pr is defined on a subset of full Lebesque measure of T*T".

It turnsout that the L ebesgue measureisonly one of the many measuresthat asymplectic
map F preserves. Take z € T*T" to be a N-periodic point of F', for instance, and let :

1N
n= N;(SFk(z)

where the Dirac measure §,, is the (Borel) probability measure concentrated at the point
w (0u(A)islifw € AanditisOif not). Since §pr () (F~1(A)) = dpri1(z)(A4), nis
invariant under F'. One of the many differences between n and the Lebesgue measure is
their supports. In general, the support of aBorel measure p is defined as:

Supp p={ze€ X | uw(U)>0 whenever zecU, U open }

Clearly, the support of the measure ) constructed above is the orbit of the periodic point
z, whereas the support of the Lebesgue measure is al of 7*T". Hence, the support of
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invariant measures is another way to conceptualize invariant sets. Let F : X — X be
continuous. Then the support of any F-invariant Borel measure 4 is closed, F-invariant
and its complement has zero py—mesasure. If u(X) < oo, Poincaré's Recurrence Theorem
implies that Supp u is contained in the set of F'—recurrent points. In fact, if apoint z is
in Supp p then its w-limit set w(z) isincluded in Supp w. Hence, to find recurrent orbits
in adynamical system, as we have been doing in this book, one can look for (supports of)
invariant measures.

Coming back to rotation vectors, and the measure n supported on a periodic orbit,
the rotation vector pr(z) not only exist n — a.e., but it is constant on Supp 7. In fact, it
can easily be checked that the time average ¢ is constant on Supp 7 for any function
¢ € LY(T*T™,n): the measure n is ergodic.

Definition 49.3 An F-invariant probability measure . on aspace X isergodic if it satisfies
one of the following equivalent properties:

1) Every F-invariant set has ¢ measure O or 1.

2)If ¢ € L1(X, p) is F-invariant then ¢ is constant i — a.e.

3) The time average ¢ equalsthe space average = [ pdp, pp— ae.

Remark 49.4 Thethird defining property isthe one of importancein thisbook. It implies, in
particular, that for an ergodic ., thetime averagesalong 1. — a.e. orbits (most of which have
to be in the support) are al the same. In particular, let us define the rotation vector p(u)
of ameasure 1 to be the u—space average of the function 7(F'(z)) — n(z). If puisergodic,
p(u) coincides with the rotation vector of 1 — a.e. orbit of F' (i.e. the time average). We
can still define p(u) for non ergodic measures, but we loose its connection to the rotation
vectors of individual orbits.

It is known (see Mafle (1987)) that, if . is ergodic, F' has an orbit in Supp p which
is dense in that support. Hence ergodicity relates to topological transitivity. The Lebesgue
measure may never be ergodic for twist maps: whenever we have a chain of ellipticislands,
it comprises an invariant set which is not of full Lebesgue measure. On the other hand,
twist maps do have plenty of ergodic measures. We have seen above the example of a
measuren supported on periodic orbits. Moregenerally, Aubry-Mather sets can be defined
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as supports of ergodic measures, pull-back of measures on $' invariant under circle
diffeomorphisms. Indeed, take the set (M) in Theorem 12.8: it is the omega limit set
2(T) for acirclediffeomorphism T". Now, pick = € 2(7T") and take the weak* limit 1 of the
probability measures iy = 5— Z]_VN drk(z)- thelimiting measure 1. defines an ergodic
measure for T, and its pull back by 7 is ergodic for F* with support the Aubry-Mather set
M [the weak* limit isdefined by i, — p iff Jx Otn — [ op for al continuous ¢].

Hence our main objects of study in this book, periodic orbits and Aubry-Mather sets,
areall supports of ergodic probability measures, part of the larger set M - of al F-invariant
Borel probability measures.

