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HAMILTONIAN SYSTEMS VS. TWIST
MAPS

In this chapter, we explore the relationship between Hamiltonian systems and symplectic

twist maps. We will assume that the reader is familiar with the material reviewed in Appendix

1, which introduces Hamiltonian systems in cotangent bundles and some of their fundamen-

tal properties. In the first part of this chapter, we show how to write Hamiltonian systems

as compositions of symplectic twist maps. This is instrumental in setting up a simple varia-

tional approach to these systems, which is finite dimensional when one searches for periodic

orbits. This method generalizes the classical method of broken geodesics of Riemannian ge-

ometry. Our main contribution is to make such a method available for Hamiltonian systems

that do not satisfy the Legendre condition.

We start in Section 38 with the geodesic flow, which serves as a reference model for

Hamiltonian systems: it plays a role similar to that of the integrable map in the twist map

theory. Almost no knowledge of Riemannian geometry is assumed here. In Section 39, we

expend our approach to general Hamiltonian or Lagrangian systems satisfying the Legendre

condition (which we see as an analog to the twist condition). In Section 39. D we show

that, whether or not the Legendre condition is satisfied, the time 1 map of a Hamiltonian

system may be decomposed into finitely many symplectic twist maps . In Section 40, we see

how symplectic twist maps also arise from Hamiltonian systems as Poincaré section maps

around elliptic periodic orbits.

From an opposite perspective, we show in Section 41 that in many cases, a symplectic

twist map may be written as the time 1 of a (time dependent ) Hamiltonian system. Most of

this last section is courtesy of M. Bialy and L. Polterovitch, who graciously let us publish

their proof of suspension of symplectic twist maps for the first time in this book.
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38. Case Study: The Geodesic Flow

A. A Few Facts About Riemannian Geometry

Hamiltonian Approach to the Geodesic Flow. Let (M, g) be a compact Riemannian man-

ifold. This means that the tangent fibers TqM are endowed with symmetric, positive definite

bilinear forms:

(v,v′) �→ g(q)(v,v′) for v,v′ ∈ TqM

varying smoothly with the base point q. We will denote the norm induced by this metric by

‖v‖ :=
√
g(q)(v,v). A curve q(t) in M is a geodesic if and only if it is an extremal of the

action or energy functional:

At2t1(q) =
∫ t2

t1

1
2
‖q̇‖2 dt.

between any two of its points q(t1) and q(t2) among all absolutely continuous curves

β : [t1, t2]→M with same endpoints. Geodesics are usually thought of as length extremals,

that is critical points of the functional
∫

1
2 ‖q̇‖ dt. But, thanks to the Cauchy-Schwartz

inequality, action extremals are length extremals and vice versa (with the difference that

action extremals come with a specified parameterization, see Milnor (1969) ). One usually

chooses to compute with the action, since it yields simpler calculations. For more detail on

this, as well as a the more abstract definition of geodesic given in terms of a connection see

e.g. Milnor (1969).

The variational problem of finding critical points of A has the Lagrangian

L0(q,v) =
1
2
g(q)(v,v) =

1
2
‖q̇‖2 .

Following the procedure of Section 59 of Appendix 1, we use the Legendre transform to

compute the corresponding Hamiltonian function. In local coordinates q inM , we can write

g(q)(v,v) = 〈A−1
(q)v,v〉,

where 〈, 〉 denotes the dot product in IRn, and A−1
(q) is a symmetric, positive definite matrix

varying smoothly with the base point q. With this notation, we have

∂L0

∂v
(q,v) = A−1

(q)v,
∂2L0

∂v2
= A−1

(q)
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In particular, ∂
2L0
∂v2 is nondegenerate. Hence the Legendre condition (see Appendix 1) is

satisfied and the Legendre transformation is, in coordinates:

L : (q,v)→ (q,p) = (q, A−1
(q)v)

which transforms L0 into a Hamiltonian H0:

H0(q,p) = pv − L0(q,v) = 〈p, A(q)p〉 −
1
2
〈A−1

(q)A(q)p, A(q)p〉 =
1
2
〈A(q)p,p〉.

This Hamiltonian is a metric on the cotangent bundle:

H0(q,p) =
1
2
〈A(q)p,p〉 def=

1
2
g#
(q)(p,p).

We will also denote the norm associated to this metric by ‖p‖ =
√
g#
(q)(p,p). Note that

the Legendre transformation is in this case an isometry between the metrics g and g#: in

particular, if (q,p) = L(q,v), then ‖p‖ = ‖v‖. Hence the Hamiltonian is half of the speed

and we retrieve, from conservation of energy in Hamiltonian systems, the fact well known

by geometers that geodesics are parameterized at constant speed.

The geodesic flow is the Hamiltonian flow ht0 generated byH0 on T ∗M . It is not hard to

see that the trajectories of the geodesic flow restricted to an energy level project to the same

curves on M as the trajectories in any other energy level: the velocities are just multiplied

by a scalar (See Exercise 38.1). For this reason, one often restricts the geodesic flow to the

unit cotangent bundle T ∗1M = {(q,p) ∈ T ∗M | ‖p‖ = 1}. Traditionally, geometers

use the term geodesic flow to denote the conjugate L−1ht0L on TM of this Hamiltonian

flow, as restricted to the unit tangent bundle. Remember that projections of trajectories

of a Hamiltonian flow associated to a Lagrangian satisfying the Legendre condition are

extremals of the action of the Lagrangian, and vice versa. (See Section 59 in Appendix 1).

In the present case, if (q(t),p(t)) is a trajectory of the geodesic flow, then q(t) is a geodesic.

Conversely, if q(t) is a geodesic, it is the projection on M of the solution (q(t),p(t)) of the

geodesic flow with initial condition (q0,p0) = (q(0), A−1
q0
q̇(0)).

Exponential Map. We now want to establish a fundamental result of Riemannian geometry,

which we will rephrase in the next subsection by saying that the time t of the geodesic flow

is a symplectic twist map. The exponential map is defined by:

expq0(tv) = q(t),
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where q(t) is the geodesic such that q(0) = q0 and q̇(0) = v. Note that any geodesic

can be written in this exponential notation. In terms of the geodesic flow, expq0(tv) =

π ◦ ht0 ◦ L(q0,v), where π : T ∗M �→M is the canonical projection.

Theorem 38.1 Let M be a compact Riemannian manifold. The map Exp : TM →
M ×M

(38.1) Exp : (q,v) �→ (q,Q) def= (q, expq(v))

defines a diffeomorphism between a neighborhood of the 0–section in TM and some

neighborhood of the diagonal in M ×M . Moreover, for (q,v) in that neighborhood:

(38.2) Dis(q, expq(v)) = ‖v‖ .

We remind the reader that the distance Dis(q,Q) between two points q and Q in a

compact Riemannian manifold is given by the length of the shortest path between q andQ.

One way to paraphrase this theorem is by saying that, any two close by points are joined by

a unique, short enough, geodesic segment.

Proof . By definition, expq(0) = q and d
dsexpq(sv) = v at s = 0. Thus:

DExp
∣∣
(q,0)

=
(
Id Id
0 Id

)
,

whose determinant is 1. Hence, Exp is a local diffeomorphism around each point of a

compact neighborhood of the 0-section. By the compactness of M , there is an ε such that

Exp is a diffeomorphism between an ε ball in TM around (q, 0) and a neighborhood in

M ×M around (q, q), where ε is independent of q.

