
CHAPTER 9*

GENERALIZATIONS OF THE AUBRY-
MATHER THEOREM

There are, strictly speaking, no full generalizations of the Aubry-Mather Theorem

in higher dimensions: we will see in this chapter examples of fiber convex Lagrangian

systems whose set of minimizers achieves only very few rotation directions. However some

attempts of generalizations in higher dimensions are quite successful in what they try to

achieve. In Section 45, we survey some results by de la Llave and his collaborators. Their

setting is explicitly non dynamical but generalizes naturally the Frenkel-Kontorova model

to functions on lattices of any dimension. They are entirely successful in proving an Aubry-

Mather type theorem in this setting, as well as in some PDE cases, as well as in the context

of minimal surface laminations. In Section 46, we review the work of Angenent (1990)

which generalizes twist maps to a certain type of maps of S1× IRn and proves, among other

results, an Aubry-Mather type theorem for these maps. In Section 47, we look at the work of

MacKay & Meiss (1992) who construct higher dimensional analogs of Aubry-Mather sets

in symplectic twist maps that are close to the anti-integrable limit: one where the potential

term in the generating function of a standard type map dominates. In Section 48, we survey

the work of Mather on minimal measures in convex Lagrangian systems. This is the closest

to a generalization of the Aubry-Mather theory as one can get in the setting of general

convex Lagrangian systems (as well as symplectic twist maps ). We start this section by

introducing the notion of minimizers and reviewing some ergodic theory. We then survey

Mather’s fundamental graph theorem and finish the section by pointing at the limitations

of the theory. Section 49 surveys the work of Boyland and the author which shows that

some of these limitations can be alleviated if one considers systems on cotangent bundles

of hyperbolic manifolds.
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45.* Functions on Lattices, PDE’s and Minimal Surfaces
A*. Functions on Lattices

Remember from Chapter 1 that the Frenkel–Kontorova model describes configurations of

interacting particles in a periodic potential. For simplicity, these configurations are assumed

to be one dimensional, and the interactions only involve nearest neighbors. The resulting

action function is the familiar:

W (x) =
1
2

∑
k∈ZZ

(xk − xk+1)2 −
∑
k∈ZZ

V (xk)

where the potential function V has period 1.W coincides with the action function for the

standard map with generating function S(x,X) = 1
2 (X −x)2−V (x). As noted in Section

14, the variational equation ∇W = 0 for this action function is

(−∆x)k − V ′(xk) = 0

where ∆(x)k = −2xk + xk−1 + xk+1 is the discretized Laplacian. Note that the config-

uration x can be seen as a function ZZ → IR which to the integer k makes correspond the

real xk. One obtains (see Blank (1989), Koch & al. (1994) , Candel & de la Llave (1997) ,

de la Llave (1999)) a natural generalization of this model, relevant to Statistical Mechanics,

by asking that x : ZZd → IR be a function on a lattice of dimension d. We assume nearest

neighbor interaction here. The energy becomes:

W (x) =
1
2

∑
{(k,j)∈ZZd| |k−j|=1}

(xk − xj)2 −
∑
k∈ZZd

V (xk).

Again V is of period 1 and the corresponding variational equation is still of the form:

(45.1) (−∆x)k − V ′(xk) = 0

where (∆x)k =
∑
|k−j|=1 xj − 2dxk is the d–dimensional discrete Laplacian. In fact, the

theory in Candel & de la Llave (1997) applies to substantially more general settings, where

k can belong to a setΛ on which a certain type of groups acts in a mildly prescribed way, and

where the interactions involves not just nearest neighbors, but all possible pairs of particles

(with some decay condition at infinity).

Remember that the solutions x : ZZ → IR found by Aubry and Mather for the Frenkel–

Kontorova model are such that |xk−kω| ≤ ∞. One way to express this is by saying that the
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graph of x : ZZ→ IR is at bounded distance from a line of slope ω in IR× IR. Likewise, the

following generalization of the Aubry-Mather Theorem finds configurations whose graphs

are at bounded distances from hyperplanes of “slopes” ω ∈ IRd. This version is taken from

Candel & de la Llave (1997) :

Theorem 45.1 For every ω ∈ IRd, there exists a solution of (45.1) such that

sup
k∈ZZd

|xk − ω · k| <∞.

The method of proof is very similar to the proof of the Aubry-Mather Theorem presented

in Chapter 3. One considers the analog of CO sequences, called Birkhoff configurations by

these authors. In complete analogy to the CO sequences, they satisfy:

xk+j + l ≥ xk, ∀k ∈ ZZd or xk+j + l ≤ xk, ∀k ∈ ZZd

The analog to the set of CO sequences of rotation number ω, which we denoted by COω in

Chapter 3 is:

Bω = {x | x is Birkhoff and sup
k∈ZZd

|xk − k · ω| <∞}

In a way analogous to the proof of Theorem 15.1, one shows that the gradient flow ofW

(that these authors, justifiably, call the heat flow) preserves order among configurations and

is suitably periodic, so that the set Bω is invariant under the flow. The same argument as in

the proof of Theorem 15.1 is then used to show that W must have a critical point inside

Bω. So, as in the classical Aubry-Mather Theorem, one not only finds solutions that have

asymptotic slope ω, but these solutions have strong order properties, expressed here in terms

of non intersection: they are Birkhoff.

B*. PDE’s

As Equation (45.1) suggests, the above theory smells of discretized PDE’s. It is therefore

not too surprising that the same kind of methods can be applied to certain PDE problems.

The main ingredients necessary are some translation invariance and a heat flow that satisfies

a comparison principle u > v ⇒ φtu > φtv, which occurs in parabolic PDE’s. The

method can be applied (see de la Llave (1999)) to the following PDE situations, to obtain
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solutions whose graphs are at bounded distance from planes with prescribed slopes, and

have nonintersection properties:

(45.2) ∆u+ V ′(x, u) = 0

where V (x+ e, u+ �) = V (x, u) ∀x ∈ IRd, u ∈ IR, e ∈ ZZd, � ∈ ZZ.

(45.3)
k∑
i=1

L2
i + V ′(x, u) = 0

where Li are ZZd periodic vector fields satisfying Hörmander’s hypoellipticity conditions

and V is as in the previous case.

(45.4) (−∆)1/2u+ V ′(x, u) = 0

with V as above. de la Llave (1999) also looks at the following PDE:

(45.5)
�� u = utt − uxx = −V (u) + f(x, t)

u(x+ 1, t) = u(x, t+ T ) = u(x, t)

where the function f also has the periodicity:

(45.6) f(x+ 1, t) = f(x, t+ T ) = f(x, t).

We say that the real number T is of constant type if its continued fraction expansion is

bounded. For instance, noble numbers are of constant type.