If X isacompact metric space, it turnsout that theset M of al Borel probability measures
is convex and compact under the weak* topology. Moreover M itself is a compact and
convex subset of M for this topology. A theorem of convex analysis (Krei-Millman) says
that M g isthen in the convex hull of its extreme points : those u € Mg which cannot be
written astpuq + (1 — t) uo for two distinct pi1, uo € M. Findly, the extreme points are all
ergodic measures. We will see in the next subsection that there is a strong correspondence
between the (strict) convexity of acertain projection of M r and the Aubry-Mather theorem.

As we will see in next section, Mather (1991b), (1993) considers measures that are
invariant under the Euler-Lagrange (E-L) flow instead of a symplectic twist map . In the
light of the suspension theorem of Bialy-Polterovitch (Chapter Chapter 7), his setting en-
compasses a large class of symplectic twist maps. All the statements that we made above
arevalid for E-L flowson T'T" provided one compactifies TT" (as Mather does) in order
to use the compactness of the space of E-L-invariant probability measures.

C*. Minimal Measures

For amore detailed exposition the reader is urged to consult Mather (1991b), Mané (1991).
Thereisalso avery nice survey of thistheory in Mather (1993).

Invariant Measures, their Action and Rotation Vector. Given a E-L invariant probability
measure with compact support ;2 on TM x $', one can define its rotation vector p(y)
as follows: let 31, (s, ..., 3, be abasis of H*(M) and let \{,..., )\, be closed one-
formswith [\;] = 3; in DeRham cohomol ogy.(1”) We refer the reader uncomfortable with

1"When homology and cohomology coefficients are unspecified they are assumed to be IR,
so the notation H; (M) means H,(M;IR), etc.
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(co)homology to Appendix 2 and urge her/him to read through this section thinking of the
case M = T", taking [\;] = [dz;], asabasisfor H'(T") ~ R", where (z1,...,z,) are
angular coordinates on 7*T". Define the i*" component of the rotation vector p(u) as

pNOz/MW-

Notethat thisintegral makessensewhen onelooksat \; asinducingafunctionfrom 7'M x $*
to IR by first projecting TM x $* onto T M,

and then treating the form as a function on 7'M that is linear on fibers. The rotation
vector does depend on the choice of basis 3;, but because these 1-forms are closed, p; (1)
does not depend on the choice of representative \; with [\;] = ;. Since the rotation vector
isdual toforms(withpairing < A, u >= [ Adp), it can beviewed asan element of H; (M).
Inthecase M = T, if v(0) isageneric point of an ergodic measure 1, the natural definition
of rotation vector of a curve ~ coincides with p(u):

e Yi(b) — ; ) 1
p) O, [ dni= [ dvidu=pit
d7|[a,b]

b—a—oo b—a b—a—oco b — a

where 4 is alift of v to IR™ and the third equality uses the Ergodic Theorem (again, dz;
is seen as a function TM x $' — IR). This prompts the following formula for the (i*”
coordinate of the) rotation vector of acurve~ : IR — M for ageneral manifold M:

1
(7)) = i i,
pi(7Y) “gkb_“éww]l

if thelimit exists. Asbefore, if v(0) isageneric point for an ergodic measure p, p(7y) exists

and coincides with p(x) (and this is not necessarily the case for non ergodic measures).
Next we define the average action of aE-L invariant probability on TM x $':

A = [ L,

i.e. the space average of L which, when p is ergodic, equals the time average along j:-a.e.
orbit v:

A(p) = lim

b—a—oo b — a

b
/ L(vy,%)dt, i — a.e. orbit 7.

The Set of Minimal Measures and the Function (3. The set of E-L invariant probability
measures, denoted by M, isaconvex set in the vector space of all measures, as we have
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seen in the previous subsection (it is aso compact for the weak* topology if, as Mather
does, one compactifies T'M) and the extreme points of M ;, are the ergodic measures (see
Mafie (1987)). Consider the map M, — H; (M) x IR given by:

= (p(p), A(p)) -

Thismap istrivialy linear and hence maps M, to aconvex set U, whose extreme points
are images of extreme points of M, i.e. images of ergodic measures. Mather shows, by
taking limits of measures supported on long minimizers representing rational homology
classes, that for each w, there exists an invariant (but not necessarily ergodic) measure p
suchthat p(p) = w and A(p) < 00.0®) Since L is bounded below, the action coordinate is
bounded below on Uy,. Hence we can defineamap 5 : H; (M) — IR by

Blw) = inf{A(p) | p e Mg, p(p) = w},

which is bounded below and convex: the graph of (3 is the boundary of U;. We say that
a probability measure 1 € My, is a minimal measure if the point (p(u), A(w)) ison
the graph of (. In other words, a measure 1 with p(x) = w is a minimal measure iff it
minimizes the average action subject to the constraint that it have rotation vector w. By
construction, an extreme point (w, 3(w)) of graph(3) corresponds to at least one minimal
ergodic measure of rotation vector w. It turns out that if ;4 isminimal, y-a.e. orbit liftsto a
E-L minimizer in the universal abelian cover M of M (whose deck transformation group is
Hy(M;Z)/torsion, see Appendix 2). Conversely, if x is an ergodic probability measure
whose support consists of M -minimizers, then x isaminimal measure.

Hence, each time we prove the existence of an extreme point (w, B(w)), we find
at least one recurrent orbit of rotation vector w which is a M-minimizer.

Another important property of 3 isthat itissuperlinear, i.e. B@) _, 5 when |z|| — oc.

[E3

We motivate this in the simple case where L = 1 &> — V() and ||-|| comes from the
Euclidean metric on the torus. If 1 isany invariant probability measure, then

18The impatient reader may be tempted to proclaim, from this fact, the existence of orbits
of all rotation vectors. Alas, as we noted in Remark 49.4, we can guarantee that the
rotation vector of orbits in the support of a measure u are equal to p(u) only when p is
ergodic
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A(u)=/Ldu2/<@—vmm> du
(49.1) . % ‘/g'chQ

- Vmaa:
1
= §|p(,u)|2 = Vinaz,

where we used the Cauchy-Schwartz inequality for the second inequality. We see that in
thisparticular but important case,  grows at |east quadratically with the rotation vector. The
superlinearity of 5 impliesthe existence of many extreme pointsfor graph(3) (althoughin
most cases till too few, as we will see in the next subsection), as we explain now.

Countably Many Minimal Measures: Is This Enough? Asthe boundary of the convex set
Uy, the graph of 5 is made of flat faces, or linear domains. Each of these linear domains,
which we denote by S.., isaconvex set, intersection of U, with a supporting hyperplane of
Uy of “dlope’ c. [Since c actslinearly on homology classesw to givetheequationc-w = a
of the supporting hyperplane, it can be seen as an element of first conomology.] Let X,
be the projection on H (M) of S.. The sets X, are convex domains which tile the space
H,(M). Now the growth condition on 3 implies that

its graph cannot have a linear domain going to infinity: the sets X . must be compact.
Extreme points of X are projections of extreme points of S.., themselves extreme points of
Ur. Hence there are infinitely many such extreme points, and infinitely many outside any
compact set. Their convex hull is

Hy (M), andin particular, they must span H; (M) asavector space. Sincethese extreme
points are the rotation vectors of minimal ergodic measures, we have found:

Theorem 49.5 There exist at least countably many minimal ergodic measures and

at least n = dim Hy (M) of them with distinct rotation directions.

In particular there are at least n rotation directions represented by minimal measuresfor
aE-L flowon T*T". Wewill seein Hedlund’'s exampl e that thislower bound is attained by
some systems. Findly, the generalized Mather sets are defined as

M. = Support(M.,),
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where M. is the set of all minimal measures whose rotation vectors liesin X,.. Let 7 :
TM x $' — M x $' denote the projection. The main result in Mather (1991b) is the
following theorem:

Theorem 49.6 (Mather’s Lipschitz Graph Theorem) For all ¢ € HY (M), M, is a
compact, non-empty subset of TM x $'. The restriction of w to M, is injective. The

inverse mapping m ' : 7(M.) — M, is Lipschitz.

In the case M = T", Mather proves that, when they exist, KAM tori coincide with
the sets M, (see also Katok (1992) for some related results in the symplectic twist maps
context). The proof of the Graph Theorem (see Mather (1991b) or Mangé (1991)), which
is quite involved, uses a curve shortening argument: if two minimizing curves in 7(M..)
weretoo closeto crossing transversally, one could “cut corners’ and, because of recurrence,
construct a closed curve in M, with lesser action than the minimal action of measures
in M., a contradiction. This argument by surgery is reminiscent of the proof of Aubry’s
Fundamental Lemma in Chapter 2.

The Autonomous Case. An important special case is that of autonomous systems (i.e.
with time independent L). In this case, one can discard the time component and view M.
as a compact subset of 7'M . Mather’s theorem impliesthat M. isaLipschitz graph for the
projection : T'M — M. To seethis, suppose that two curvesz(t) and y(t) inw(M.) have
x(0) = y(s) for some s. Mather’s theorem rules out immediately the

possibility that s isan integer, unlessz = y isaperiodic orbit. For ageneral s, consider
thecurve z(t) = y(t+s). Then, 2(t) = y(t + s) and, by time-invariance of the Lagrangian,
(z(t), 2(t)) isasolution of the E-L flow. It has same average action and rotation vector as
(y,y) and henceitisasoin M.. But then z(0) = z(0) isimpossible, by Mather’s theorem,
unless 2(0) = y(s) = 4(0) and thus, by uniqueness of solutions of ODES, z(t) = y(t + s).

The Symplectic Twist Map Case. By using Theorem 41.1, one can translate the results of
Mather to the realm of symplectic twist maps (see Exercise 49.7) and deduce the existence
of many invariant sets that are graphs over the base and are made of minimizers. As noted
before, one could also redo all of Mather’s theory in the setting of symplectic twist maps
(see Katok (1992), who considered the near integrable case).
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D*. Examples and Counterexamples

Recovering Past Results. When Mather’s function § (see previous section) is strictly
convex, each point on graph(3) isan extreme point and there are ergodic minimal measures
(and hence minimal orbits) of al rotation vectors. One can prove that this is true when
M = $', and Mather (1991b) shows how hisLipschitz Graph Theoremimpliesthe classical
Aubry-Mather Theorem, by taking a E-L flow that suspends the twist map. The fact that
M. isagraph nicely trand ates into the fact that orbitsin an Aubry-Mather set are cyclicaly
ordered: as pointed out by Hall (1984), the CO property corresponds to trivial braiding of
the suspended orbit, itself guaranteed by the graph property.

The graph of 3 isalso strictly convex when L is a Riemannian metric on T2, and hence
there are minimal geodesics of all rotation vectors for any metric on the torus. This was
known by Hedlund (1932), who had basically worked out the same results as Aubry and
Mather in that setting, albeit in a different language. [See Bangert (1988) for a unified
approach of the two theories]. Hence one could hope, as a generalization of the Aubry-
Mather theorem, that ( is strictly convex for any Lagrangian systems satisfying Mather’s
hypotheses. This statement is false as we will see in the following examples.