We now show that Exp is an embedding when restricted to Vε = {(q,v) ∈ TM |
‖v‖ ≤ ε}, where ε is as above. Since we proved that Exp is a local diffeomorphism on

Vε, it is enough to check the injectivity. Let two elements in Vε have the same image under

Exp. Since the first factor of Exp gives the base point, this can only occur if they are in the

same fiber of Vε. But, by our choice of Vε this implies these elements are the same.

Finally, we show that Dis(q, expq(v)) = ‖v‖whenever‖v‖ ≤ ε. As a length minimizer,

the shortest path giving the distance between two points is also an action minimizer, and
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hence a geodesic. Since Exp is an embedding of Vε in M × M , exp is one to one on

Vε ∩TqM and the unique geodesic that joins q and expq(v) in exp(Vε ∩TqM) is the curve

t �→ q(t) = expq(tv). The length of this curve is
∫ 1

0
‖q̇‖ dt =

∫ 1

0
‖v‖ dt = ‖v‖ (see

Exercise 38.2c)). The only way Formula (38.2) may fail is if there were a shorter geodesic

joining q and expq(v) not in exp(Vε ∩ TqM)). But this is impossible since this geodesic

would be of the form expq(tw), t ∈ [0, 1] with length ‖w‖ > ε.

��

Exercise 38.2 a) Check that, in local coordinates, Hamilton’s equations for the geodesic
flow write:

(38.3)

q̇ = A(q)p

ṗ = −
〈
∂A(q)

∂q
p, p

〉

b) Verify that hst0 (q, p) = ht0(q, sp). (Hint. if (q(t), p(t)) is a trajectory of the geodesic flow,
then (q(st), sp(st)) is also a trajectory).
c) Show that if q(t) = expq0(tv), ‖q̇(t)‖ = ‖v‖ for all t.
d) Show that Dis(q(0), q(t)) = |t| ‖p(0)‖

Exercise 38.3 Show that the completely integrable twist map (x, y) �→ (x+y, y) is the time
1 map of the geodesic flow on the “flat” circle, i.e. the circle given the euclidean metric
g(x)(v, v) = v2.

B. The Geodesic Flow As A Twist Map

Theorem 38.3 is the key to the following:

Proposition 38.4 The time 1 map h1
0 of the geodesic flow with Hamiltonian

H0(q,p) = 1
2 ‖p‖

2 is a symplectic twist map on Uε = {(q,p) ∈ T ∗M | ‖p‖ ≤ ε},
for ε small enough. More generally, given any R > 0, there is a t0 > 0 (or given

any t0 there is an R) such that, for any t ∈ [−t0, t0], ht0 is a symplectic twist map

on the set UR = {(q,p) | | ‖p‖ ≤ R}. The generating function of ht0 is given by

S(q,Q) = t
2Dis2(q,Q).

Proof . Since h1
0 is a Hamiltonian map, it is exact symplectic (see Theorem 59.7 in Ap-

pendix 1). Define Exp# = Exp ◦ L−1. By Theorem 38.3, Exp# is a diffeomorphism
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between Uε = {(q,p) | ‖p‖ = ε} and a neighborhood of the diagonal in M ×M . But

Exp#(q,p) = (q,Q(q,p)), where Q = π ◦ h1
0(q,p). Hence h1

0 is a symplectic twist

map on Uε, and ψh1
0

= Exp#. The more general statement derives from the fact that

Exp#(q, tp) = (q, q(t)), where ht0(q,p) = (q(t),p(t)).

We now show that 1
2Dis2(q,Q) is the generating function of h1

0 when it is a symplectic

twist map on a domain U (the proof for ht0 is identical). Since h1
0 is a Hamiltonian map,

(38.4) (h1
0)
∗
pdq − pdq = dS, with S(q,p) =

∫
γ

pdq −H0dt

where γ is the curve ht0(q,p), t ∈ [0, 1] (see Theorem 59.7 in Appendix 1). We now

need to show that S, expressed as a function of q,Q is the one advertised. In this particular

case, since q̇ = A(q)p (see Exercise 38.2) and H0 = 1
2 〈A(q)p,p〉 = 1

2 ‖p‖
2, the integral

simplifies:

(38.5)
∫
γ

pdq −H0dt =
∫ 1

0

1
2
〈A(q)p,p〉 −

1
2
‖p(t)‖2 dt =

∫ 1

0

1
2
‖p(t)‖2 dt.

But the integrand is H0, which is constant along γ. Hence, using Theorem 38.3 , and the

fact that L is an isometry, we get:

S(q,p) =
1
2
‖p‖2 =

1
2
‖v̇‖2 =

1
2
Dis2(q,Q(q,p)),

where (q,v) = L−1(q,p). This makes S the advertised differentiable function of q andQ

in the region where (q,p) �→ (q,Q) is a diffeomorphism. ��

Remark 38.5 1) Note that the proof of Proposition 38.4 equates the action of a geodesic

segment between two points to the generating function evaluated at this pair of points.

2) As a simple example of what makes h1
0 cease to be a twist map when the domain

U is extended too far, take M to be the unit circle with the arclength metric. In a chart

θ ∈ (−ε, 2π − ε), we have:

Dis(0, θ) =
{

θ when θ ≤ π
2π − θ when θ > π

As a result, the left derivative of 1
2Dis2(0, θ) at θ = π is π, whereas the right derivative is

−π: the function Dis2 is not differentiable at this point.

The following will be instrumental in the proof of Theorem 43.1.
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Corollary 38.6 Let hs0(q,p) = (Qs,P s) be the time s of the geodesic flow, then:

(38.6) ∂1Dis(q,Qs) = −sign(s).
p

‖p‖ and ∂2Dis(q,Qs) = sign(s).
P s

‖P s‖

Proof . From Proposition 38.4, we get:

−p = ∂1
1
2
Dis2(q,Q1) = Dis(q,Q1)∂1Dis(q,Q1) = ‖p‖ ∂1Dis(q,Q1)

which proves ∂1Dis(q,Q1) = − p
‖p‖ . UsingQs = π ◦ h1

0(q, sp), one may replace p by sp

in the previous computation to prove the first equality. For the second equality, the fact that

Dis(q,Qs) = Dis(Qs, q), that q = π ◦ h1
0(Qs,−sP s) (see Exercise 38.2) and the first

equality, enables us to write:

∂2Dis(q,Qs) = ∂1Dis(Qs, q) = sign(s).
P s

‖P s‖
��

C. The Method of Broken Geodesics

We now draw the correspondence between the variational methods provided by symplectic

twist maps and the classical method of broken geodesics (see Milnor (1969) ). As before, let

h1
0 be the time 1 map(14) of the geodesic flow with HamiltonianH0. Fix some neighborhood

U of the zero section in T ∗M . Proposition 38.4 implies that if we decompose h1
0 = (h

1
N
0 )N ,

then for N big enough each h
1
N
0 is a symplectic twist map in U . As a result, periodic orbits

of period 1 for the geodesic flow, i.e. fixed points of h1
0 are given by the critical points of:

W (q) =
N∑
k=1

S(qk, qk+1), with qN+1 = q1,

where q belong to the set XN (U) of sequences in M such that (qk, qk+1) ∈ ψ(U), where

we write ψ = ψ
h

1
N
0

. We now show that W is the action of a broken geodesic.

Since h
1
N
0 is a symplectic twist map, the twist condition implies that, given (qk, qk+1) in

ψ(U), there is a unique (pk,P k) such that h
1
N
0 (qk,pk) = (qk+1,P k), i.e., there is exactly

one trajectory ck: [ kN ,
k+1
N ]→ T ∗M of the geodesic flow that joins (qk,pk) to (qk+1,P k).