Theorem 45.2 (de la Llave) Let T be a number of constant type, let f ∈ L2 satisfy

(45.6) and let V : IR→ IR satisfy

(i) 0 < α ≤ V ′ ≤ β where α is any positive number and β only depends on T (in

an explicit manner)

(ii) |V ”(x)| ≤ K
Then there exists a weak solution u ∈ L2 to Equation (45.5) . Moreover, if f ∈ Hr

and V ∈ Cr+2 has small enough Cr+2 norm, then there is a solution u ∈ Hr of

(45.5) which is unique in a ball in Hr around the origin.
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The method of proof is different from that of the above PDE’s, but still involves a

variational approach.

C*. Laminations by Minimal Surfaces

Moser (1986b) proposed a generalization of the Aubry-Mather theory to certain minimizing

hypersurfaces in IRn (according to some specific variational problem). There, Moser asks

if such a result would also work when “minimizing” is understood in the classical sense of

minimal area, i.e. minimal surfaces. Caffarelli & de la Llave (2000) answers the question

positively in the following theorem:

Theorem 45.3 (Caffarelli & de la Llave) Let g be a C2 strictly positive metric in IRn

invariant under integer translations. Then we can find a number M depending only

on the oscillation properties of the metric such that, for every n − 1 dimensional

hyperplane Π, we can find a minimal surface Σ such that Dis(Σ,Π) ≤M .

Down on the torus Tn = IRn/ZZn, each surfaceΣ gives rise to a lamination, periodic if

the planeΠ has rational slope, “quasiperiodic” otherwise. The full result in Caffarelli & de

la Llave (2000) is actually much more general, in that it deals with a large class of periodic

minimization problems, those involving integrals with elliptic integrands. Moreover, as in

Theorem 45.1, this result holds for manifolds whose fundamental group satisfies mild

conditions, in particular manifolds of negative curvature.

Minimal Geodesics. An important special case of the above theorem is when n = 2. The

minimal surfaces are then minimal geodesics (in the sense that they globally minimize length

between any two of their points) for periodic metrics, eg. metrics on the torus T2. This case

had been thoroughly studied by Hedlund (1932), who had obtained a similar result to the

above in this case. Morse (1924) had previously treated the case of surfaces of negative

curvature. The analogy of Hedlund’s work with the Aubry-Mather theorem is made clear

in Bangert (1988) , where he shows that both theories are part of a third one. We will see

in a later section that Mather (1991b) also arrives at the same kind of conclusion, with his

theory of minimal measures.
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46.* Monotone Recurrence Relations

Angenent (1990) proposes a generalization of twist maps of the annulus to maps of S1×IRN

which are defined by solving a recurrence relation:

(47.1) ∆(xk−l, . . . , xk+m) = 0

which generalizes ∂2S(xk−1, xk) + ∂1S(xk, xk+1) = 0 in twist maps, where k = l = 1.

The function ∆ is required to satisfy the conditions:

a) Monotonicity∆(x−l, . . . , x+m) is a non decreasing function of all thexk except possibly

for k = 0. Moreover, it is strictly increasing in the variables x−l and xm.

b) Periodicity∆(xk−l, . . . , xk+m) = ∆(xk−l + 1, . . . , xk+m + 1).

c) Coercion limxl→±∞∆(x−l, . . . , xm) = limxm→±∞∆(x−l, . . . , xm) = ±∞.
Under these conditions, Angenent calls (47.1) a monotone recurrence relation. Condi-

tions a) and c) imply that one can solve for xk+m in terms of a given (xk−l, . . . , xk+m−1).

Hence this defines a map F∆ : (xk−l, . . . , xk+m−1) �→ (xk−l+1, . . . , xk+m) from IRl+m

to itself. Condition b) implies that this maps descends to a map on S1 × IRl+m−1. Hence

the N above is N = l +m− 1.

The notion of CO configurations, rotation number and partial order on sequences etc... of

Chapter 2 and Chapter 3 are still entirely valid here, since the variables xk are 1 dimensional

(Angenent also calls CO sequences Birkhoff). An interesting notion that Angenent (1990)

introduces, inspired by PDE methods, is that of sub– or supersolution of the monotone

recurrence relation (47.1) : x is a subsolution if ∆(xk−l, . . . , xk+m) ≤ 0, ∀k ∈ ZZ and a

supersolution if ∆(xk−l, . . . , xk+m) ≥ 0, ∀k ∈ ZZ.

Theorem 47.1 (Angenent) Let x,x be sub– and supersolutions respectively, which

are ordered: x ≤ x. Then there is at least one solution of (47.1), say x, for which

x ≤ x ≤ x holds.

Using this theorem (whose proof is simple), Angenent (1990) is able to generalize a

theorem of Hall (1984), itself a generalization of the Aubry-Mather theorem: if a twist map

of the annulus, which is not necessarily area preserving, has a (m,n)-periodic orbit, then

it must have a CO (m,n)-periodic orbit. If the map is also area preserving, this implies,
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taking limits, the existence of CO orbits of all rotation numbers. Analogously, Angenent

proves that if there is an orbit of F∆ with rotation number ω ∈ IR, then F∆ must also have

a CO orbit of rotation number ω.

Suppose that two solutions x andw of (47.1) “exchange rotation numbers” in the sense

that:
lim

n→+∞
xk/k ≥ ω1 ≥ lim

n→−∞
wk/k

and

lim
n→+∞

wk/k ≤ ω0 ≤ lim
n→−∞

xk/k

holds for some ω0 ≤ ω1. Then Angenent proves that there must be CO orbits of any rotation

number ω ∈ [ω0, ω1]. Moreover this exchange of rotation numbers condition implies chaos:

the topological entropy htop(F∆) > 0, in that there is a compact invariant set semi conjugate

to a Bernouilli shift. This also generalizes shadowing results of Hall (1989) and Mather

(1991a). Angenent (1992) uses similar techniques to prove the following beautiful theorem:

Theorem 47.2 Let f be a twist map of the compact annulus. Let ρ0 < ρ1 be the

rotation number of f restricted to the boundaries. If the topological entropy htop(f)

of f vanishes, then f must have an invariant circle of rotation number ω ∈ [ρ0, ρ1].

48.* Anti–Integrable Limit

MacKay & Meiss (1992) explore the existence of Aubry-Mather sets (as well as many other

possible configurations) close to the anti-integrable limit, where the potential of a standard

like map becomes all powerful. Consider a family Fε of symplectic twist maps of T ∗Tn

given by the generating functions:

Sε(q,Q) = εT (q,Q) + V (q)

where, for simplicity, we can assume

T (q,Q) =
1
2
(Q− q)2,

although more general T ’s can be considered. As usual, orbits of Fε correspond to solutions

of
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(48.1) ∂2Sε(qk−1, qk) + ∂1Sε(qk, qk+1) = 0.

Even though F0 is not defined, it is perfectly acceptable to set ε = 0 in Formula (48.1) . This

is called the anti-integrable limit , a notion that seems to have appeared independently in

Aubry & Abramovici (1990) and Tangerman & Veerman (1991). The force of this concept is

that the solutions of (48.1) at ε = 0 are perfectly understood: they are simply allocations of

qk to one of the critical points of V : (48.1) is just dV (qk) = 0 when ε = 0. If V is a Morse

function, it has finitely many critical points modulo ZZn and they are all nondegenerate. This

has the following consequence:

Theorem 48.1 (MacKay–Meiss) Any solution q(0) of (48.1) for ε = 0 continues to

a solution q(ε) when ε is small.

Proof . Rewrite the infinite system of equations (48.1) in the form

G(ε, q) = 0

where G : IR × X → (IRn)ZZ is given by G(ε, q) = ∂2Sε(qk−1, qk) + ∂1Sε(qk, qk+1)

and X is the Banach space of sequences such that supk ‖qk − qk(0)‖ < ∞. The Implicit

Function Theorem on Banach spaces (see Lang (1983) ) applies here to find, for small ε,

a q(ε) such that G(ε, q(ε)) = 0 as long as ∂G
∂q (0, q(0)) is invertible. But this is indeed the

case since
∂G

∂q
(0, q(0))k = V ′′(qk(0))

so that ∂G
∂q (0, q(0)) is an infinite block diagonal matrix with the n × n diagonal blocks

V ′′(qk(0)) all invertible and uniformly bounded. Indeed these matrices are chosen among

a finite set, since qk(0) is necessarily a critical point of V , of which there are finitely many

mod ZZn, by the assumption that V is Morse. ��
One can simultaneously continue compact sets of stationary solutions from the anti-

integrable limit. Such sets can be quite complicated, since the set of all stationary con-

figurations of the anti-integrable limit can be seen as a shift on as many symbols as there

are critical points. In particular, one can find invariant Cantor sets for Fε. One can also get

orbits with all rotation vectors ω ∈ IRn. To do so, consider the anti–integrable stationary

solution q(0) which is such that q0(0) is at some arbitrarily chosen critical point of V and
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qk(0) = [kω] + q0(0),

where [kω] is the integer part of the vector kω. Each qk(0) is thus on the same critical

point as q0(0), but translated by the integer vector [ω]. Since |qk(0)− kω| < √n, q(0) has

rotation vector ω. Now use Theorem 48.1 to continue this to an orbit of Fε with rotation

vector ω. One can also continue simultaneously all anti–integrable solutions as the above

with rotation vectors in a compact set: they themselves form a compact set.

Even though this seems almost too easy, the anti-integrable limit is a very useful concept

in order to understand the spectrum of all possible dynamics of symplectic twist maps . It

is fair to say that, to this date, the least understood cases are those that are neither close to

integrable nor to anti–integrable.

49.* Mather’s Theory of Minimal Measures

We now come to Mather’s theory of existence and regularity of minimizers. This theory

is quite general: it covers a wide class of convex Lagrangian systems on tangent bundles

of arbitrary compact manifolds. Note that similar, but less developed theories were created

by Bangert (1989) in the setting of minimal geodesics on compact manifolds and Katok

(1992) in the setting of perturbations of integrable symplectic twist maps. There is no doubt

that Mather’s theory could be worked out for general symplectic twist maps. Even now, the

correspondences between Lagrangian systems and symplectic twist maps given in Chapter

7 (see in particular the Bialy-Polterovitch suspension theorem 41.1) should allow an ample

transfer of Mather’s results to the symplectic twist maps case.

The lesson we get from Mather’s work is that, yes, minimizers in general manifolds

behave very much like those on the circle (the realm of the classical Aubry-Mather theory),

in that they satisfy a graph property. The bad news is that minimizers may be much scarcer

than in the circle case: Hedlund (1932) had already constructed a Riemannian metric on T3

(a setting encompassed by Mather’s) which is very small along 3 non intersecting geodesics

which generate H1(T3). All other minimizers of a certain length are then bound to spend

a good portion of their time close to these geodesics. In particular, these three geodesics

are the only possible recurrent minimizers. This limits the possible rotation vectors of

minimizers to these three directions only. Bangert (1989) (geodesic setting) and Mather

(1991b) (Lagrangian setting) show that, in a precise sense, this is the worst case scenario:
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there should be at least as many rotation directions represented by minimizers as there are

dimensions in H1(M, IR). And, to end on an optimistic note, Levi (1997) constructs, in

this worst case scenario of Hedlund’s example, “shadowing” locally minimizing orbits that

spend any prescribed proportion of time close to each of the minimizers. In particular, he

constructs locally minimizing orbits of all rotation vectors.

In order to introduce Mather’s theory of minimal measures, we need to define the notion

of Lagrangian minimizers, similar to that of Aubry minimizers for twist maps. In passing,

we note the connection between the notion of action minimizing and hyperbolicity.

A*. Lagrangian Minimizers

Throughout this section and the next, we consider time-periodic Lagrangian systems deter-

mined by a C2-Lagrangian functions L : TM × S1 → IR, whereM is a compact manifold

given a Riemannian metric g. Remember (see Appendix 1 and Chapter 7) that extremals of

the action

A(γ) =
∫ b

a

L(γ, γ̇, t)dt

satisfies the Euler-Lagrange equations d
dt

∂L
∂ẋ − ∂L

∂x = 0. Using local coordinates these

equations yield a first order time-periodic differential equation on TM , and thus in the

standard way, a vector field on TM×S1. This can be viewed as the Hamiltonian vector field

corresponding to the Lagrangian system, pulled back toTM by the Legendre transformation.

Since TM × S1 is not compact it is possible that trajectories of this vector field are not

defined for all time in IR and thus do not fit together to give a global flow (i.e. an IR-action).

When the flow does exist, it is called the Euler-Lagrange (or E-L) flow . The following

quite general hypotheses are the setting of Mather (1991b) .

Mather’s Hypotheses.

L is a C2 function L : TM × S1 → IR that satisfies:

(a) Convexity: ∂
2L
∂v2 is positive definite.

(b) Completeness: The Euler-Lagrange (global) flow determined by L

exists.

(c) Superlinear: L(x,v,t)
‖v‖ →∞ when ‖v‖ → +∞.
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Mather’s Hypotheses are satisfied by mechanical Lagrangians, i.e. those of the form

L(x, v, t) =
1
2
‖v‖2 − V (x, t),

where the norm is taken with respect to any Riemannian metric on the manifold. (In fact,

one may allow the norm to vary with time, under some conditions, see Manẽ (1991), page

44).

Minimizers. We know that, for twist maps, orbits on Aubry-Mather sets are minimizers in

the sense of Aubry. We have also seen in Chapter 6 that orbits on KAM tori are minimizers

for symplectic twist maps . These are natural reasons to look for minimizers in convex

Lagrangian systems. Lagrangian minimizers are defined in a way analogous to the discrete

case. If M̃ is a covering space ofM (see Appendix 2), L lifts to a real valued function (also

called L) defined on TM̃ × S1.

A curve segment γ : [a, b]→ M̃ is called a M̃ -minimizing segment or an M̃ -minimizer

if it minimizes the action among all absolutely continuous curves β : [a, b] → M̃ which

have the same endpoints as γ. A curve γ : IR → M̃ is also called a minimizer if γ|[a,b] is

a minimizer for all [a, b] ⊂ IR. When the domain of definition of a curve is not explicitly

given it is assumed to be IR. In practice, the two main covering spaces that we will consider

are the universal cover (in next section) and the universal abelian cover (in this section, see

Appendix 2 for the definitions of these covering spaces).

A fundamental theorem of Tonelli (see Mather (1991b) or Manẽ (1991) ) implies that if

L satisfies Mather’s Hypotheses, then given a < b and two distinct points xa, xb ∈ M̃ there

always is a minimizer γ with γ(a) = xa and γ(b) = xb. Moreover such a γ is automatically

C2 and satisfies the Euler-Lagrange equations (this uses the completeness of the E-L flow).

Hence its differential dγ(t) = (γ(t), γ̇(t)) yields a solution (dγ(t), t) of the E-L flow.

B*. Ergodic Theory

Most of the material in this subsection can be found in Hasselblat & Katok (1995), where it

is thoroughly developped. We start by motivating this theory by the following trivial remark:

if F is a map of T ∗Tn and φ(z) = π(F (z)) − π(z) (π : T ∗Tn → Tn is the canonical

projection) then, when it exists:

lim
n→∞

1
n

n∑
k=1

φ(F k(z)) = lim
n→∞

π(Fn(z))− π(F (z))
n

= ρF (z),
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the rotation vector of z under F . The expression limn→∞
1
n

∑n
k=1 φ(F

k(z)) for a general

continuous function φ is called the time average of φ. Hence the rotation vector of a point,

when it exists, is the time average of a specific φ. The relevance of this is the following:

Theorem 49.1 (Birkhoff’s Ergodic Theorem) Let F : (X,µ) → (X,µ) be a measure

preserving transformation for a Borel measure µ on a space X, and φ ∈ L1(X,µ).

Then the time average φT (z) of φ:

φT (z) = lim
n→∞

1
n

n∑
k=1

φ(F k(z))

exists for µ− a.e. z. Moreover, if µ(X) <∞,
∫
X
φT dµ =

∫
X
φdµ.

Remember that a Borel measure on a topological space is one whose sigma-algebra of

measurable sets is generated by the open sets. The above theorem actually does not require

the measure to be Borel, but we will assume it for the rest of this section. That F is measure

preserving means µ(F−1(A)) = µ(A) for any Borel subset of X . An immediate corollary

of Birkhoff’s theorem is (one needs to compactify T ∗Tn with a point at∞):

Corollary 49.2 Let F be a volume preserving map (eg. symplectic) of Tn. The rotation

vector ρF is defined on a subset of full Lebesgue measure of T ∗Tn.

It turns out that the Lebesgue measure is only one of the many measures that a symplectic

map F preserves. Take z ∈ T ∗Tn to be a N -periodic point of F , for instance, and let :

η =
1
N

N∑
k=1

δFk(z)

where the Dirac measure δw is the (Borel) probability measure concentrated at the point

w ( δw(A) is 1 if w ∈ A and it is 0 if not). Since δFk(z)(F−1(A)) = δFk+1(z)(A), η is

invariant under F . One of the many differences between η and the Lebesgue measure is

their supports. In general, the support of a Borel measure µ is defined as:

Supp µ = {z ∈ X | µ(U) > 0 whenever z ∈ U, U open }

Clearly, the support of the measure η constructed above is the orbit of the periodic point

z, whereas the support of the Lebesgue measure is all of T ∗Tn. Hence, the support of
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invariant measures is another way to conceptualize invariant sets. Let F : X → X be

continuous. Then the support of any F -invariant Borel measure µ is closed, F -invariant

and its complement has zero µ–measure. If µ(X) < ∞, Poincaré’s Recurrence Theorem

implies that Supp µ is contained in the set of F−recurrent points. In fact, if a point z is

in Supp µ then its ω-limit set ω(z) is included in Supp µ. Hence, to find recurrent orbits

in a dynamical system, as we have been doing in this book, one can look for (supports of)

invariant measures.

Coming back to rotation vectors, and the measure η supported on a periodic orbit,

the rotation vector ρF (z) not only exist η − a.e., but it is constant on Supp η. In fact, it

can easily be checked that the time average φT is constant on Supp η for any function

φ ∈ L1(T ∗Tn, η): the measure η is ergodic.

Definition 49.3 An F -invariant probability measure µ on a spaceX is ergodic if it satisfies

one of the following equivalent properties:

1) Every F -invariant set has µ measure 0 or 1.

2) If φ ∈ L1(X,µ) is F -invariant then φ is constant µ− a.e.
3) The time average φT equals the space average

def
=

∫
φdµ, µ− a.e.

Remark 49.4 The third defining property is the one of importance in this book. It implies, in

particular, that for an ergodic µ, the time averages along µ−a.e. orbits (most of which have

to be in the support) are all the same. In particular, let us define the rotation vector ρ(µ)

of a measure µ to be the µ–space average of the function π(F (z))− π(z). If µ is ergodic,

ρ(µ) coincides with the rotation vector of µ − a.e. orbit of F (i.e. the time average). We

can still define ρ(µ) for non ergodic measures, but we loose its connection to the rotation

vectors of individual orbits.

It is known (see Mañe (1987)) that, if µ is ergodic, F has an orbit in Supp µ which

is dense in that support. Hence ergodicity relates to topological transitivity. The Lebesgue

measure may never be ergodic for twist maps: whenever we have a chain of elliptic islands,

it comprises an invariant set which is not of full Lebesgue measure. On the other hand,

twist maps do have plenty of ergodic measures. We have seen above the example of a

measure η supported on periodic orbits. More generally, Aubry-Mather sets can be defined
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as supports of ergodic measures, pull-back of measures on S1 invariant under circle

diffeomorphisms. Indeed, take the set π(M) in Theorem 12.8: it is the omega limit set

Ω(T ) for a circle diffeomorphism T . Now, pick x ∈ Ω(T ) and take the weak* limit µ of the

probability measures µN = 1
2N−1

∑N
−N δTk(x): the limiting measure µ defines an ergodic

measure for T , and its pull back by π is ergodic for F with support the Aubry-Mather set

M [the weak* limit is defined by µn
∗→ µ iff

∫
X
φµn →

∫
X
φµ for all continuous φ].

Hence our main objects of study in this book, periodic orbits and Aubry-Mather sets,

are all supports of ergodic probability measures, part of the larger setMF of all F -invariant

Borel probability measures.

IfX is a compact metric space, it turns out that the setMof all Borel probability measures

is convex and compact under the weak* topology. MoreoverMF itself is a compact and

convex subset ofM for this topology. A theorem of convex analysis (Krei-Millman) says

thatMF is then in the convex hull of its extreme points : those µ ∈MF which cannot be

written as tµ1 +(1− t)µ2 for two distinct µ1, µ2 ∈MF . Finally, the extreme points are all

ergodic measures. We will see in the next subsection that there is a strong correspondence

between the (strict) convexity of a certain projection ofMF and the Aubry-Mather theorem.

As we will see in next section, Mather (1991b), (1993) considers measures that are

invariant under the Euler-Lagrange (E-L) flow instead of a symplectic twist map . In the

light of the suspension theorem of Bialy-Polterovitch (Chapter Chapter 7), his setting en-

compasses a large class of symplectic twist maps . All the statements that we made above

are valid for E-L flows on TTn provided one compactifies TTn (as Mather does) in order

to use the compactness of the space of E-L-invariant probability measures.

C*. Minimal Measures

For a more detailed exposition the reader is urged to consult Mather (1991b), Manẽ (1991).

There is also a very nice survey of this theory in Mather (1993).

Invariant Measures, their Action and Rotation Vector. Given a E-L invariant probability

measure with compact support µ on TM × S1, one can define its rotation vector ρ(µ)

as follows: let β1, β2, . . . , βn be a basis of H1(M) and let λ1, . . . , λn be closed one-

forms with [λi] = βi in DeRham cohomology.(17) We refer the reader uncomfortable with

17When homology and cohomology coefficients are unspecified they are assumed to be IR,
so the notation H1(M) means H1(M ; IR), etc.
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(co)homology to Appendix 2 and urge her/him to read through this section thinking of the

caseM = Tn, taking [λi] = [dxi], as a basis for H1(Tn) � IRn, where (x1, . . . , xn) are

angular coordinates on T ∗Tn. Define the ith component of the rotation vector ρ(µ) as

ρi(µ) =
∫
λidµ.

Note that this integral makes sense when one looks atλi as inducing a function fromTM×S1

to IR by first projecting TM × S1 onto TM ,

and then treating the form as a function on TM that is linear on fibers. The rotation

vector does depend on the choice of basis βi, but because these 1–forms are closed, ρi(µ)

does not depend on the choice of representative λi with [λi] = βi. Since the rotation vector

is dual to forms (with pairing< λ, µ >=
∫
λdµ), it can be viewed as an element ofH1(M).

In the caseM = Tn, if γ(0) is a generic point of an ergodic measureµ, the natural definition

of rotation vector of a curve γ coincides with ρ(µ):

ρi(γ)
def
= lim

b−a→∞

γ̃i(b)− γ̃i(a)
b− a = lim

b−a→∞

1
b− a

∫
dγ|[a,b]

dxi =
∫
dxidµ = ρi(µ)

where γ̃ is a lift of γ to IRn and the third equality uses the Ergodic Theorem (again, dxi

is seen as a function TM × S1 → IR). This prompts the following formula for the (ith

coordinate of the) rotation vector of a curve γ : IR→M for a general manifoldM :

ρi(γ) = lim
b−a→∞

1
b− a

∫
dγ|[a,b]

λi,

if the limit exists. As before, if γ(0) is a generic point for an ergodic measure µ, ρ(γ) exists

and coincides with ρ(µ) (and this is not necessarily the case for non ergodic measures).

Next we define the average action of a E-L invariant probability on TM × S1:

A(µ) =
∫
Ldµ,

i.e. the space average of L which, when µ is ergodic, equals the time average along µ-a.e.

orbit γ:

A(µ) = lim
b−a→∞

1
b− a

∫ b

a

L(γ, γ̇)dt, µ− a.e. orbit γ.

The Set of Minimal Measures and the Function β. The set of E–L invariant probability

measures, denoted byML, is a convex set in the vector space of all measures, as we have
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seen in the previous subsection (it is also compact for the weak* topology if, as Mather

does, one compactifies TM ) and the extreme points ofML are the ergodic measures (see

Mañe (1987)). Consider the mapML → H1(M)× IR given by:

µ �→ (ρ(µ), A(µ)) .

This map is trivially linear and hence mapsML to a convex set UL whose extreme points

are images of extreme points ofML, i.e. images of ergodic measures. Mather shows, by

taking limits of measures supported on long minimizers representing rational homology

classes, that for each ω, there exists an invariant (but not necessarily ergodic) measure µ

such that ρ(µ) = ω and A(µ) <∞.(18) Since L is bounded below, the action coordinate is

bounded below on UL. Hence we can define a map β : H1(M)→ IR by

β(ω) = inf{A(µ) | µ ∈ML, ρ(µ) = ω},

which is bounded below and convex: the graph of β is the boundary of UL. We say that

a probability measure µ ∈ ML is a minimal measure if the point (ρ(µ), A(µ)) is on

the graph of β. In other words, a measure µ with ρ(µ) = ω is a minimal measure iff it

minimizes the average action subject to the constraint that it have rotation vector ω. By

construction, an extreme point (ω, β(ω)) of graph(β) corresponds to at least one minimal

ergodic measure of rotation vector ω. It turns out that if µ is minimal, µ-a.e. orbit lifts to a

E-L minimizer in the universal abelian coverM ofM (whose deck transformation group is

H1(M ;ZZ)/torsion, see Appendix 2). Conversely, if µ is an ergodic probability measure

whose support consists ofM -minimizers, then µ is a minimal measure.

Hence, each time we prove the existence of an extreme point (ω, β(ω)), we find

at least one recurrent orbit of rotation vector ω which is a M -minimizer.

Another important property ofβ is that it is superlinear, i.e. β(x)
‖x‖ →∞when ‖x‖ → ∞.

We motivate this in the simple case where L = 1
2 ‖ẋ‖

2 − V (x) and ‖·‖ comes from the

Euclidean metric on the torus. If µ is any invariant probability measure, then

18The impatient reader may be tempted to proclaim, from this fact, the existence of orbits
of all rotation vectors. Alas, as we noted in Remark 49.4, we can guarantee that the
rotation vector of orbits in the support of a measure µ are equal to ρ(µ) only when µ is
ergodic
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(49.1)

A(µ) =
∫
L dµ ≥

∫ (
‖ẋ‖2

2
− Vmax

)
dµ

≥ 1
2

∣∣∣∣
∫
ẋ dµ

∣∣∣∣
2

− Vmax

=
1
2
|ρ(µ)|2 − Vmax,

where we used the Cauchy-Schwartz inequality for the second inequality. We see that in

this particular but important case, β grows at least quadratically with the rotation vector. The

superlinearity of β implies the existence of many extreme points for graph(β) (although in

most cases still too few, as we will see in the next subsection), as we explain now.

Countably Many Minimal Measures: Is This Enough? As the boundary of the convex set

UL, the graph of β is made of flat faces, or linear domains. Each of these linear domains,

which we denote by Sc, is a convex set, intersection of UL with a supporting hyperplane of

UL of “slope” c. [Since c acts linearly on homology classes ω to give the equation c ·ω = a

of the supporting hyperplane, it can be seen as an element of first cohomology.] Let Xc

be the projection on H1(M) of Sc. The sets Xc are convex domains which tile the space

H1(M). Now the growth condition on β implies that

its graph cannot have a linear domain going to infinity: the sets Xc must be compact.

Extreme points ofXc are projections of extreme points of Sc, themselves extreme points of

UL. Hence there are infinitely many such extreme points, and infinitely many outside any

compact set. Their convex hull is

H1(M), and in particular, they must spanH1(M) as a vector space. Since these extreme

points are the rotation vectors of minimal ergodic measures, we have found:

Theorem 49.5 There exist at least countably many minimal ergodic measures and

at least n = dimH1(M) of them with distinct rotation directions.

In particular there are at least n rotation directions represented by minimal measures for

a E-L flow on T ∗Tn. We will see in Hedlund’s example that this lower bound is attained by

some systems. Finally, the generalized Mather sets are defined as

Mc = Support(Mc),
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where Mc is the set of all minimal measures whose rotation vectors lies in Xc. Let π :

TM × S1 → M × S1 denote the projection. The main result in Mather (1991b) is the

following theorem:

Theorem 49.6 (Mather’s Lipschitz Graph Theorem) For all c ∈ H1(M), Mc is a

compact, non-empty subset of TM×S1. The restriction of π to Mc is injective. The

inverse mapping π−1 : π(Mc)→Mc is Lipschitz.

In the case M = Tn, Mather proves that, when they exist, KAM tori coincide with

the sets Mc (see also Katok (1992) for some related results in the symplectic twist maps

context). The proof of the Graph Theorem (see Mather (1991b) or Manẽ (1991)), which

is quite involved, uses a curve shortening argument: if two minimizing curves in π(Mc)

were too close to crossing transversally, one could “cut corners” and, because of recurrence,

construct a closed curve in Mc with lesser action than the minimal action of measures

in Mc, a contradiction. This argument by surgery is reminiscent of the proof of Aubry’s

Fundamental Lemma in Chapter 2.

The Autonomous Case. An important special case is that of autonomous systems (i.e.

with time independent L). In this case, one can discard the time component and viewMc

as a compact subset of TM . Mather’s theorem implies thatMc is a Lipschitz graph for the

projection π : TM →M . To see this, suppose that two curves x(t) and y(t) in π(Mc) have

x(0) = y(s) for some s. Mather’s theorem rules out immediately the

possibility that s is an integer, unless x = y is a periodic orbit. For a general s, consider

the curve z(t) = y(t+s). Then, ż(t) = ẏ(t+s) and, by time-invariance of the Lagrangian,

(z(t), ż(t)) is a solution of the E-L flow. It has same average action and rotation vector as

(y, ẏ) and hence it is also inMc. But then z(0) = x(0) is impossible, by Mather’s theorem,

unless ż(0) = ẏ(s) = ẋ(0) and thus, by uniqueness of solutions of ODEs, x(t) = y(t+ s).

The Symplectic Twist Map Case. By using Theorem 41.1, one can translate the results of

Mather to the realm of symplectic twist maps (see Exercise 49.7) and deduce the existence

of many invariant sets that are graphs over the base and are made of minimizers. As noted

before, one could also redo all of Mather’s theory in the setting of symplectic twist maps

(see Katok (1992), who considered the near integrable case).
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D*. Examples and Counterexamples

Recovering Past Results. When Mather’s function β (see previous section) is strictly

convex, each point on graph(β) is an extreme point and there are ergodic minimal measures

(and hence minimal orbits) of all rotation vectors. One can prove that this is true when

M = S1, and Mather (1991b) shows how his Lipschitz Graph Theorem implies the classical

Aubry-Mather Theorem, by taking a E-L flow that suspends the twist map. The fact that

Mc is a graph nicely translates into the fact that orbits in an Aubry-Mather set are cyclically

ordered: as pointed out by Hall (1984), the CO property corresponds to trivial braiding of

the suspended orbit, itself guaranteed by the graph property.

The graph of β is also strictly convex when L is a Riemannian metric on T2, and hence

there are minimal geodesics of all rotation vectors for any metric on the torus. This was

known by Hedlund (1932), who had basically worked out the same results as Aubry and

Mather in that setting, albeit in a different language. [See Bangert (1988) for a unified

approach of the two theories]. Hence one could hope, as a generalization of the Aubry-

Mather theorem, that β is strictly convex for any Lagrangian systems satisfying Mather’s

hypotheses. This statement is false as we will see in the following examples.

Examples of Gaps in the Rotation Vector Spectrum of Minimizers for Lagrangian on

T2. Take L : TT2 → IR, given by L(x, ẋ) = ‖ẋ−X‖2 where X is a vector field on T2.

The integral curves x ofX are automatically E-L minimizers since L ≡ 0 on these curves.

Manẽ (1991) chooses the vector field X to be a (constant) vector field of irrational slope

multiplied by a carefully chosen function on the torus which is zero at exactly one point q.

The integral flow of X has the rest point q(t) = q, and all the other solutions are dense on

the torus. The flow of X (and its lift to TT2 by the differential) has exactly two ergodic

measures: one is the Dirac measure supported on (q, 0), with zero rotation vector, the other

is equivalent to the Lebesgue measure on T2 and has nonzero rotation vector, say ω. Mañe

checks that β−1(0) (trivially always an Xc) is the interval {λ ω | λ ∈ [0, 1]}, and that no

ergodic measure has a rotation vectors strictly inside this interval. Thus the Mather setM0

is the union of the supports of the two above measures.

Boyland & Golé (1996a) give an example of an autonomous mechanical Lagrangian

on T2 which displays a similar phenomenon, although we also show in that paper that all

autonomous Lagrangian systems satisfying Mather’s Hypothesis do have minimizers of all



210 9: GENERALIZATIONS OF AUBRY-MATHER

rotation directions. We also give in this paper a very precise description of the β function

for such systems and show that the support of minimal ergodic measures have to be either

a point, a closed curve, a suspension of a Denjoy Cantor set or the whole torus.

Hedlund-Bangert’s Counterexamples. Consider in IR3 the three nonintersecting lines

given by the x-axis, the y-axis translated by (0, 0, 1/2) and the z-axis translated by

(1/2, 1/2, 0). Construct a ZZ3- lattice of nonintersecting lines by translating each one of

these three lines by integer vectors. Take a metric in IR3 which is the Euclidean metric

everywhere except in small, nonintersecting tubes around each of the axes in the lattice.

In these tubes, multiply the Euclidean metric by a positive function λ which is 1 on the

boundary and attains its (arbitrarily small) minimum along the points in the center of the

tubes, i.e. at the axes of the lattice. Because the construction is ZZ3 periodic, this metric

induces a Riemannian metric on T3. One can show (Bangert (1989)), if λ is taken suffi-

ciently small, that a minimal geodesic (which is a E-L minimizer in our context) can make

at most three jumps between tubes. In particular, a recurrent E-L minimizer has to be one

of the three disjoint periodic orbits which are the projection of the axes of the lattice. Thus

there are only three rotation directions that minimizers can take in this example, or six if one

counts positive and negative orientations. In terms of Mather’s theory, the level sets of the

function β in IR3 = H1(T3) are octahedrons with vertices (±a, 0, 0), (0,±a, 0), (0, 0,±a)
(we assume here that the function λ is the same around each of the tubes). Since we are in

the case of a metric, one can check that β is quadratic when restricted to a line through the

origin (a minimizer of rotation vector aω is a reparameterization of a minimizer of rotation

ω). Hence a set Sc is either a face, an edge or a vertex of some level set {β = b}, and the

corresponding Mc is, respectively, the union of three, two (parameterized at same speed)

or one of the minimal periodic orbits one gets by projecting the disjoint axes. Note that,

instead of the function β of Mather, Bangert uses the stable norm. Mather’s function β is

a generalization of that norm.

Levi’s Counter–Counterexample. It is important to note that the nonexistence of minimiz-

ers of a certain rotation vector ω does not mean that there are no orbits of the E-L flow

that have rotation vector ω. For example, Levi (1997) has shown the existence of orbits of

all rotation vectors in the Hedlund example. He constructs, using some broken geodesic

methods, local minimizers shadowing any curve made of segments (of sufficient length) of
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the minimizing axes and jumps between the axes. This makes for extremely rich, chaotic

dynamics.

Further Developments of Mather’s Theory of Minimal Measures. As of this writing, a

number of mathematicians are very active in research on minimizers in convex Lagrangian.

Foremost is the group of young and talented researchers which formed in South America

and Mexico around former students of the late Mañe. This group has solved many problems

posed by Mañe soon before his death (see Mañe (1996a) and Mañe (1996b)), mainly on

autonomous Lagrangian systems. Look for the names of Carneiro, Contreras, Delgado,

Iturriaga, Paternain, Sanchez-Morgado and more. Recently this group, together with K.F.

Siburg, has made strides in bridging this theory with the more geometric point of view of

symplectic topologists: the minimal action function is related to symplectic capacities and

Hofer’s energy (see Siburg (1998), Iturriaga & Sánchez-Morgado (2000a)). Fathi (1997)

recovers some of Mather’s theory and creates ties with the KAM theory using super and sub

solutions of Hamilton-Jacobi’s equations. Iturriaga & Sánchez-Morgado (2000b), Contreras

(2000) continue this work.

As noted in Chapter 6, Mather has recently used the theory of minimal measures, together

with some hyperbolic methods to prove the existence of unbounded orbits in Lagrangian

systems, a great leap in the general problem of the so-called Arnold diffusion (see Delshams,

de la Llave & Seara (2000)). Hence the theory has gone far beyond the task of generalizing the

Aubry-Mather theory: it has given mathematicians new tools to study the global dynamical

properties of Lagrangian systems.

Exercise 49.7 Find hypotheses on the generating function of an symplectic twist map F
which translate to Mather’s hypotheses for the Lagrangian that suspends F (Hint. You
may want to include Bialy and Polterovitch’s conditions of Theorem 41.1 for F to have a
convex suspension. Note that completeness of the flow is for free: F is defined everywhere.)
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50.* The Case Of Hyperbolic Manifolds

We start this section with another counterexample to the strict convexity of Mather’s β

function, and hence to the existence of orbits of all rotation vectors. The setting is that of

a metric on the two-holed torus, the simplest example of a compact hyperbolic manifold.

However, we finish the section on a positive note, by quoting a result of Boyland & Golé

(1996b), in which we introduce another definition of rotation vector suited to hyperbolic

manifolds and show the existence of minimal orbits of all rotation directions for a large

class of Lagrangian systems on hyperbolic manifolds.

A*. Hyperbolic Counterexample

Take the metric of constant negative curvature on the surface of genus 2 (the two-holed

torus) which has a long neck between the two holes (see Figure 50.1). A minimizer here

is a minimizing geodesic for the hyperbolic metric. With a and b as shown, the minimal

measure for the homology class [a] + [b] is a linear combination of the ergodic

measures supported on Γa and Γb, where Γa and Γb are the closed geodesics in the

homotopy classes of a and b, respectively. Indeed, Γa and Γb must “go around” the same

holes as a and b, and any closed curve that crosses the neck will be longer than the sum

of the lengths of Γa and Γb. Hence ([a] + [b], β([a] + [b])) cannot be an extreme point of

graph(β).

a b
c

Fig. 50.1. The surface of genus two and the loops a and b. No minimal measure with
rotation vector [a] + [b] can have support passing through the long neck. In particular, a
curve in the homotopy class of c cannot yield a minimizer in the abelian cover.
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B*. All Rotation Directions in Hyperbolic Manifolds

As the previous example shows, the notion of minimizers in the abelian cover is maybe too

restrictive, as it rules out many geodesics. Instead of working on the universal abelian cover,

we work in the universal cover and define minimizers and rotation vectors with respect to

that cover.

All manifolds of dimension n which admit a hyperbolic metric of constant negative

curvature have the Poincaré n–disk as universal covering space IHn. Hence a hyperbolic

manifold M is the quotient IHn/π1(M) where π1(M) acts on IHn as the group of deck

transformations. To visualize IHn, assume n = 2, which covers any orientable surface of

genus greater or equal to two. One model for IH2 is the usual Euclidean unit disk which

is given the hyperbolic metric dx2+dy2

1−(x2+y2) . The ratio between the corresponding hyperbolic

distance and the euclidean one tends exponentially to∞ as points approach the boundary of

the disk. Geodesics for the hyperbolic metric are arcs of (Euclidean) circles perpendicular

to the boundary ∂IH2 of the disk.

The minimizers we consider in this section lift to curves in the universal cover which

minimize the action between any two of their points. We also assume that the Lagrangian

L satisfies Mather’s Hypotheses (time periodic C2 function with (a) fiber convexity, (b)

completeness of the E–L flow) except that we replace his condition (c) of superlinearity by

one of superquadraticity:

(c’) superquadraticity: There exists a C > 0 such that L(x, v, t) ≥ C ‖v‖2.

This, again, is satisfied by mechanical systems. Note that, without loss of generality, one

can assume the Lagrangian L to be positive: being convex, it is bounded below, and adding

a constant to L does not change the E–L solutions. We now state the two theorems that

appear in Boyland & Golé (1996b). The first one finds minimizing solutions near any given

geodesic:

Theorem 50.1 (Boyland–Golé) Let (M, g) be a closed hyperbolic manifold. Given a

Lagrangian L which satisfies Hypotheses (a), (b), (c’), there are sequences ki, κi, Ti
in IR+ depending only on L, with ki increasing to infinity, such that, for any hyper-

bolic geodesic Γ0 ⊂ IHn = M̃ (for the lifted metric), there are minimizers γi : IR→
M̃ with dist(γi, Γ0) ≤ κi, γi(±∞) = Γ0(±∞), and ki ≤ 1

d−cdist(γi(d), γi(c)) ≤ ki+1

whenever d− c ≥ Ti.
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The following theorem can be viewed as a (weak) generalization of the Aubry-Mather

theorem for convex Lagrangian system on compact hyperbolic manifolds. Remember that,

since the geodesic flow is the solution of the autonomous Lagrangian system with corre-

sponding Hamiltonian 1
2 ‖p‖

2, the energy levels ‖v‖ = c are all invariant sphere bundles

that foliate the tangent bundle. In the case of M = S1 with the Euclidean metric, these

energy levels are pairs of flat invariant circles of the completely integrable map. Similarly

to the Aubry-Mather theorem which states that traces of these invariant circles remain in

the guises of invariant circles or Cantor sets whose dynamics is (semi)conjugate to circle

homeomorphisms, the following theorem proves the existence of E–L invariant sets that are

semiconjugate to the geodesic flow on these sphere bundles. The reason that we call this

a “weak” generalization of the Aubry-Mather theorem is that we can only guarantee the

existence countably many of these E-L invariant sets. Hence the geodesic flow is “weakly”

topologically stable.

Theorem 50.2 (Boyland–Golé) Let (M, g) be a closed hyperbolic manifold with

geodesic flow gt. Given a Lagrangian L which satisfies Hypotheses (a), (b), (c’)

with E-L flow φt, there exists sequences ki and Ti with ki increasing to infinity,

and a family of compact, φt-invariant sets Xi ⊂ TM so that for all i, (Xi, φt) is

semiconjugate to (T1M, gt) and ki ≤ 1
T dist(φT (x), φ0(x)) ≤ ki+1, whenever T ≥ Ti

and x ∈ Xi.

The key to these theorems is that, for any Lagrangian systems on a compact manifold

satisfying the properties a), b), c’), we show that E-L solutions are quasi-geodesics, in the

sense of Gromov. We then use the property that, in hyperbolic manifolds, quasi-geodesics

are uniformly close to geodesics.

A New Definition of Rotation Vector in Hyperbolic Manifolds. We now interpret Theorem

50.1 as saying that there exist minimizers of all rotation directions, with a new definition of

this term valid only for hyperbolic manifolds. Let us first reinterpret the classical notion of

rotation vector on T ∗Tn geometrically: a curve γ on Tn has rotation vector v ∈ IRn if its

lift γ̃ in the universal cover IRn is “asymptotically parallel” to the straight line supporting

v and if the average of ‖γ̇(t)‖ over all t ∈ IR is equal to ‖v‖ (we let the reader make

these statement precise and rigorous). Now given two points on ∂IH2, there is exactly one
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geodesic Γ0 that goes to the first as t→ −∞, to the other one as t→ +∞. We can declare

a curve γ to be asymptotically parallel to Γ0 iff γ and Γ0 have same endpoints. This will

insure that points of γ are always at a bounded hyperbolic distance from Γ0. We also declare

that the rotation vector exists iff γ has the same endpoints at ±∞ as a geodesic Γ0, and if

the average |ρ(γ)| of ‖γ̇‖ over t ∈ IR exists, and we define the rotation vector to be the

pair ρ(γ) = (Γ0, |ρ(γ)|) (average direction and average speed). In that language, Theorem

50.1 states that, given any geodesic Γ , there are infinitely many E-L minimizers with Γ as

a rotation direction.

The naive definition of rotation vector that we just outlined has some major flaws:

1. ρ(γ) (if it exists) does not belong to a linear space.

2. Two lifts of the same curve will have different rotation vectors.

3. Rotation direction is not constant µ − a.e. for many ergodic measures for the geodesic

flow.

To remedy that, let π1(M), seen as deck transformation group, act on geodesics in IH2

and declare that two geodesics are parallel iff they belong to the closure of the same π1(M)-

orbit (of geodesics). Consider the set of tangent vectors at all points of all the geodesics in

the closure of a π1(M) orbit. This forms a closed subset of the unit tangent bundle of IH2.

The projection by the differential of the covering map of this set on the unit tangent bundle

ofM is the support of a measure µ which is invariant under the geodesic flow. Because of

this, Boyland (1996) defines the rotation direction of a curve to be a measure invariant under

the geodesic flow, weak* limit of measures supported by geodesics joining two points of

the curve. This rotation vector being defined through ergodic theory, it is constant µ− a.e.
for any E-L ergodic µ. Theorem 50.2 implies the existence of minimizer of all rotation

directions, in this new, “homotopy”, sense of the word.

Note that there are many more such “homotopy” directions than there are “homology”

directions. For instance the “long neck” metric of Figure 50.1 has no homology minimizer

with rotation direction c, as argued in the previous subsection, but it will have infinitely

many homotopy minimizers with that direction.

On the negative side, the counterexamples of Manẽ (1991) and Boyland & Golé (1996a)

on T2 as reviewed in the previous section, where gaps in the rotation spectrum are found,

probably have counterparts on hyperbolic manifolds, even with our new definition of rotation

vector. Thus, we think there is little chance to prove the existence of global minimizers of
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all rotation vectors, even on these manifolds. However there should be good chances to find

local minimizers of all rotation vectors, as we discuss in the next section.

What we hoped to show in this section is that the universal cover is a more natural

setting than the abelian universal cover when studying Lagrangian minimizers on hyperbolic

manifolds.

51.* Concluding Remarks

What, in the end, are the chances of finding orbits of all rotation vectors for symplectic

twist maps or Lagrangian system, in say, T ∗Tn? Previous attempts at this problem yielded

incomplete results. Bernstein & Katok (1987) “almost” found, for minimizing periodic

orbits of symplectic twist maps close to integrable, some uniform modulus of continuity,

which they hoped would unable them to take limits and get orbits with the limiting rotation

vectors. In my thesis, I hoped that proving some regularity of the ghost tori (invariant set

for the gradient flow of the periodic action) might enable one to do the same. This is how

ghost circles came about.

One thing is clear: one cannot hope for global minimizers to achieve all possible rotation

vectors. However, the shadowing methods to construct local minimizers of all rotation

vectors of Levi (1997) on the Hedlund counterexamples indicate a possible approach to the

general case. The recent work of Mather on existence of unbounded orbits (see Delshams, de

la Llave & Seara (2000) , Section 49 and the end of Chapter 6), also shows that, for general

systems, hyperbolic and variational techniques can combine powerfully to construct orbits

shadowing successive minimizers. One possibility to attack the problem of existence of orbits

of all rotation vector would be to try to construct, in a manner analogous to Levi (1997),

orbits shadowing the different supports of the ergodic measures which are extreme points of

one generalized Mather setMc. Doing so, one may manage to “fill in” the corresponding set

of rotation vectors Xc with rotation vectors of actual orbits, may they be local minimizers.