Examples of Gaps in the Rotation Vector Spectrum of Minimizers for Lagrangian on
T2 Take L : TT? — R, given by L(z,4) = ||& — X ||* where X is avector field on T2,
Theintegral curves x of X are automatically E-L minimizerssince L = 0 on these curves.
Maneé (1991) chooses the vector field X to be a (constant) vector field of irrational slope
multiplied by a carefully chosen function on the torus which is zero at exactly one point q.
Theintegral flow of X hastherest point ¢(¢) = ¢, and al the other solutions are dense on
the torus. The flow of X (and its lift to 7T by the differential) has exactly two ergodic
measures. one is the Dirac measure supported on (g, 0), with zero rotation vector, the other
is equivalent to the L ebesgue measure on T? and has nonzero rotation vector, say w. Mafie
checksthat 31(0) (trivialy awaysan X.) istheinterval {\ w | X € [0, 1]}, and that no
ergodic measure has arotation vectors strictly inside thisinterval. Thus the Mather set M
is the union of the supports of the two above measures.

Boyland & Golé (1996a) give an example of an autonomous mechanical Lagrangian
on T2 which displays a similar phenomenon, although we also show in that paper that all
autonomous L agrangian systems satisfying Mather’s Hypothesis do have minimizers of all
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rotation directions. We aso give in this paper a very precise description of the g function
for such systems and show that the support of minimal ergodic measures have to be either
apoint, aclosed curve, a suspension of a Denjoy Cantor set or the whole torus.

Hedlund-Bangert's Counterexamples. Consider in IR® the three nonintersecting lines
given by the x-axis, the y-axis trandated by (0,0,1/2) and the z-axis transated by
(1/2,1/2,0). Construct a Z*- lattice of nonintersecting lines by tranglating each one of
these three lines by integer vectors. Take a metric in IR® which is the Euclidean metric
everywhere except in small, nonintersecting tubes around each of the axes in the lattice.
In these tubes, multiply the Euclidean metric by a positive function A which is 1 on the
boundary and attains its (arbitrarily small) minimum along the points in the center of the
tubes, i.e. at the axes of the lattice. Because the construction is Z* periodic, this metric
induces a Riemannian metric on T2. One can show (Bangert (1989)), if X is taken suffi-
ciently small, that a minimal geodesic (which isa E-L minimizer in our context) can make
at most three jumps between tubes. In particular, arecurrent E-L minimizer has to be one
of the three digoint periodic orbits which are the projection of the axes of the lattice. Thus
there are only threerotation directionsthat minimizers can takein thisexample, or six if one
counts positive and negative orientations. In terms of Mather’s theory, the level sets of the
function 8 inIR* = H,(T?) are octahedrons with vertices (+a, 0,0), (0, £a, 0), (0, 0, +a)
(we assume here that the function ) is the same around each of the tubes). Sincewe arein
the case of ametric, one can check that 3 is quadratic when restricted to aline through the
origin (aminimizer of rotation vector aw is areparameterization of aminimizer of rotation
w). Hence aset S. is either aface, an edge or a vertex of some level set {3 = b}, and the
corresponding M. is, respectively, the union of three, two (parameterized at same speed)
or one of the minimal periodic orbits one gets by projecting the digoint axes. Note that,
instead of the function  of Mather, Bangert uses the stable norm. Mather’s function 3 is
ageneralization of that norm.

Levi’s Counter—Counterexample. It isimportant to note that the nonexistence of minimiz-
ers of a certain rotation vector w does not mean that there are no orbits of the E-L flow
that have rotation vector w. For example, Levi (1997) has shown the existence of orbits of
al rotation vectors in the Hedlund example. He constructs, using some broken geodesic
methods, local minimizers shadowing any curve made of segments (of sufficient length) of
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the minimizing axes and jumps between the axes. This makes for extremely rich, chaotic
dynamics.

Further Developments of Mather’s Theory of Minimal Measures. As of this writing, a
number of mathematicians are very activein research on minimizersin convex Lagrangian.
Foremost is the group of young and talented researchers which formed in South America
and Mexico around former students of the late Mafie. This group has solved many problems
posed by Mafie soon before his death (see Mafie (1996a) and Marie (1996b)), mainly on
autonomous Lagrangian systems. Look for the names of Carneiro, Contreras, Delgado,
Iturriaga, Paternain, Sanchez-Morgado and more. Recently this group, together with K.F.
Siburg, has made strides in bridging this theory with the more geometric point of view of
symplectic topologists: the minimal action function is related to symplectic capacities and
Hofer’'s energy (see Siburg (1998), Iturriaga & Sanchez-Morgado (2000a)). Fathi (1997)
recovers some of Mather’stheory and createstieswith the KAM theory using super and sub
solutions of Hamilton-Jacobi’s equations. lturriaga& Sanchez-Morgado (2000b), Contreras
(2000) continue this work.

Asnotedin Chapter 6, Mather hasrecently used thetheory of minimal measures, together
with some hyperbolic methods to prove the existence of unbounded orbits in Lagrangian
systems, agreat |eap inthe general problem of the so-called Arnold diffusion (see Delshams,
delallave& Seara(2000)). Hencethetheory hasgonefar beyondthetask of generalizingthe
Aubry-Mather theory: it has given mathematicians new tools to study the global dynamical
properties of Lagrangian systems.

Exercise 49.7 Find hypotheses on the generating function of an symplectic twist map F
which translate to Mather’s hypotheses for the Lagrangian that suspends F' (Hint. You
may want to include Bialy and Polterovitch’s conditions of Theorem 41.1 for F' to have a
convex suspension. Note that completeness of the flow is for free: F' is defined everywhere.)
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50.* The Case Of Hyperbolic Manifolds

We start this section with another counterexample to the strict convexity of Mather's 3
function, and hence to the existence of orbits of all rotation vectors. The setting is that of
a metric on the two-holed torus, the simplest example of a compact hyperbolic manifold.
However, we finish the section on a positive note, by quoting a result of Boyland & Golé
(1996b), in which we introduce another definition of rotation vector suited to hyperbolic
manifolds and show the existence of minimal orbits of all rotation directions for a large
class of Lagrangian systems on hyperbolic manifolds.

A*. Hyperbolic Counterexample

Take the metric of constant negative curvature on the surface of genus 2 (the two-holed
torus) which has along neck between the two holes (see Figure 50.1). A minimizer here
is a minimizing geodesic for the hyperbolic metric. With a and b as shown, the minimal
measure for the homology class [a] 4 [b] isalinear combination of the ergodic

measures supported on I, and I3, where I, and I, are the closed geodesics in the
homotopy classes of a and b, respectively. Indeed, I, and I3, must “go around” the same
holes as a and b, and any closed curve that crosses the neck will be longer than the sum
of the lengths of I°, and I,. Hence ([a] + [b], 5([a] + [b])) cannot be an extreme point of

graph(3).
S

Fig. 50.1. The surface of genus two and the loops a and b. No minimal measure with
rotation vector [a] + [b] can have support passing through the long neck. In particular, a
curve in the homotopy class of ¢ cannot yield a minimizer in the abelian cover.
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B*. All Rotation Directions in Hyperbolic Manifolds

Asthe previous example shows, the notion of minimizersin the abelian cover is maybe too
restrictive, asit rules out many geodesics. Instead of working on the universal abelian cover,
we work in the universal cover and define minimizers and rotation vectors with respect to
that cover.

All manifolds of dimension n which admit a hyperbolic metric of constant negative
curvature have the Poincaré n—disk as universal covering space IH". Hence a hyperbolic
manifold M is the quotient IH" /71 (M) where 71 (M) acts on IH™ as the group of deck
transformations. To visualize IH", assume n. = 2, which covers any orientable surface of

genus greater or equal to two. One model for TH? is the usual Euclidean unit disk which
dm2+dy2

1—(22+y?)"

distance and the euclidean one tends exponentially to oo as points approach the boundary of

is given the hyperbolic metric The ratio between the corresponding hyperbolic
the disk. Geodesics for the hyperbolic metric are arcs of (Euclidean) circles perpendicular
to the boundary 9TH? of the disk.

The minimizers we consider in this section lift to curvesin the universal cover which
minimize the action between any two of their points. We also assume that the Lagrangian
L satisfies Mather’'s Hypotheses (time periodic C? function with (a) fiber convexity, (b)
completeness of the E-L flow) except that we replace his condition (c) of superlinearity by
one of superquadraticity:

(C') superquadraticity: ThereexistsaC > 0 suchthat L(z, v,t) > C ||v|°.

This, again, is satisfied by mechanical systems. Note that, without loss of generality, one
can assume the Lagrangian L to be positive: being convey, it is bounded below, and adding
a constant to L does not change the E-L solutions. We now state the two theorems that
appear in Boyland & Golé (1996b). The first one finds minimizing solutions near any given
geodesic:

Theorem 50.1 (Boyland-Golé) Let (M, g) be a closed hyperbolic manifold. Given a
Lagrangian L which satisfies Hypotheses (a), (b), (¢’), there are sequences k;, ki, T;
in RT depending only on L, with k; increasing to infinity, such that, for any hyper-
bolic geodesic Iy C H™ = M (for the lifted metric), there are minimizers v; : R —

M with dist(~;, Iy) < ki, vi(£o0) = Ty(£o0), and k; < —dist(y;(d), vi(c)) < kit

whenever d — ¢ > Tj;.
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The following theorem can be viewed as a (weak) generalization of the Aubry-Mather
theorem for convex Lagrangian system on compact hyperbolic manifolds. Remember that,
since the geodesic flow is the solution of the autonomous Lagrangian system with corre-
sponding Hamiltonian 5 Ip||®, the energy levels ||v|| = ¢ are all invariant sphere bundles
that foliate the tangent bundle. In the case of M = $' with the Euclidean metric, these
energy levels are pairs of flat invariant circles of the completely integrable map. Similarly
to the Aubry-Mather theorem which states that traces of these invariant circles remain in
the guises of invariant circles or Cantor sets whose dynamics is (semi)conjugate to circle
homeomorphisms, the following theorem proves the existence of E-L invariant setsthat are
semiconjugate to the geodesic flow on these sphere bundles. The reason that we call this
a “weak” generalization of the Aubry-Mather theorem is that we can only guarantee the
existence countably many of these E-L invariant sets. Hence the geodesic flow is “weakly”
topologically stable.

Theorem 50.2 (Boyland-Golé) Let (M,g) be a closed hyperbolic manifold with
geodesic flow gi. Given a Lagrangian L which satisfies Hypotheses (a), (b), (c¢’)
with E-L flow ¢, there exists sequences k; and T; with k; increasing to infinity,
and a family of compact, ¢i-invariant sets X; C TM so that for all i, (X;, ¢y) is
semiconjugate to (TyM, g;) and k; < Fdist(¢r(x), do(x)) < kiy1, whenever T > T;
and x € X;.

The key to these theorems is that, for any Lagrangian systems on a compact manifold
satisfying the properties a), b), ¢’), we show that E-L solutions are quasi-geodesics, in the
sense of Gromov. We then use the property that, in hyperbolic manifolds, quasi-geodesics
are uniformly close to geodesics.

A New Definition of Rotation Vector in Hyperbolic Manifolds. Wenow interpret Theorem
50.1 assaying that there exist minimizers of all rotation directions, with a new definition of
this term valid only for hyperbolic manifolds. Let usfirst reinterpret the classical notion of
rotation vector on T*T" geometrically: acurve~ on T™ hasrotation vector v € IR" if its
lift 4 in the universal cover IR" is “asymptotically parallel” to the straight line supporting
v and if the average of ||y(¢)|| over all ¢ € IR is equd to ||v] (we let the reader make
these statement precise and rigorous). Now given two points on IH?, there is exactly one
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geodesic [ that goesto thefirst ast — —oo, to the other oneast — +o0. We can declare
acurve v to be asymptotically paralel to I} iff v and Iy have same endpoints. This will
insurethat points of v are always at abounded hyperbolic distancefrom I'y. We also declare
that the rotation vector exists iff v has the same endpoints at oo as ageodesic [, and if
the average |p(y)| of ||¥|| over ¢t € TR exists, and we define the rotation vector to be the
pair p(v) = (Lo, |p(7)|) (average direction and average speed). In that language, Theorem
50.1 statesthat, given any geodesic I, there are infinitely many E-L minimizerswith I" as
arotation direction.

The naive definition of rotation vector that we just outlined has some major flaws:

1. p(~y) (if it exists) does not belong to alinear space.

2. Two lifts of the same curve will have different rotation vectors.

3. Rotation direction is not constant 1+ — a.e. for many ergodic measures for the geodesic
flow.

To remedy that, let 7r; (M), seen as deck transformation group, act on geodesics in TH?
and declare that two geodesics are parallel iff they belong to the closure of the same p (M)-
orbit (of geodesics). Consider the set of tangent vectors at all points of all the geodesicsin
the closure of a; (M) orbit. This forms a closed subset of the unit tangent bundle of TH?.
The projection by the differential of the covering map of this set on the unit tangent bundle
of M isthe support of a measure 1 which isinvariant under the geodesic flow. Because of
this, Boyland (1996) definesthe rotation direction of acurveto be ameasureinvariant under
the geodesic flow, weak* limit of measures supported by geodesics joining two points of
the curve. Thisrotation vector being defined through ergodic theory, it is constant ;1 — a.e.
for any E-L ergodic u. Theorem 50.2 implies the existence of minimizer of all rotation
directions, in this new, “homotopy”, sense of the word.

Note that there are many more such “homotopy” directions than there are “homology”
directions. For instance the “long neck” metric of Figure 50.1 has no homology minimizer
with rotation direction ¢, as argued in the previous subsection, but it will have infinitely
many homotopy minimizers with that direction.

Onthe negative side, the counterexamples of Mané (1991) and Boyland & Golé (1996a)
on T? as reviewed in the previous section, where gaps in the rotation spectrum are found,
probably have counterpartson hyperbolic manifolds, even with our new definition of rotation
vector. Thus, we think there is little chance to prove the existence of global minimizers of
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all rotation vectors, even on these manifolds. However there should be good chancesto find
local minimizers of all rotation vectors, as we discuss in the next section.

What we hoped to show in this section is that the universal cover is a more natural
setting than the abelian universal cover when studying L agrangian minimizerson hyperbolic
manifolds.

51.* Concluding Remarks

What, in the end, are the chances of finding orbits of all rotation vectors for symplectic
twist maps or Lagrangian system, in say, T*T"? Previous attempts at this problem yielded
incomplete results. Bernstein & Katok (1987) “amost” found, for minimizing periodic
orbits of symplectic twist maps close to integrable, some uniform modulus of continuity,
which they hoped would unable them to take limits and get orbits with the limiting rotation
vectors. In my thesis, | hoped that proving some regularity of the ghost tori (invariant set
for the gradient flow of the periodic action) might enable one to do the same. Thisis how
ghost circles came about.

Onethingisclear: one cannot hopefor global minimizersto achieveall possiblerotation
vectors. However, the shadowing methods to construct local minimizers of all rotation
vectors of Levi (1997) on the Hedlund counterexamples indicate a possible approach to the
genera case. Therecent work of Mather on existence of unbounded orbits (see Delshams, de
laLlave & Seara(2000) , Section 49 and the end of Chapter 6), also shows that, for general
systems, hyperbolic and variational techniques can combine powerfully to construct orbits
shadowing successive minimizers. One possibility to attack the problem of existenceof orbits
of al rotation vector would be to try to construct, in a manner analogous to Levi (1997),
orbits shadowing the different supports of the ergodic measures which are extreme points of
onegeneralized Mather set M ... Doing so, one may manageto “fill in” the corresponding set
of rotation vectors X with rotation vectors of actual orbits, may they be local minimizers.