14The following discussion remains valid if we replace the time 1 map by any time T .
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The projection π(ck) onM is a geodesic, parameterized at constant speed equal to the norm

of pk. As noted in Remark 38.5, S(qk, qk+1) = 1
2Dis2(qk, qk+1) is also the action of ck:

S(qk, qk+1) =
∫
ck
pdq − Hdt. Hence W is the sum of the actions of the ck’s, i.e. the

action of the curve C obtained by the concatenation of the ck’s.

The curve C can be described as a broken geodesic: in general it has a “corner” at the

point qk wheneverP k−1 �= pk: via the Legendre transformation,P k−1 and pk correspond

to the left derivative and right derivative of the curve C at qk. If q is a critical point of W ,

P k = pk+1 (see Remark 23.3 and Exercise 26.4), and thus the left and right derivatives

coincide: in this case C is a closed, smooth geodesic.

In conclusion, the functionW (q) can be interpreted as the restriction of the action func-

tionalA(c) to the finite dimensional subspace of broken geodesics, which is parameterized

by elements of XN (U), in the (infinite dimensional) loop space of T ∗M . One can further

justify this method by showing that the finite dimensional space XN (U) is a deformation

retract(15) of a subset of the loop space and that it contains all the critical loops of that

subset. This was Morse’s way to study the topology of the loop space (see Section 16 in

Milnor (1969)). Conversely, and this is the point of view in this book (and more generally

that of symplectic topology), knowing the topology of certain subsets of the loop space, one

can gain information about the dynamics of the geodesic flow or, as we will see, of many

Hamiltonian systems.

D. The Standard Map on Cotangent Bundles of Hyperbolic Manifolds

In this subsection, we use our understanding of the relation between geodesic flow and

symplectic twist maps to define the Standard Map on the cotangent bundle of any compact

hyperbolic manifold. Recall that a hyperbolic manifold M of dimension n is a manifold

that can be covered by the hyperbolic half space IHn = {(x1, . . . , xn) ∈ IRn | xn > 0}
given the Riemannian metric ds2 = 1

x2
n

∑n
1 dx

2
k, which has constant negative curvature.

Geodesics on IHn are open semi circles or straight lines perpendicular to the boundary

{xn = 0}. Here, the relevant property of the geometry of IHn, and hence of any hyperbolic

manifold, is that the exponential map at each point is a global diffeomorphism between the

fiber and IHn, a corollary of the Hopf-Rinow Theorem (Gallot, Hulin and Lafontaine (1987),

15This retraction can be obtained by a piecewise curve shortening method.
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p. 99). The generalization of the standard map that we present now is in fact valid on any

Riemannian manifold with the property that T ∗M̃ ∼= M̃ × M̃ .

Proposition 38.7 Let S : IHn × IHn → IR be given by:

S(q,Q) =
1
2
Dis2(q,Q) + V (q),

where V : IHn → IR is some C2 function, and Dis is the distance given by the

hyperbolic metric. Then S is the generating function for a symplectic twist map

that we call the generalized standard map on IHn. Furthermore, if V is equivariant

under a group of isometries Σ of IHn representing the fundamental group of the

hyperbolic manifold M = IHn/Σ, then S is the generating function for a lift of a

symplectic twist map on T ∗M .

Proof . We show that S complies with the hypothesis of Proposition 26.2 where we take

M = IHn, U = T ∗IHn ∼= IHn × IRn. Let h1
0(q,p) = (Q,P ) be the time 1 map of the

geodesic flow on T ∗IHn. The assumption that the exponential is a global diffeomorphism

for this metric means that p→ Q(q0,p) is a global diffeomorphism {q0}× IRn → IHn for

each fixed q0 and thus h1
0 is a (global) symplectic twist map . Likewise P → q(Q0,P ) is

a diffeomorphism because h−1
0 , the inverse of a symplectic twist map is a symplectic twist

map itself. Since, according to Proposition 38.4, 1
2Dis2 is the generating function for h1

0,

we have established that the maps Q �→ ∂1
1
2Dis2(q0,Q) and q �→ ∂2

1
2Dis2(q,Q0) are

both diffeomorphisms for each fixed q0,Q0. Coming back to our full generating function,

we have proven that:

q �→ ∂2S(q,Q0) = ∂2
1
2
Dis2(q,Q0)

is a diffeomorphism.

Q �→ ∂1S(q0,Q) = ∂1
1
2
Dis2(q0,Q) + dV (q0)

must also be a diffeomorphism IHn → Tq0IH
n since we added a translation by the constant

dV (q0) to a diffeomorphism. Proposition 26.2 concludes the proof that S is the generating

function for a twist map of T ∗IHn. The last statement of the proposition is an easy conse-

quence of Exercise 26.5. ��
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39. Decomposition of Hamiltonian Maps into Twist Maps

In Subsection A, we generalize Theorem 38.4 by proving that Hamiltonian maps satisfying

the Legendre condition are symplectic twist maps, provided appropriate restrictions on the

domain of the map. We then reformulate this result in the Lagrangian setting (Subsection

B), giving a generalization of the fundamental Theorem 38.1. In Subsection C, we focus on

T ∗Tn, where, given further conditions on the Hamiltonian, we extend the domain of these

symplectic twist maps to the whole space. Finally, in Subsection D we prove a theorem

of decomposition of Hamiltonian maps into symplectic twist maps , whether or not they

satisfy the Legendre condition.

A. Legendre Condition Vs. Twist Condition

Heuristics. Remember that Hamiltonian maps, which are time t maps of Hamiltonian sys-

tems, are exact symplectic (Theorem 59.7) and, through the flow, isotopic to Id. Therefore,

to show that a certain Hamiltonian map is a symplectic twist map, we need only check the

twist condition. Clearly, not all Hamiltonian maps satisfy it. Take F (q,p) = (q+m,p) on

the cotangent bundle of the torus, for example: it is the time one map of H(q,p) = m.p,

and it is definitely not twist. Here is a heuristic argument, which appeared in Moser (1986a)

in the context of twist maps, to guide us in our search of the twist condition for Hamiltonian

maps. The Taylor series with respect to ε of the time ε map of a Hamiltonian system with

Hamiltonian H is:
q(ε) = q(0) + ε.Hp + o(ε2)

p(ε) = p(0)− ε.Hq + o(ε2)
.

Thus, up to order ε2, ∂q(ε)/∂p(0) = ε.Hpp. This shows that whenever Hpp is nondegen-

erate, the time ε map is a symplectic twist map in some neighborhood of q(0),p(0).

The problem is to extend this argument to given regions of the cotangent bundle: the term

o(ε2) might get large as the initial condition varies.

Rigorous Argument. We now present a rigorous version of this argument, valid on compact

subsets of the cotangent bundle of an arbitrary compact manifold. We say that a Hamiltonian

H : T ∗M × IR → IR satisfies the global Legendre condition if the map:

(39.1) p �→ Hp(q,p, t)
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is a diffeomorphism from T ∗qM �→ TqM for each q and t. We will say that H satisfies

the Legendre embedding condition if the map p �→ Hp is an embedding (i.e. a 1–1, local

diffeomorphism). We let the reader check that, although we have written it in a chart of

conjugate coordinates in T ∗M , this condition is coordinate independent. We give examples

of systems satisfying these conditions after the proof of the theorem.

Theorem 39.1 Let M be a compact, smooth manifold and H : T ∗M× IR be a smooth

Hamiltonian function which satisfies either the global Legendre condition (39.1) or

the Legendre embedding condition. Then, given any compact neighborhood U in T ∗M

and starting time a, there exists ε0 > 0 (depending on U) such that, for all ε < ε0

the time ε map of the Hamiltonian flow of H is a symplectic twist map on U .

Proof . Choose a Riemannian metric g on M . Define the compact ball bundles:

U(K) = {(q,p) ∈ T ∗M | ‖p‖ ≤ K}.

The nested union of these sets covers T ∗M . Hence any compact set U is contained in a

U(K) for some K large enough, and we may restrict the proof of the theorem to the case

U = U(K). Since the Hamiltonian vector field of H is uniformly Lipschitz on compact

sets, there is a time T such that the Hamiltonian flow ha+ta (z) ofH is defined on the interval

t ∈ [0, T ] whenever z ∈ U(K).

In the rest of this section, we fix a and abbreviate ha+ta by ht.

By continuity of the flow, h[0,T ](U(K)) is a compact set. We now show that we can

work in appropriately chosen charts of T ∗M . Since M is compact, we can find a real r > 0

such that T ∗M is trivial above each ball of radius 2r in M . (Indeed, there exist such a

ball around each point. If one had a sequence of points whose corresponding maximum

such r converged to zero, a limit point of this sequence would not have a trivializing

neighborhood, a contradiction). Take a finite covering {Bi} of M by balls of radius r,

and let B′i be the ball of radius 2r with same center as Bi. Choose ε3 < T such that

π ◦h[0,ε3](π−1(Bi)∩U(K)) ⊂ B′i. Such an ε3 exists since there are finitely manyBi’s and

the flow is continuous. From now on, we may work in any of the chartsπ−1(Bi) � Bi×IRn,

and know that for the time interval [0, ε3], we will remain in the charts π−1(B′i) � B′i×IRn.

We let (q,p) denote conjugate coordinates in these charts.
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Let ε < ε3 and write hε(q,p) = (q(ε),p(ε)). Consider the map ψhε : (q,p) �→
(q, q(ε)). We need to show that ψhε is an embedding of U(K) inM ×M . By compactness,

it suffices to show that ψhε is a local diffeomorphism which is 1–1 on U(K): the inverse is

then automatically continuous. Write the second order Taylor formula for q(ε) with respect

to ε (this is a smooth function since the flow is smooth):

q(ε) = q + εHp(q,p, a) + ε2R(q,p, ε).

The smoothness of the Hamiltonian flow guarantees that R is smooth in all its variables.

Indeed, its precise expression is (see eg. Lang (1983) , p. 116):

R(q,p, ε) =
∫ 1

0

(1− t)
∂htε(q,p)

∂t
dt

and the integrand is smooth since the flow is. The differential of ψhε with respect to (q,p)

is of the form:

Dψhε(q,p) =
(
Id 0
∗ A

)
, A = εHpp(q,p, a) + ε2Rp(q,p, ε).

Sincedet Hpp �= 0by the Legendre condition and sinceRp is continuous and hence bounded

on the compact setU(K)×[0, ε3], there exists ε2 in (0, ε3] such that det Dψhε = det A �= 0

on U(K) × (0, ε2] (we have used the fact that there are finitely many of our charts Bi

covering U(K)). Hence ψhε is a local diffeomorphism for all ε ∈ (0, ε2]. We now show

that, by maybe shrinking further the interval of ε, ψhε is one to one on U(K). Suppose

not and ψhε(q,p) = ψhε(q′,p′) for some (q,p), (q′,p′) ∈ U(K). The definition of ψhε

immediately implies that q = q′. Also, since ψhε is a local diffeomorphism on U(K), we

can assume that ‖p− p′‖ > δ for some δ > 0. Using Taylor’s formula, we have:

q(ε)− q′(ε) = ε(Hp(q,p, a)−Hp(q,p′, a)) + ε2(R(q,p, ε)−R(q,p′, ε)).

Define the compact set P (K) := {(q,p, q,p′) ∈ U(K) × U(K) | ‖p− p′‖ ≥ δ}.
Since p �→ Hp is a diffeomorphism, the continuous function ‖Hp(q,p, a)−Hp(q,p′, a)‖
is bounded below by some K1 > 0 on P (K). The continuous function (q,p, ε) �→
‖R(q,p, ε)−R(q,p′, ε)‖ is bounded, say by K2, on P (K)× [0, ε2] and hence

‖q(ε)− q′(ε)‖ ≥ (εK1 − ε2K2) > 0
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whenever ε ∈ (0, ε1] and ε1 is small enough. Now choosing ε0 = min{ε1, ε2} finishes the

proof of the theorem. ��

Examples 39.2 We give two classes of examples. In the first class, the Hamiltonian is

not assumed to be convex. We characterize the Hamiltonians in local charts of a cotangent

bundles. Again, the following conditions are coordinate independent.

• Let H(q,p, t) = 1
2 〈A(q,t)p,p〉 + V (q, t) and det A(q,t) �= 0, then H satisfies (39.1) .

This is simply because p �→ Hp = A(q,t)p is linear and nonsingular. Note that no convexity

is assumed here, only nondegeneracy of Hpp (and its independence of p). Hence this class

contains, but is substantially larger than, the classical mechanical systems.

• IfHpp(q,p, t) is definite positive, and its smallest eigenvalue is uniformly bounded below

by a strictly positive constant, thenH satisfies the global Legendre condition. This is a direct

consequence of Lemma 25.4. If we remove the lower bound on the smallest eigenvalue, one

can show (see Exercise 39.3) that the map p �→ Hp is not necessarily a diffeomorphism any

more, but remains an embedding and thus H satisfies the Legendre embedding condition.

Such an embedding condition, and a version of Theorem 39.1, are also satisfied if Hpp is

positive on a compact set U invariant under the flow (see Exercise 39.4).

Exercise 39.3 Show that a C1 map f : IRn �→ IRn which satisfies 〈Dfx · v, v〉 > 0 for
all v and x in IRn is an embedding, i.e. it is injective with continuous and differentiable
inverse. Deduce that a Hamiltonian such that Hpp is positive definite satisfies the Legendre
embedding condition. Give an example where this embedding is not onto.

Exercise 39.4 Let U be a compact region which is invariant under the flow of a Hamiltonian
H. Assume also that Hpp is positive definite on U . Show that the time t map is a symplectic
twist map for all t > 0 sufficiently small. (Hint. First prove, as in the previous exercise,
that p �→ Hp is an embedding of T ∗qM ∩ U for each q. Then adapt the proof of Theorem
39.1 ).

B. Lagrangian Formulation Of Theorem 39.1

The following proposition, which is a reformulation of Theorem 39.4 in Lagrangian terms,

is a generalization of the fundamental Theorem 38.1. It guarantees the existence and unique-

ness of Euler-Lagrange solutions between any two close by points. A time that the solution

is traversed has to be specified within a compact interval. In Chapter 9, we will encounter
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Tonelli’s theorem which implies, for fiber convex Lagrangian systems, that these solutions

can also be assumed to be action minimizers.

Proposition 39.5 Let M be a compact manifold and L : TM × IR → IR be a

Lagrangian function satisfying the global Legendre condition: v �→ Lv(q,v, t) is a

diffeomorphism. Then, for all starting time a and bound K on the velocity, there ex-

ists an interval of time [a, a+ε0] such that, for all ε < ε0, there exists a neighborhood

O of the diagonal in M ×M such that whenever (q,Q) ⊂ O, there exists a unique

solution q(t) of the Euler-Lagrange equations such that q = q(a), Q = q(a+ ε) and

‖q̇(a)‖ ≤ K.

Remark 39.6 Note that, in the case of the geodesic flow, the curves joining the same

points q,Q in different time intervals in this proposition are geometrically all the same

geodesic, traversed at different speeds. The dependence on the time interval chosen and the

speed chosen of the geometric solutions of the Euler-Lagrange equations is one of the main

differences, and sources of confusion, when trying to generalize notions of Riemannian

geometry to Lagrangian mechanics.

Proof . The Legendre condition enables us to define the Legendre transformL : (q,v)→
(q,p = Lv) and the Hamiltonian function H(q,p, t) = pq̇ − L(q, q̇, t), where it is un-

derstood that q̇ = q̇ ◦ L−1(q,p) (see Section 59 of Appendix 1). H satisfies the global

Legendre condition and L−1(q,p) = (q, Hp) (see Remark 59.1). In particular Theorem

39.1 applies to the Hamiltonian H . Let

V (K) = {(q,p) | ‖Hp(q,p, a)‖ ≤ K}.

This set is compact since it corresponds, under the Legendre transformation, to

L−1(V (K)) = {(q, q̇) | ‖q̇(a)‖ ≤ K}

in the tangent bundle. Theorem 39.1 tells us that, for all ε ∈ (0, ε0] with ε0 small enough,

the map hε is a symplectic twist map on V (K). Define

O = ψhε(V (K)).
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We now show, maybe by decreasing ε0, thatO is a neighborhood of the diagonal inM×M .

LetVq(K) = π−1(q)∩V (K) and writeht(q,p) = (q(t),p(t)) where, as before,ht denotes

ha+ta . The curve q(t) is a solution of the Euler-Lagrange equation satisfying q = q(a) and

if (q,p) ∈ Vq(K), then ‖q̇(a)‖ = ‖Hp‖ ≤ K. As in the proof of Theorem 39.1, we write

the Taylor approximation of the solution:

π ◦ hε(q,p) = q(ε) = q + εHp + ε2R(q,p, ε).

At first order in ε, the image of Vq(K) under π ◦ hε is {q + εHp(q,p) | (q,p) ∈ Vq(K)},
which is a solid ball centered at q. When adding the second order term ε2R, q still is in

π ◦ hε(Vq(K)), provided that ε is small enough. By compactness ε can be chosen to work

for all q. Thus (q, q) ∈ hε(V (K)) = O for all q ∈M , as claimed.

The rest of the proof is a pure translation of the statements of Theorem 39.1: by construc-

tion, if (q,Q) ∈ O, then (q,Q) = (q, q(ε)) where q(t) = π◦ht(q,p) and (q,p) ∈ V (K).

Hence q(t) is a solution to the Euler-Lagrange equation starting at q at time a, landing on

Q at time a + ε. Moreover, since (q,p) ∈ V (K), ‖q̇(a)‖ = ‖Hp(q,p, a)‖ ≤ K. Finally,

this solution is unique. Otherwise, by the uniqueness of solutions of O.D.E.’s, there would

be p �= p′ such that π ◦hε(q,p) = π ◦hε(q,p′), a contradiction to the twist condition. ��

C. Global Twist: The Case Of The Torus

When the configuration manifold is Tn, there is hope to show that the time t map of a

Hamiltonian system is a symplectic twist map on the whole cotangent bundle. We present

here some conditions under which this is true. No doubt one could find other, maybe weaker

conditions which would also work.

Assumption 1 (Uniform opticity)

H(q,p, t) = Ht(z) is a twice differentiable function on T ∗Tn × IR and satisfies the

following:

(1) sup
∥∥∇2Ht

∥∥ < K

(2) C‖v‖2 < 〈Hpp(z, t)v,v〉 < C−1‖v‖2 for some positive C independent of (z, t) and

v �= 0.

Sometimes Hamiltonian systems such that Hpp is definite positive are called optical.

This is why we refer to Assumption 1 as one of uniform opticity.
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Assumption 2 (Asymptotic quadraticity)

H(q,p, t) is a C2 function on T ∗Tn satisfying the following:

(1) det Hpp �= 0.

(2) For ‖p‖ ≥ K1, H(q,p, t) = 〈Ap,p〉+ c.p, At = A,det A �= 0.

Here A denotes a constant matrix, c a constant in IRn and K1 a positive real. We stress that,

in Assumption 2, A (and hence Hpp) is not necessarily positive definite.

Theorem 39.7 Let hε be the time ε of a Hamiltonian flow for a Hamiltonian func-

tion satisfying any of the Assumptions 1 or 2. Then, for small enough ε, hε is a

symplectic twist map of T ∗Tn (or on U , respectively).

Remark 39.8 Proposition 39.7 holds for ha+εa whenever it does for hε: ha+εa is the time ε

of the Hamiltonian G(z, s) = H(z, t+ s), which satisfies all the assumptions H does.

Proof . We prove the proposition with Assumption 1, and indicate how to adapt the proof

to Assumption 2. The strategy is to estimate
∥∥∥∂q(ε)∂p

−1
∥∥∥ and use Proposition 25.3 to turn the

local Assumptions 1 and 2 into global twist condition. We can work in the covering space

IR2n of T ∗Tn, to which the flow lifts. The differential of ht at a point z = (q,p) is solution

of the linear variational equation (16)

(39.2) U̇(t) = −J∇2H(ht(z))U(t), U(0) = Id, J =
(

0 −Id
Id 0

)

We first prove that U(ε) is not too far from Id:

Lemma 39.9 Consider the linear equation:

U̇(t) = A(t)U(t), U(t0) = U0

where U and A are n× n matrices and ‖A(t)‖ < K,∀t. Then :

‖U(t)− U0‖ < K ‖U0‖ |t− t0|eK|t−t0|.
16 In general, if φt is solution of the O.D.E. ż = Xt(z) then Dφt is solution of U̇(t) =
DXt(φ

tz)U(t), U(0) = Id. Heuristically, this can be seen by differentiating d
dt
φt(z) =

Xt(φ
t(z)) with respect to z (see e.g. Hirsh & Smale (1974)).
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Proof . Let V (t) = U(t)− U0, so that V (t0) = 0. We have:

V̇ (t) = A(t) (U(t)− U0) +A(t)U0

= A(t)V (t) +A(t)U0

and hence:

‖V (t)‖ = ‖V (t)− V (t0)‖ ≤ |t− t0|K ‖U0‖+
∫ t

t0

K ‖V (s)‖ ds

For all |t− t0| ≤ ε, we can apply Gronwall’s inequality (see Hirsh & Smale (1974)) to get:

‖V (t)‖ ≤ εK ‖U0‖ eK|t−t0|

and we conclude by setting ε = |t− t0|. ��
We now proceed with the proof of Theorem 39.7 . By Lemma 39.9 we can write:

U(s) = Id+ O1(s) where ‖O1(s)‖ < 2Ks, for s small enough (i.e. such that eKs < 2).

Integrating Equation (39.2) on both sides then yields:

(39.3) U(ε) = Id+
∫ ε

0

J∇2H(hs(z)).(Id+O1(s))ds

Let (q(t),p(t)) = ht(q,p) = ht(z). The matrix bε(z) = ∂q(ε)/∂p, is the upper right

n × n matrix of U(ε). From Equation (39.3), and Assumption 1 (1) we know it is of the

form:

(39.4) bε(z) =
∫ ε

0

Hpp(hs(z))ds+
∫ ε

0

O2(s)ds

where
∥∥∫ ε

0
O2(s)ds

∥∥ < K2ε2. From this, and the fact that

(39.5) C ‖v‖2 < 〈Hpp(z)v,v〉 < C−1 ‖v‖2 ,

we deduce that:

(39.6) (εC −K2ε2) ‖v‖2 < 〈bε(z)v,v〉 < (εC−1 +K2ε2) ‖v‖2

so that in particular bε(z) is nondegenerate for small enough ε. Since bε(q,p) is periodic

in q, the set of nonsingular matrices {bε(z)}z∈IR2n is included in a compact set and thus:

(39.7) sup
z∈IR2n

∥∥b−1
ε (z)

∥∥ < K ′,
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for some positive K ′. We can now apply Proposition 25.3 to show that hε is a symplectic

twist map with a generating function S defined on all of IR2n.

Remark 39.10 The above proof shows that hε satisfies a certain convexity condition :

(39.8)
〈
b−1
ε v,v

〉
=

〈(
∂q

∂p
(ε)

)−1

v,v

〉
≥ a ‖v‖2 , ∀v ∈ IRn.

where a is a positive constant. To see that it is the case, note that, denoting by

m = inf
‖v‖=1, z∈IR2n

∥∥b−1
ε (z)

∥∥
and M the corresponding sup, (39.6) implies:

m(εC −K2ε2)‖v‖2 < 〈b−1
ε (z)v,v〉 < M(εC−1 +K2ε2) ‖v‖2 .

We now adapt the above proof to Assumption 2. Note that under this assumption, we

can still derive (39.4) : the boundary condition (2) implies that∇2H is bounded. SinceH is

C2, and Hpp = A outside a compact set, Hpp(hsz) is uniformly close to Hpp(z) for small

s, and thus the first matrix integral in (39.4) is non singular for z and small s. Thus bε(z) is

also nonsingular for small ε. Since bε(z) = εA outside of the compact set ‖p‖ ≤ K1, the

set of matrices {bε(z) | z ∈ IRn} is compact and hence Inequality (39.7) holds and, again,

we can apply Proposition 25.3 . ��

D. Decomposition Of Hamiltonian Maps Into Twist Maps

When the time ε maps of a Hamiltonian system are symplectic twist maps for ε < ε∗,

one can readily decompose the time 1 map into such twist maps. Take a time independent

Hamiltonian, for example. Its time 1 map h1 can be written:

h1 = (h
1
N )N

and, forN > 1/ε∗, each h
1
N is a symplectic twist map . It is only slightly more complicated

when H is time dependent. In this case we can write:

(39.9) h1 = h1
N−1
N

◦ (h
N−1
N
N−2
N

) ◦ . . . h
k+1
N
k
N

◦ . . . h
1
N
0
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and each h
k+1
N
k
N

is a symplectic twist map by assumption on our Hamiltonian. as the next

Proposition shows. What may be more surprising, and gives a greater scope to the use of

symplectic twist maps, is that there is a large class of Hamiltonian systems which, even

though their time ε is not twist, can be decomposed into a product of symplectic twist maps.

This is a generalization of an idea that LeCalvez (1991) applied in his variational proof of

the Poincaré-Birkhoff Theorem (see Chapter 1). This will work with either of the following

broad assumptions:

Assumption 3.

H is aC2 function on T ∗M× [0, 1], and the domainU is a compact neighborhood in T ∗M .

Assumption 4.

H(z, t) = Ht(z) is a function on T ∗Tn × IR satisfying sup
∥∥∇2Ht

∥∥ < K. The domain

U = T ∗Tn.

Proposition 39.11 (Decomposition) Let H(z, t) be a Hamiltonian function satisfying

Assumptions 3 or 4, or the hypothesis of either Theorem 39.1or Theorem 39.7. Then

h1, the time 1 map of its corresponding Hamiltonian system, can be decomposed into

a finite product of symplectic twist maps (defined on the domain U corresponding

to the various assumptions):

h1 = F2N ◦ . . . ◦ F1.

Proof . We have given the trivial proof above for Hamiltonians that satisfies the hypothesis

of Theorems 39.1and 39.7. We now prove the proposition when H satisfies Assumption 3.

Pick a ball bundle U(K) = {(q,p) | ‖p‖ ≤ K} with K large enough so that U ⊂ U(K).

Let G be the time s of the geodesic flow, where s is chosen so that G is a symplectic twist

map on U(K). That such an s exists is proven in Proposition 38.4. We can write:

(39.10)

h1 = G ◦
(
G−1 ◦ h1

N−1
N

)
◦G ◦ . . . ◦

(
G−1 ◦ h

k+1
N
k
N

)
◦ . . . ◦G ◦

(
G−1 ◦ h

1
N
0

)
= F2N ◦ . . . ◦ F1.
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One can check that, at each successive step of the composition, the points remain in U(K).

The map G is a symplectic twist map, by assumption, and G−1 ◦ h
k+1
N
k
N

is also a symplectic

twist map by openness of the set of twist maps on a compact neighborhood (see Exercise

26.6).

Suppose now that H satisfies Assumption 4. Let G(q,p) = (q + p,p), our favorite

symplectic twist map on T ∗Tn. Decompose h1 as in Equation (39.10). We now show

that G−1 ◦ h
k+1
N
k
N

is also a symplectic twist map. Lemma 39.6 implies that ht+εt satisfies∥∥Dht+εt − Id
∥∥ < εKeKε. Hence

∥∥∥∥DG−1.Dh
k+1
N
k
N

−DG−1

∥∥∥∥ < C
1
N
e
K
N

for some positive constant C. Thus G−1 ◦ h
k+1
N
k
N

is twist for N large enough, since the

sufficient conditions det ∂Q/∂p �= 0 and
∥∥(∂Q/∂p)−1

∥∥ <∞ are both open with respect

to the C1 norm. ��

40. Return Maps in Hamiltonian Systems

We show that return maps around a periodic orbit of a Hamiltonian system is exact sym-

plectic. If the periodic orbit is elliptic, the return map has an elliptic fixed point, and thus,

generically, it is a symplectic twist map around this point (see Section 91).

Consider a time independent Hamiltonian on IR2n+2, with the standard symplectic

structure Ω0 =
∑n
k=0 dqk ∧ dpk. Assume that we have a periodic trajectory γ for the

Hamiltonian flow. It must then lie in the energy level {H = H0} where H0 = H(γ(0)).

Take any 2n + 1 dimensional open disk Σ̃ which is transverse to γ at γ(0), and such

that Σ̃ intersects γ only at γ(0). Such a disk clearly always exists, if γ is not a fixed

point. In fact, one can assume that, in a local Darboux chart, Σ̃ is the hyperplane with

equation q0 = 0: this is because in the construction of Darboux coordinates, one can start

by choosing an arbitrary nonsingular differentiable function as one of the coordinate function

(see Arnold (1978), section 43, or Weinstein (1979) , Extension Theorem, Lecture 5). Define

Σ = Σ̃ ∩ {H = H0}. It is a standard fact (true for periodic orbits of any C1 flow ) that

the Hamiltonian flow ht admits a Poincaré return map R, defined on Σ around z0, by

R(z) = ht(z)(z), where t(z) is the first return time of z to Σ under the flow (see Hirsh
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& Smale (1974), Chapter 13). We claim thatR is symplectic, with the symplectic structure

induced by Ω0 on Σ. Since Σ̃ is transverse to γ, we may assume that:

q̇0 =
∂H

∂p0
�= 0

on Σ̃. Hence, by the Implicit Function Theorem, the equation

H(0, q1 . . . , qn, p0, . . . , pn) = H0

implies that p0 is a function of (q1, . . . , qn, p1, . . . , pn). This makes the latter variables a

system of local coordinates for Σ. We will now work in a simply connected neighborhood

O of z0 inΣ, parameterized by (q1, . . . , qn, p1, . . . , pn). Since dq0 = 0 inO, the restriction

of Ω0 is in fact

ω
def
= Ω0

∣∣
O =

n∑
k=1

dqk ∧ dpk.

To prove thatR is exact symplectic, use Formula 59.9 of Appendix 1which states that,

for any closed curve in O, or more generally for any closed 1–chain c in O,∫
Rc
pdq −Hdt =

∫
c

pdq −Hdt

since c andRc are on the same trajectory tube. We now show that
∫
RcHdt =

∫
c
Hdt = 0.

This is due to the fact that d(Hdt) = dH ∧ dt = 0 ∧ dt = 0 since H = H0 on O. Since

O is simply connected, Poincaré’s Lemma shows that Hdt is an exact form and hence its

integrals along the closed curves c and Rc are null. Now we have
∫
Rc pdq =

∫
c
pdq for

any closed curve c in O and Exercise 58.6 implies thatR is exact symplectic.

41. Suspension of Symplectic Twist Maps by Hamiltonian Flows

Moser (1986a) showed how to suspend a twist map of the annulus into a time 1 map of a (time

dependent) Hamiltonian system satisfying the fiber convexity Hpp > 0. In subsection A we

present a suspension theorem for higher dimensional symplectic twist maps announced in

Bialy & Polterovitch (1992b), which implies Moser’s theorem in two dimensions. These

authors kindly agreed to let their complete proof appear for the first time in this book. In

subsection B, we give the proof, due to the author, of a suspension theorem where we let go

of a symmetry condition assumed by Bialy and Polterovitch. The price we pay is the loss

of the fiber convexity of the suspending Hamiltonian.
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A. Suspension With Fiber Convexity

Theorem 41.1 (Bialy and Polterovitch) Let F be a symplectic twist map with gener-

ating function S satisfying:

(41.1) ∂12S(q,Q) is symmetric and negative nondegenerate.

Then there exists a smooth Hamiltonian function H(q,p, t) on T ∗Tn × [0, 1]

convex in the fiber (i.e. Hpp is positive definite) such that F is the time 1 map

of the Hamiltonian flow generated by H. The Hamiltonian function H can also be

made periodic in the time t.

Proof . Following Moser, we will construct a Lagrangian function L(q,v, t) on IR2n ×
[0, 1] with the following properties:

(41.2) (a) The corresponding solutions of the Euler-Lagrange equations connecting the

points q and Q in the covering space IRn in the time interval [0, 1] are straight lines q +

t(Q− q);

(41.2) (b) S(q,Q) =
∫ 1

0

L(q + t(Q− q),Q− q, t)dt;

(41.2) (c) L is strictly convex with respect to v : ∂
2L
∂v2 is positive definite.

(41.2) (d) L(q +m,v, t) = L(q,v, t) for allm in ZZn.

If such a function L is constructed, its Legendre transform H satisfies the conclusion of

Theorem 41.1: (41.2) (a) and (b) imply thatF is the time 1 map of the HamiltonianH , (41.2)

(c) implies that Hpp is convex (see Exercise 59.2) and (41.2) (d) that the Euler-Lagrange

flow of L takes place on TTn and hence the Hamiltonian flow of H is defined on T ∗Tn.

Note that if (41.2) (c) is satisfied then (41.2) (a) is equivalent to the following equation:

(41.2) (a′)
∂2L

∂v∂q
v +

∂2L

∂v∂t
− ∂L

∂q
= 0.

Lemma 41.2 Set Rij(q,v, t) = − ∂2S

∂qi∂Qj
(q − tv, q + (1 − t)v). Then the following

holds:

(41.3) (a) Rij = Rji;

(41.3) (b)
∂Rij
∂vk

=
∂Rik
∂vj

;



41. Suspension of Symplectic Twist Maps 167

(41.3) (c)
∂Rij
∂qk

=
∂Rik
∂qj

;

(41.3) (d)
∂Rij
∂t

+
∑
l

∂Rlj
∂qi

vl = 0

for all i, j, k.

The proof is straightforward and uses the fact that the matrix ∂2S
∂q∂Q is symmetric.

Lemma 41.3 Set L(q,v, t) =
∫ 1

0

(1− λ)
∑
i,j

Rij(q, λv, t)vivjdλ. Then the following

holds:

(41.4) (a)
∂L

∂vi
=

∫ 1

0

∑
j

Rij(q, τv, t)vjdτ

(41.4) (b)
∂2L

∂vi∂vj
= Rij

(41.4) (c) L satisfies Equation (41.2) (a’).

Proof . Rewrite L as follows:

(41.5)

L(q,v, t) =
∫ 1

0

∫ 1

λ

ds
∑
i,j

Rij(q, λv, t)vivjdλ =
∫ 1

0

ds

∫ s

0

dλ
∑
i,j

Rij(q, λv, t)vivj

=
∫ 1

0

ds

∫ 1

0

s
∑
i,j

Rij(q, sτv, t)vivjdτ =
∫ 1

0

∑
i

viαi(q, sv, t)ds,

where αi(q,v, y) =
∫ 1

0

∑
j

Rij(q, τv, t)vjdτ. We can rewrite the last integral of (41.5)

as a path integral: ∫ 1

0

∑
i

viαi(q, sv, t)ds =
∫
γ

∑
i

αidvi,

where γ(s) = (q, sv, t). Fixing q and t, Equation (41.3) (b) implies that the form
∑
i αidvi

is closed, and, because v ∈ IRn, exact, say
∑
i αidvi = dA for some functionA(v) on IRn.

Then the Fundamental Theorem of Calculus yields:

L(q,v, t) = A(v)−A(0).

Since
∑
i αidvi = dA = ∂L

∂v dv, Equation (41.4) (a) follows. The proof of (41.4) (b) is

similar. We now prove (41.4) (c). In view of (41.4) (a), the left hand side I of (41.2) (a’) can
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be written as follows:

I =
∑
l

vl

∫ 1

0

∑
j

∂Rij
∂ql

(q, τv, t)vjdτ +
∫ 1

0

∑
j

∂Rij
∂t

(q, τv, t)vjdτ

−
∫ 1

0

(1− λ)
∑
l,j

∂Rlj
∂qi

(q, λv, t)vlvjdλ.

=a1 + a2 − a3,

where ak is the kth integral in the above expression. Rewrite a3 using (41.3) (c) as follows:

a3 =
∫ 1

0

∑
l,j

∂Rij
∂ql

vlvjdτ −
∫ 1

0

∑
l,j

∂Rl,j
∂qi

vlvjτdτ.

The first term is equal to a1. Therefore:

I =
∫ 1

0

∑
j

vj

{
∂Rij
∂t

(q, τv, t) +
∑
l

∂Rl,j
∂qi

(q, τv, t)τvl

}
dτ.

Equation (41.3) (d) implies that the bracket, and hence I , vanish. ��
Given any function L(q,v, t), set

L̃(q,Q) =
∫ 1

0

L(q + t(Q− q),Q− q, t)dt.

Lemma 41.4 Assume that L satisfies (41.2) (a’). Then the following holds:

∂L̃

∂qi
= − ∂L

∂vi
(q,Q− q, 0);(41.6) (a)

∂L̃

∂Qi
=

∂L

∂vi
(Q,Q− q, 1);(41.6) (b)

∂2L̃

∂qi∂Qj
= − ∂2L

∂vi∂vj
(q,Q− q, 0).(41.6) (c)

Proof . Equation (41.6) (c) is a consequence of (41.6) (a), which we now prove. The same

argument also proves (41.6) (b). If L satisfies (41.2) (a’) or equivalently (a) then:

d

dt

{
∂L

∂vi
(q + t(Q− q),Q− q, t)

}
=

∂L

∂qi
(q + t(Q− q),Q− q, t).

Therefore,
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∂L̃

∂qi
(q,Q) =∫ 1

0

{
− ∂L

∂vi
(q + t(Q− q),Q− q, t) + (1− t)

d

dt

(
∂L

∂vi
(q + t(Q− q),Q− q, t)

)}
dt

=
∫ 1

0

d

dt

{
(1− t)

∂L

∂vi
(q + t(Q− q),Q− q, t)

}
dt = − ∂L

∂vi
(q,Q− q, 0).

��
Given any two differentiable functions L(q,v, t), f(q, t), set:

Lf (q,v, t) = L(q,v, t) +
∂f

∂q
(q, t)v +

∂f

∂t
(q, t).

Lemma 41.5

(41.7) (a) L̃f (q,Q) = L̃(q,Q) + f(Q, 1)− f(q, 0);

(41.7) (b) If L satisfies (41.2) (a’) then Lf satisfies it as well, for all f .

The proof of this lemma is straightforward. We are now in position to finish the proof

of Theorem 41.1. Let L be the function defined in Lemma 41.3. From (41.6) (c) and (41.4)

(b), we get:

∂2L̃

∂qi∂Qj

(q,Q) = − ∂2L

∂vi∂vj
(q,Q− q, 0) =

∂2S

∂qi∂Qj
(q,Q),

and therefore

L̃(q,Q) = S(q,Q) + a(q) + b(Q)

for some differentiable functions a and b. Set

f(q, t) = (1− t)a(q)− tb(q).

We claim that the function Lf satisfies (41.2) (a)-(d). We prove these properties one by one.

1. We proved in (41.4) (c) that L satisfies (41.2) (a’), and hence (41.2) (a). Statement (41.7)

(b) proves that Lf does as well.

2. From (41.7) (a), we get:

L̃f (q,Q) = L̃(q,Q)− b(Q)− a(q) = S(q,Q),

which proves (41.2) (b).
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3.
∂2Lf
∂v2

=
∂2L

∂v2
= (Rij) = − ∂2S

∂q∂Q
(q − tv, q + (1 − t)v). Since this last matrix is

positive definite by Hypothesis (41.1), so is the first one.

4. Since S(q +m,Q+m) = S(q,Q), the function L is periodic in q. We need to check

that ∂f∂t and ∂f
∂q are also periodic in q. Using the definitions and (41.6) (a) and (b), one can

easily check that

L̃(q, q) =
∂L̃

∂q
(q, q) =

∂L̃

∂Q
(q, q) = 0.

From the definitions of the functions a and b we obtain that

a(q) + b(q) = −S(q, q),
∂a

∂q
= −∂S

∂q
(q, q),

∂b

∂q
(q) = − ∂S

∂Q
(q, q).

Because of the periodicity of S, all these functions are periodic in q. Since

∂f

∂t
= (1− t)

∂a

∂q
− t

∂b

∂q
,

∂f

∂q
= −a− b,

both ∂f
∂t and ∂f

∂q are periodic. This finishes the proof of our claim, and hence that of Theorem

41.1. ��

B. Suspension Without Convexity

If we let go of the symmetry of ∂2S
∂q∂Q (but keep some form of definiteness) in Theorem 41.1

, we can still suspend the twist map F by a Hamiltonian flow. The cost is relatively high

however: we can no longer insure that the Hamiltonian is convex in the fiber. The proof,

quite different from that of Theorem 41.1, first appeared in Golé (1994c). I am indebted to

F. Tangermann for a useful discussion about this theorem.

Theorem 41.6 Let F (q,p) = (Q,P ) be a symplectic twist map of T ∗Tn whose

differential b(z) = ∂Q(z)
∂p satisfies:

(41.8) inf
z∈T∗Tn

〈b−1(z)v,v〉 > a ‖v‖ , a > 0, ∀v �= 0 ∈ IRn.

Then F is the time 1 map of a (time dependent) Hamiltonian H.

Remark 41.7 Condition (41.8) tells us that F does not twist infinitely much. Note that

(41.8) holds when H satisfies Assumptions 1 and 2 (see Remark 39.10).
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Proof . Let S(q,Q) be the generating function of F . Since p = −∂1S(q,Q), we have

that b = ∂Q/∂p = − (∂12S(q,Q))−1. Hence equation (41.8) translates to:

(41.9) inf
(q,Q)∈IR2n

〈−∂12S(q,Q)v,v〉 > a ‖v‖ , a > 0,∀v �= 0 ∈ IRn.

The following lemma show that (41.9) implies the hypothesis of Proposition 25.2, which

in turn shows that whenever we have a function on IR2n which is suitably periodic and

satisfies (41.9) , it is the generating function for some symplectic twist map.

Lemma 41.7 Let {Ax}x∈Λ be a family of n× n real matrices satisfying:

inf
x∈Λ

|〈Axv,v〉| > a‖v‖2, ∀v �= 0 ∈ IRn.

Then :

det Ax �= 0 and sup
x∈Λ

∥∥A−1
x

∥∥ < a−1.

We postpone the proof of this lemma. We now construct a differentiable familySt, t ∈ [0, 1]

of generating functions, with S1 = S, and then show how to make a Hamiltonian vector

field out of it, whose time 1 map is F . Let

St(q,Q) =

{
1
2af(t)‖Q− q‖2 for 0 < t ≤ 1

2
1
2af(t)‖Q− q‖2 + (1− f(t))S(q,Q) for 1

2 ≤ t ≤ 1,

where f is a smooth positive functions, f(1) = f ′(1/2) = 0, f(1/2) = 1 and

limt→0+ f(t) = +∞. We will ask also that 1/f(t), which can be extended continuously to

1/f(0) = 0, be differentiable at 0. The choice of f has been made so that St is differentiable

with respect to t, for t ∈ (0, 1]. Furthermore, it is easy to verify that:

inf
(q,Q)∈IR2n

〈−∂12St(q,Q)v,v〉 > a ‖v‖2 , a > 0,∀v �= 0 ∈ IRn, t ∈ (0, 1].

Hence St generates a smooth family Ft, t ∈ (0, 1] of symplectic twist maps. In fact

Ft(q,p) = (q − (af(t))−1p,p), t ≤ 1/2, so that limt→0+ Ft = Id. Define:

st(q,p) = St ◦ ψFt(q,p),

where ψFt is the change of coordinates given by the fact that Ft is twist. Since ψFt(q,p) =

(q, q − (af(t))−1p), t ≤ 1/2,
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st(q,p) =
1
2
(af(t))−2‖p‖2

In particular, by our assumption on 1/f(t), st can be differentiably continued for all t ∈
[0, 1], with s0 ≡ 0. Hence, in the q,p coordinates, we can write:

F ∗t pdq − pdq = dst, t ∈ [0, 1].

By Theorem 59.7, Ft is a Hamiltonian isotopy. ��

Proof of Lemma 41.7.. That det Ax �= 0 is obvious from the assumption: A has no

kernel. For all non zero v ∈ IRn, we have:

∀v ∈ IRn − {0}, inf
x∈Λ

|〈Axv,v〉|
‖v‖2

> a

Also:

inf
‖v‖=1

‖Axv‖ ≥ inf
‖v‖=1

|〈Axv,v〉| = inf
v∈IRn−{0}

|〈Axv,v〉|
‖v‖2

so that infx∈Λ inf‖v‖=1 ‖Axv‖ > a. But:

inf
‖v‖=1

‖Axv‖ = inf
v∈IRn−{0}

‖Axv‖
‖v‖ = inf

v∈IRn−{0}

‖v‖∥∥A−1
x v

∥∥
so that, finally:

sup
x∈Λ

∥∥A−1
x

∥∥ =
(

inf
x∈Λ

inf
v∈IRn−{0}

‖v‖
‖Axv‖

)−1

< a−1.

��


