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PERIODIC ORBITS FOR HAMILTONIAN
SYSTEMS

We present in this chapter some results of existence and multiplicity of periodic orbits

in Hamiltonian systems on cotangent bundles. Our main goal is to show the power, and

relative simplicity of the method of decomposition by symplectic twist map as presented in

Chapter 7, which results into finite dimensional variational problems. Some of the results

in this chapter are not optimal. They could probably be improved using methods similar to

the ones presented here. In some case, these results have recently been improved by other

authors, using usually substantially more complicated methods.

In Section 42, we present two theorems of existence of periodic orbits for Hamiltonian

systems in the cotangent bundle of the torus. They are relatively direct applications of

Theorem 27.1 of Chapter 5. In Section 43, we prove a theorem of existence of periodic orbits

for systems in cotangent bundles of arbitrary compact manifolds. The boundary condition

that we impose (that the Hamiltonian flow be the geodesic flow outside a compact set) is

inspired by a similar theorem of Conley & Zehnder (1983) for systems on the cotangent

bundle of the torus. That theorem was itself inspired by a conjecture of Arnold (1965),

where he proposes an entirely topological generalization (the linking of certain spheres) of

the boundary twist condition of the theorem of Poincaré-Birkhoff. In Section 44, we explore

this linking of sphere condition and prove Arnold’s conjecture in the simple case when the

map is a symplectic twist map .
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42. Periodic Orbits in the Cotangent of the n-Torus

We present here two results of existence and multiplicity of periodic orbits for Hamiltonian

systems in T ∗Tn. The first one concerns a certain class of optical systems, the second one

Hamiltonians that are quadratic nondegenerate outside of a bounded set.

A. Optical Hamiltonians

Assumption 42.1 (Uniform Opticity)

H(q,p, t) = Ht(z) is a twice differentiable function on T ∗Tn × IR which satisfies the

following:

(1) sup
∥∥∇2Ht

∥∥ < K

(2) The matricesHpp(z, t) are positive definite and their smallest eigenvalues are uniformly

bounded below by C > 0.

Theorem 42.2 Let H(q,p, t) be a Hamiltonian function on T ∗Tn × IR satisfying

Assumption 42.1. Then the time 1 map h1 of the associated Hamiltonian flow has

at least n + 1 periodic orbits of type m, d, for each prime m, d, and 2n when they

are all nondegenerate.

Proof . We can decompose the time 1 map:

h1 = h1
N−1
N

◦ . . . ◦ h
k+1
N
k
N

◦ . . . ◦ h
1
N
0 .

and each of the maps h
k+1
N
k
N

is the time 1
N of the (extended) flow, starting at time k

N .

Proposition 39.11 shows that, for N big enough, such maps are symplectic twist maps.

Moreover, we noted in Remark 39.10 that these maps also satisfy a convexity condition

which, together with Lemma 27.2 (see (27.5) in its proof) allows us to show that the

generating function S is coercive. The result follows from Theorem 27.1. ��
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B. Asymptotically Quadratic Hamiltonians

We now turn to systems that are not necessarily optical, but satisfy a certain quadratic

“boundary condition” which makes them completely integrable outside a compact set:

Theorem 42.3 Let H : T ∗Tn × IR→ IR satisfy the following boundary condition:

(42.1) H(q,p, t) =
1
2
〈Ap,p〉+ c · p, At = A,det A 
= 0 when ‖p‖ ≥ K,

where A is an n × n matrix, c ∈ IRn and K is a positive real. Then, for all m, d

in ZZn × ZZ, the time–1 h1 map of the Hamiltonian flow has at least n + 1 distinct

m, d–orbits, and at least 2n when they are all nondegenerate (i.e. generically). Fur-

thermore, such an orbit lays entirely in the set ‖p‖ ≤ K if and only if the rotation

vector m/d belongs to the ellipsoid:

E =
{
x ∈ IRn |

∥∥A−1(x− c)
∥∥ ≤ K

}
.

Proof . The boundary condition (42.1) is Assumption 2 preceding Theorem 39.7 , in

which it is proven that the time ε of such Hamiltonians are twist maps. Hence, as remarked

in Proposition 39.11, the time 1 map can be decomposed into symplectic twist maps. We now

want to apply Theorem 27.1. To insure that these twist maps satisfy the conditions of that

theorem, we note that, in the proof of Proposition 39.11, instead ofG(q,p) = (q+p,p), we

can take G(q,p) = (q+Ap+ c,p), the time 1 map of H0(q,p) = 1
2 〈Ap,p〉+ c.p. This

map is clearly a symplectic twist map . With this minor change, outside the set ‖p‖ ≤ K,

the maps F2k, F2k−1 of the decomposition are respectively the time 1 and the time ( 1
N − 1)

of the Hamiltonian flow associated to H0, that is:

F2k(q,p) = (q +Ap+ c,p)

F2k−1(q,p) = (q + (1/N − 1)(Ap+ c),p) .

These maps satisfy the conditions of Theorem (27.2) , which proves the existence of the

advertised number of m, d orbits. To localize these orbits, note that an orbit starting in

‖p‖ ≥ K must stay there, and the map h1 on such an orbit is just G. The rotation number

of such an orbit is thus

(Q− q) = Ap+ c

from which we conclude that, in this case,m/d is in the complement of E . ��
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C. Remarks about the Above Results

Periodic Orbits for the Map vs. Periodic Orbits for the Flow. There is a distinction between

periodic orbits of h1 and periodic orbits of the Hamiltonian equations: for a general time

dependent Hamiltonian flow, (h1)n 
= hn, and hence an m, d periodic orbit for h1 is not

necessarily one for the O.D.E. (which should satisfy ht+d(z) = ht(z) + (km, 0) for all

t ∈ [kd, (k + 1)d), k ∈ ZZ). However, if H is periodic in time, of period 1, the equality

(h1)n = hn does hold, and in this case the two notions coincide. In particular, this holds

trivially for time independent Hamiltonians. Unfortunately, these cases are degenerate in

our setting, since Dhd(z) preserves the vector field XH , which is thus an eigenvector with

eigenvalue one. So in these cases, we can only claim the cuplength estimates for the number

of periodic orbits for the Hamiltonian flow in either Theorems 42.2 or 42.3. We think

that some further argument should yield, even in the time periodic case, the sum of the

betti number estimate for the number of flow periodic orbits, when the periodic orbits are

nondegenerate as orbits of the flow: i.e., when the only eigenvector of eigenvalue one for

Dhd(z) is in the direction of the vector field XH .

Possible Improvements. Note that the full strength of Theorem 27.1 was not brought

to bear in the proof of Theorem 42.3: the symplectic twist maps that we obtained in the

decomposition of h1 are linear outside a bounded set, whereas Theorem 27.1 can deal with

asymptotic linearity. It is very conceivable that one could cover a larger class of systems

using this method, including classical mechanical systems on the torus.

Related Results in the Literature. Conley & Zehnder (1983) contains a theorem of exis-

tence of multiple homotopically trivial periodic orbits, with a boundary condition similar

to that of Theorem 42.3. In an impressive and technically difficult piece of work, Josel-

lis (1994), (1994b) gives an improved version of Theorem 42.3 in that the Hamiltonian

flow is only asymptotically quadratic. See also Felmer (1992) for related results using a

mountain pass lemma. In Benci, V. (1986), it is shown that fiberwise convex, time peri-

odic Lagrangian systems on arbitrary compact manifolds have at least one periodic orbit of

any given free homotopy class. This result, which assumes also certain assumptions on the

first and second derivative of the Lagrangian implies, via the Legendre transformation, the

existence of at least one m, 1 orbit for the optical systems we consider in Theorem 42.2.

Conversely, via the Legendre transformation, Theorem 42.2 applies to Lagrangian systems
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whose Lagrangian function satisfies the same conditions as H in our theorem (it is not hard

to see that these conditions translate under the Legendre transformation). Hence Theorem

42.2 extends some existing theorems for such systems (see, e.g., Mawhin & Willem(1989),

Theorem 9.3).

43. Periodic Orbits in General Cotangent Spaces

We now turn to the study of Hamiltonian systems in cotangent spaces of arbitrary compact

manifolds. Our main result, which first appeared in Golé (1994) is:

Theorem 43.1 Let (M, g) be a compact Riemannian manifold, with associated norm

‖·‖. Let F : T ∗M → T ∗M be the time 1 map of a time dependent Hamiltonian H

on B∗M , where H is a C2 function satisfying the boundary condition:

H(q,p, t) =
1
2
‖p‖2 for ‖p‖ ≥ C.

where C is strictly smaller than the injectivity radius. Then F has at least cl(M)

distinct fixed points and at least sb(M) if they are all nondegenerate. Moreover,

these fixed points lie inside the set {‖p‖ < C} and can all be chosen to correspond

to homotopically trivial closed orbits of the Hamiltonian flow.

The injectivity radius on a Riemannian manifold is defined as

inf
q∈M

sup
r∈[0,+∞]

{
r

∣∣∣ exp∣∣B(q,r)
is injective

}
.

The rest of this section is devoted to the proof of this theorem. Note that Cielieback (1992)

provides a similar theorem, with asymptotically quadratic conditions. His proof uses a

version of Floer cohomology.
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A. The Discrete Variational Setting

Define

B∗M = {(q,p) ∈ T ∗M | g(q)(p,p) = ‖p‖2 ≤ C2}.

Let π denote the canonical projection π : B∗M →M . Let F be as in Theorem 43.1. From

Proposition 39.11 we can decompose F into a product of symplectic twist maps :

F = F2N ◦ . . . ◦ F1,

where F2k restricted to the boundary ∂B∗M of B∗M is the time 1 map h1
0 of the geodesic

flow with Hamiltonian H0(q,p) = 1
2 ‖p‖

2. Likewise, F2k−1 is h
1−N
N

0 on ∂B∗M . Let

Sk be the generating function for the twist map Fk and ψk = ψFk the diffeomorphism

(q,p) → (q,Q) induced by the twist condition on Fk. We can assume that ψk is defined

on a neighborhood U of B∗M in T ∗M where

U = {(q,p) ∈ T ∗M | ‖p‖ ≤ C + δ}.

Our variational study will take place in the set:

(43.1)
O = {q = (q1, . . . , q2N ) ∈M2N |(qk, qk+1) ∈ ψk(U) and

(q2N , q1) ∈ ψ2N (U)}

Proposition 43.2 The set O can be described as:

O = {q ∈M2N | Dis(qk, qk+1) < |ak|(C + δ), Dis(q2N , q1) < (C + δ)}

where

(43.2) ak =
{

1 if k is even
1−N
N if k is odd.

In particular, O contains the set of constant sequences in M2N .

Proof . This is an easy application of the twist condition, using the fact that the map Fk

equal the time ak of the geodesic flow on the boundary of U . ��
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We note that U and O are independent of the map F , as long as F satisfies the boundary

condition of Theorem 43.1. Next, define :

(43.3) W (q) =
2N∑
k=0

Sk(qk, qk+1),

where we have set q2N+1 = q1. Choosing to work in some local coordinates around

q ∈ M2N , we let pk = −∂1Sk(qk, qk+1) and P k = ∂2Sk(qk, qk+1). In other words,

(qk,pk) ∈ T ∗qkM is such that ψk(qk,pk) = (qk, qk+1) and (qk+1,P k) ∈ T ∗qk+1
M is

such that Fk(qk,pk) = (qk+1,P k). We let the reader check that the following proofs can

be written in coordinate free notation (see Remark 26.3). By Exercise 26.4, a sequence

q of O is a critical point of W if and only if the sequence {(qk,pk)}k∈{1,...,2N,1} is

an orbit under the successive Fk’s, that is if and only if (q1,p1) is a fixed point for F :

dW (q) =
∑2N
k=1(P k−1 − pk)dqk which is null exactly when P k−1 = pk, i.e. when

Fk(qk−1,pk−1) = (qk,pk). Now remember that we assumed that q2N+1 = q1.

Hence, to prove Theorem 43.1, we need to find enough critical points forW . As before,

we will study the gradient flow of W (where the gradient will be given in terms of the

metric g) and use the boundary condition to find an isolating block. The main difference

with the previous situations on T ∗Tn is that we cannot put W in the general framework of

generating phases quadratic at infinity. Nonetheless, thanks to the boundary condition we

imposed on the Hamiltonian, we are able to construct an isolating block and use Floer’s

theorem of continuation (Theorem 63.7in Appendix 2) to get a grasp on the topology of the

invariant set, and hence on the number of critical points.

B. The Isolating Block

In this subsection we prove that the set B defined as follows:

(43.4) B = {q ∈ O | Dis(qk, qk+1) ≤ |ak|C}

is an isolating block for the gradient flow of W , where O is defined in (43.1) , C is as in the

hypotheses of Theorem 43.1, and ak is defined in (43.2) .

Proposition 43.3 B is an isolating block for the gradient flow of W .
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Proof . Suppose that the point q of U is on the boundary of B. This means that

Dis(qk, qk+1) = |ak|C for at least one k. Using the boundary condition, this is equivalent

to ‖pk‖ = C, where as usual pk = −∂1Sk(qk, qk+1). We want to show that Dis(qk, qk+1)

increases either in positive or negative time along the gradient flow ofW . Thekth component

of the gradient vector field is given by:

(43.5) q̇k = Ak(P k−1 − pk) = ∇Wk(q)

where Ak = A(qk) is the inverse of the matrix of coefficients of the metric g at the point

qk. We used that, on a Riemannian manifold, the gradient of a function f is given by

g(q)(∇f, ·) = df(·), see Exercise 61.9. Remember that we have put the product metric

on O, induced by its inclusion in M2N . We compute the derivative of the distance along

the gradient flow at a boundary point of B, using Corollary 38.6 and the fact that, on the

boundary, hak0 (qk,pk) = (qk+1,P k):

(43.6)

d

dt

∣∣∣∣
t=0

Dis(qk, qk+1) = ∂1Dis(qk, qk+1) · ∇Wk(q)

+ ∂2Dis(qk, qk+1) · ∇Wk+1(q)

= sign(ak)
−pk
‖pk‖

·Ak(P k−1 − pk)

+ sign(ak)
P k

‖P k‖
·Ak+1(P k − pk+1)

We now need a simple linear algebra lemma to treat this equation.

Lemma 43.4 Let 〈 , 〉 denote a positive definite bilinear form in IRn, and ‖.‖ its

corresponding norm. Suppose that p and p′ are in IRn ,that ‖p‖ = C and that

‖p′‖ ≤ C. Then :

〈p , p′ − p 〉 ≤ 0.

Moreover, equality occurs if and only if p′ = p.

Proof . From the positive definiteness of the metric, we get:

〈 p′ − p,p′ − p 〉 ≥ 0,

with equality occurring if and only if p′ = p. From this, we get:
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2〈 p,p′ 〉 ≤ 〈 p′,p′ 〉+ 〈 p,p 〉

Finally,

〈 (p′ − p),p 〉 = 〈 p′,p 〉 − 〈 p,p 〉 ≤ 1
2

(〈 p′,p′ 〉 − 〈 p,p 〉) ≤ 0

with equality occurring if and only if p′ = p. ��
Applying Lemma 43.4 to each of the right hand side terms in (43.6) , we can deduce

that d
dtDis(qk, qk+1) is positive when k is even, negative when k is odd. Indeed, because of

the boundary condition in the hypothesis of the theorem, we have ‖P k‖ = ‖pk‖ whenever

‖pk‖ = C: the boundary ∂B∗M is invariant under F and all the Fk’s. On the other hand

q ∈ B ⇒ ‖pl‖ ≤ C and ‖P l‖ ≤ C, for all l, by invariance ofB∗M . Finally, ak is positive

when k is even, negative when k is odd.

The problem is that we have not shown yet that d
dtDis(qk, qk+1) cannot be 0. This

problem is confined to the “edges” of ∂B, i.e. the sets of points q such that more than one

pk has norm C. The problem at these edges occurs when k is in an interval {l, . . . ,m} such

that, for all j in this interval,
∥∥pj∥∥ = C = ‖P j‖ and ∇Wj(q) = 0. It is now crucial to

note that {l, . . . ,m} can not cover all of {0, . . . , 2N}: this would mean that q is a critical

point corresponding to a fixed point of h1
0 in ∂B∗M . But such a fixed point is forbidden by

our choice of C: orbits of our Hamiltonian on the set ‖p‖ = C are geodesics, but geodesics

in that energy level cannot be rest points since C > 0, and they cannot close up in time one

either since C is less than the injectivity radius. We now let k = m in (43.6) and see that

exactly one of the 2 terms in the right hand side of Equation (43.6) is nonzero. Hence the

flow must definitely escape the set B at q in either positive or negative time, from the mth

face of B. ��

Remark 43.5 If the Hamiltonian considered is optical and we decompose its time 1 map

into a product of N twist maps as in 39.11, all the Fk’s coincide with h
1
N
0 on the boundary

of B∗M . In that case, all the ak’s in the above proof are positive, and B is a repeller block.
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C. End of Proof of Theorem 43.1

To finish the proof of Theorem 43.1 we use Floer’s theorem 63.7 of continuation of normally

hyperbolic invariant sets. We consider the family Fλ of time 1 maps of the Hamiltonians:

Hλ = (1− λ)H0 + λH,

where H is as in Theorem 43.1 and H0(q,p) = 1
2 ‖p‖

2. Corresponding to this is a family

of gradient flows ζtλ, solution of

d

dt
q = ∇Wλ(q),

where Wλ is the discrete action corresponding to the decomposition in symplectic twist

maps of the map Fλ. We take care that this decomposition has the same number of steps,

say 2N , for each λ. As before, the manifold on which we consider these (local) flows is O,

an open neighborhood of B in M2N . Each Fλ satisfies the hypothesis of Theorem 43.1,

and thus Proposition 43.3 applies to ζtλ for all λ in [0, 1]: B is an isolating block for each

of these flows. Hence the maximum invariant sets Gλ for the flows ζtλ in B are related by

continuation. The part of Floer’s Theorem that we need to check is that G0 is a normally

hyperbolic invariant manifold for ζt0.

Lemma 43.5 Let G0 = {q ∈ B | qk = q1,∀k}. Then G0 is a normally hyperbolic

invariant set for ζt0. G0 is a retract of O and it is the maximal invariant set in B.

Proof . The only critical points for W0 in B are the points of G0 which correspond to

restpoints of the geodesic flow, i.e. the zero section. Indeed, critical points of W0 in B

corresponds to periodic points of period 1 for the geodesic flow in B∗M . Our definition of

that sets precludes nontrivial periodic geodesics in B∗M . We now show that the maximum

invariant set for ζt0 in B is included in G0. Since ζt0 is a gradient flow, such an invariant set

is formed by critical points and connecting orbits between them. The only critical points of

W0 in B are the points of G0. If there were a connecting orbit entirely in B, it would have

to connect two points in G0, which is absurd since W0 ≡ 0 on G0, whereas W0 should

increase along non constant orbits. G0 is a retract of M2N under the composition of the

maps:

q = (q1, . . . , q2N )→ q1 → (q1, q1, . . . , q1) = α(q)
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which is obviously continuous and fixes the points of G0. It remains to show that G0 is

normally hyperbolic. Since G0
∼= M is an n-dimensional manifold made of critical points,

saying that it is normally hyperbolic is equivalent to saying that for q in G0, ker∇2W0(q)

has dimension n: indeed, if it is the case, the only possible vectors in this kernel must be

tangent to G0, and thus he differential of the flow is nondegenerate on the normal space to

TG0. In the present situation, the second variation formula of Lemma 29.4 says that the

1-eigenspace of Dh1
0 is isomorphic to the kernel of∇2W0. Hence it is enough to check that

at a point (q1, 0) ∈ B∗M corresponding to q, 1 is an eigenvalue of multiplicity exactly n

for Dh1
0(q1, 0). Let us compute Dh1

0(q1, 0) in local coordinates. It is the solution at time 1

of the linearized (or variation) equation:

U̇ = −J∇2H0(q1, 0)U

along the constant solution (q(t),p(t)) = (q1, 0), where J denotes the usual symplec-

tic matrix

(
0 −I
I 0

)
. An operator solution for the above equation is given by U(t) =

exp
(
−tJ∇2H0(q1, 0)

)
. On the other hand:

∇2H0(q1, 0) =
(

0 0
0 A(q1)

)

which we computed fromH0(q,p) = 1
2A(q)p.p, the zero terms appearing at p = 0 because

they are either quadratic or linear in p. From this,

Dh1
0(q1, 0) = exp

(
J∇2H0(q1, 0)

)
=

(
I A(q1)
0 I

)

is easily derived. This matrix has exactly n independent eigenvectors of eigenvalue 1 ( it

has in fact no other eigenvector). Hence, from Lemma 29.4,∇2W (q) has exactly n vectors

with eigenvalue 0, as was to be shown. ��
We now conclude the proof of Theorem 43.1. We have proved that the gradient flow ζt,

has an invariant set G1 with H∗(M) ↪→ H∗(G1). From this we get in particular:

cl(G1) ≥ cl(M) and sb(G1) ≥ sb(M).

Theorem 61.2 and the remark following it tell us that ζt must have at least cl(G1) rest points

in the setG1, and sb(G1) if all rest points are nondegenerate. But Lemma 29.4 (which, as the

reader can readily check, is valid in general cotangent bundles) tells us that nondegeneracy
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for ∇2W at a critical point is the same thing as nondegeneracy of a fixed point for F (no

eigenvector of eigenvalue 1). This proves the existence of the advertised number of fixed

points of the map F . In the following section, we will see how to insure that all the fixed

points of the time 1 map that we find correspond to homotopically trivial periodic orbits.

This concludes the proof of Theorem 43.1. ��

D. Periodic Orbits of Different Homotopy Classes

To determine the topological type of a periodic orbit for a map on T ∗M , we consider the

free homotopy class of a curve built from a given sequence of points on the manifold, in the

fashion of broken geodesics.

Free Homotopy Classes. The free homotopy class of a curve is an equivalence class of all

curves that are homotopic without a fixed base point. As a result, free homotopy classes

can be seen as conjugacy classes in π1(M) (the conjugacy is by concatenation with a curve

that goes from the starting point of the given curve to a given base point, and back). Thus

this set of free homotopy classes can not be endowed with a natural algebraic structure. Two

elements of a free class give the same element in H1(M). Hence free homotopy classes

form a set smaller than π1(M), bigger than H1(M). All these sets coincide if π1(M) is

abelian.

Construction of the Broken Solutions. For each Fk in the proof of Theorem 43.1 , define

ϕk to be the inverse map of the diffeomorphism Q → −∂1Sk(q,Q). That is, fixing q,

the map that make correspond p to Q according to Fk(q,p) = (Q,P ). Since each Fk

is a symplectic twist map equal to hak0 on ∂B∗qM for some positive or negative ak, the

set ϕk(B∗qM) is a ball of radius |ak| centered at q (in the sense of distance induced by

the Riemannian metric). In particular q ∈ ϕk(B∗qM). Since B∗qM → ϕk(B∗M) is a

diffeomorphism, we can define a path ck(q,Q) between q and a point Q of ϕk(B∗qM) by

taking the image by ϕk of the oriented line segment between ϕ−1
k (q) and ϕ−1

k (Q) inB∗qM .

In the case where Fk = h1
0, ϕk is just the map exp# and this amounts to taking the unique

geodesic between q and Q in ϕk(B∗qM) . If we look for periodic orbits of period d and in

a given free homotopy class, we decompose F d into 2Nd twist maps, by decomposing F

into 2N . Analogously to Equation (43.1) , we then define :
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Od = {q = (q1, . . . , q2Nd) ∈M2Nd |(qk, qk+1) ∈ ψk(U) and

(q2Nd, q1) ∈ ψ2Nd(U)},
(U is as before a neighborhood of B∗M ). To each element q in Od, we can associate a

closed curve c(q), made by joining up each pair (qk, qk+1) with the curve ck(qk, qk+1)

uniquely defined as above. This “broken solution” c(q) is a piecewise differentiable loop,

and it depends continuously on q, and so do its derivatives (left and right). In the case of the

decomposition of h1
0 , taking Fk=h1

0, this is exactly the construction of the broken geodesics

(see Section 38). Now any closed curve in M belongs to some free homotopy class that we

denote by m. To any d periodic point for F , we can associate a sequence q(x) ∈ Od of q

coordinates of the orbit of this point under the successive Fk’s in the decomposition of F d.

Definition 43.6 Let z be a periodic point of period d for F . Let q be the sequence in Od

corresponding to x. We say that x is anm, d–point if c(q) is in the free homotopy class m.

This definition has the advantage to make sense for any map F of T ∗M which can be

decomposed into the product of symplectic twist maps . If F is also the time 1 map of a

Hamiltonian, it agrees with the obvious definition:

Proposition 43.7 If z is an m, d periodic point, then the projection π(z(t)), t ∈ [0, d]

of the orbit of z under the Hamiltonian flow is a closed curve in the free homotopy

class m.

Proof . Left as an exercise (Hint.Use the geodesic flow to construct the homotopy between

c(q(z)) and π(z(t))). ��
Let

(43.7) Om,d = {q ∈ Od | c(q) ∈m}

Since c(q) depends continuously on q ∈ Od, Om,d is a connected component of Od. The

reader who wants to make sure that, in the proof of Theorem 43.1, the orbits found are

homotopically trivial, can check that the proof we gave in last section works identically

when one replace the space O, by its connected component Oe,1, where e is the homotopy

class of the trivial curve. Another place where one uses this decomposition of O in different

homotopy components is the following:
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Theorem 43.8 Let (M,g) be a Riemannian manifold of negative curvature and H be

as in Theorem 1. If γm denotes the (unique) closed geodesic of free homotopy class

m, F has at least 2 m, d–orbits in B∗M when length(γm) < dC .

The proof of Theorem 43.8 (see Golé (1994), Theorem 2) has the same broad outline as

that of Theorem 43.1. We work inOm,d instead ofO. The normally hyperbolic invariant set

that we continue to in this setting is given by the set G0 of critical sequences corresponding

to the orbits under the hak0 ’s of the points on γm. The normal hyperbolicity of G0 derives

this time from the hyperbolicity of the geodesic flow in negative curvature.

44. Linking of Spheres: Toward a Generalization of the Theorem
of Poincaré And Birkhoff

This section goes back to the original motivation of Theorem 43.1, namely the following

conjecture of Arnold (1965) that generalizes the Theorem of Poincaré-Birkhoff. We will

define and explore the notion of linking of spheres in the sequel.

Conjecture 44.1 (Arnold) State it precisely here ???

In Banyaga & Golé (1993) we proposed the following generalization of this conjecture:

Conjecture 44.2 Let M be a compact manifold, and F be a Hamiltonian map of a

ball bundle B∗M in T ∗M . Suppose that each sphere ∂B∗qM links with its image by

F in ∂B∗M . Then F has at least cl(M) distinct fixed points, and at least sb(M) if

they are nondegenerate.

In Banyaga & Golé (1993) (see also Golé (1994)), we proved the following simple case.

We will give the proof in the case of M = Tn.:

Theorem 44.3 Let F be a symplectic twist map of B∗M which links spheres on the

boundary ∂B∗M . Then F satisfies the generalized Arnold Conjecture.
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Linking of Spheres and the Boundary Twist Condition. If you remove a circle C1 from

3-space, the hole it leaves out creates some topology. In particular, another circleC2 can “go

around that hole” or not. If it does, the circles C1 and C2 link. In mathematical terms, the

complement of C1 has a new generator in first homology that the 3-space did not have. The

first homology class of C2 in the complement of C1 measures the linking of the 2 circles.

Likewise, removing an n − 1 sphere in IR2n−1 creates a new generator in Hn−1, and the

homology class of another sphere in that group measures the linking of the two spheres.

We will adapt this notion to the setting where one sphere is the boundary ∂∆q of a fiber

∆q of the ball bundle B∗M , and the other sphere is F (∂∆q). We will go into more detail

later on these concepts, when we prove that, at least in the case of symplectic twist maps of

T ∗Tn, the linking of these two n− 1-spheres in the 2n− 1 dimensional boundary of B∗M

is equivalent to:

Definition 44.4 (Fiber Intersection Property) We say that a map F : B∗M → B∗M

satisfies the Fiber Intersection Property if each fiber ∆q = π−1(q) intersects its image

F (∆q) with a nonzero algebraic intersection number (i.e. the number of intersections

counted with orientation).

Note that, in the case of twist maps of the annulus, this property is clearly equivalent to

the boundary twist condition of the Poincaré-Birkhoff Theorem 7.1: If points on the two

boundary components of the annulus go in opposite directions under F then the vertical

fiber {x = x0} and its image by F should have a nonzero algebraic intersection number.

Before going through the rigorous definition of sphere linking and its equivalence with the

Fiber Intersection Property, we give the proof of Theorem 44.3.

Proof of Theorem 44.3. We assume for now the equivalence of the linking of spheres

condition and the Fiber Intersection Property. If F is a symplectic twist map, a fiber ∆q and

its image under F may intersect at most once. Hence the Fiber Intersection Property means

in this case that each fiber intersects its image exactly once. Fixed points of F correspond

to critical points of q → S(q, q). This function is well defined since, by the above, the

diagonal in M ×M is in the image of B∗M by the embedding ψF . Hence F has as many

fixed points as the function q → S(q, q) has critical points on M . Morse and Lyusternick-
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Schnirelman’s theories (See Theorem 61.2 and the remark following it) give the advertised

estimates. ��

Equivalence of Sphere Linking and Fiber Intersection. We now show that, in the case

considered by Arnold, the Fiber Intersection Property is indeed equivalent to linking of

boundary spheres. For the case of more general manifolds than T ∗Tn, we refer the reader to

Banyaga & Golé (1993) or Golé (1994). The reader may already be aware of a connection

between linking and intersection: going back to the example of 2 circles in IR3, their linking

can be measured by the algebraic intersection number of one circle with any disk bounded

by the other one. This correspondence breaks down in S1 × IR2 = ∂B∗T̃
2

however: there,

the circles ∂∆q and F (∂∆q) do not bound any disks. We can still define their linking

number homologically, and relate it to the Fiber Intersection property, which takes place in

the full spaceB∗T̃
2
. The important point is that the linking of spheres is a purely topological

condition which can be read entirely in the boundary.

We first remind the reader of the definition of linking of spheres from algebraic topology.

Let ∆q be a fiber of B∗T̃
n ∼= Sn−1 × IRn. Then ∂∆q

∼= Sn−1. It make sense to talk about

its linking with its image F (∂∆q) in ∂B∗T̃
n

: the latter set has dimension 2n − 1 and the

dimensions of the spheres add up to 2n−2. The linking number F (∂∆q) with ∂∆q is given

by the class [F (∂∆q)] ∈ Hn−1(∂B∗T̃
n\∂∆q;ZZ) (from now to the end of this chapter, we

only consider homology with integer coefficients). More precisely, we have:

(44.1)
Hn−1(∂B∗T̃

n\∂∆q) ∼= Hn−1

(
Sn−1 × (IRn − {0})

)
Kunneth∼= Hn−1(Sn−1)⊕Hn−1(IRn − {0})

.

Thus, removing ∂∆q from ∂B∗T̃
n

creates a new generator in the (n−1)st homology (with

integer coefficients) of that set, i.e. a generator, call it b, of Hn−1(IRn−{0}) ∼= ZZ. As any

sphere of dimension n−1 in ∂B∗T̃
n\∂∆q , F (∂∆q) represents an n−1 cohomology class

in that set that we can write:

[F (∂∆q)] = αa⊕ βb

in the final decomposition in (44.1) . We call the integer β the linking number of the

spheres F (∂∆q) and ∂∆q . If the linking number is nonzero, we say that the spheres ∂∆q

and F (∂∆q) link. Finally, if ∂∆q and F (∂∆q) link for all q ∈ M , we say that F satisfies

the Linking of Spheres Condition.
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Lemma 44.5 If F is the lift of a diffeomorphism of B∗Tn = Tn × Bn, the Fiber

Intersection Property is equivalent to the Linking of Spheres Condition. More pre-

cisely, the algebraic intersection number #(∆q ∩ F (∆q)) and the linking number of

the spheres ∂∆q and F (∂∆q) are equal.

Proof . We complete (44.1) into the following commutative diagram:

Hn−1(∂B∗T̃
n\∂∆q) ∼= Hn−1(IRn − {0})⊕Hn−1(Sn)� i∗

� j∗

Hn−1(B∗T̃
n\∆q) ∼= Hn−1 ({IRn − {0}} ×Bn))

where i, j are inclusion maps and Bn is the n-ball. It is clear that j∗b generates

Hn−1 ((IRn − {0})×Bn) ∼= Hn−1 ({IRn − {0}} × IRn) .

If S is any n− 1 sphere in {IRn−{0}}× IRn, the class [S] ∈ Hn−1 ({IRn − {0}} × IRn)

(i.e. , an integer) measures the (usual) linking number of a sphere with the fiber ∆q in

B∗T̃
n ∼= IR2n. But it is well known that such a number is the intersection number of any

ball bounded by the sphere with the fiber ∆q , counted with orientation (see Rolfsen (1976)

page 132). ��


